SAND2010- 1871P

FISH ‘n’ Chips — A microfluidic processor for
Isolating and Analyzing Microbes

Sponsor: NIH-NIDCR (R01)
PI: Anup Singh
Sandia Team Members: Robert Meagher, Thomas Perroud, Ken
Patel, Peng Liu, Yanli Liu, Yooli Light
Partners: New York University (Deepak Saxena, Daniel Malamud)
Joint Genome Institute (Philip Hugenholtz)

Project Start Date: 8/18/2009
Project End Date: 8/17/20012



Project Overview

* The majority of microbes can not be cultivated by known methods,
but are nonetheless likely to play a significant role in the ecology at
all sites in the body, and thus it is critical to develop techniques to
obtain samples of microorganisms for genetic analysis, without
relying on traditional culture-based techniques.

* Develop technology to recover genomic DNA, suitable for
sequencing, from individual (single cell) specimens of rare,
previously unknown, and/or uncultivable microbes from the oral
cavity.

— Qur role in this project is mostly technology development

— Our collaborators at NYU have an interest in the role of bacterial
biofilms in inflammatory processes, and possible roles bacteria may
play in the progression of pre-cancerous lesions to oral cancer

— We are also involved in a DOE-funded project to study bacterial
communities in environmental water samples (e.g. Hanford) , and we
are developing similar technical approaches for this work.



Motivations

=« Metagenomic studies have revealed far greater diversity of bacteria than was
previously realized, mostly because previous studies relied on culturing techniques,
and missed the large majority of bacteria that don’t grow easily in the laboratory.

= Much of the diversity is inferred only from bits of ribosomal RNA sequence uncovered
in shotgun metagenomics studies

- 16S sequence reveals phylogenetic relationships, but says nothing about
function.

= a good way to understand bacterial function is from genomic sequence information.
The “traditional” approach is to grow up a pure culture (clonal population) of a
particular bug, extract genomic DNA, and sequence. However — the large majority of
microbes can not be grown in pure culture by known laboratory techniques, for a
variety of reasons.

= SO we can either work on new techniques for culturing difficult-to-culture bugs, or
develop culture-independent techniques for DNA sequencing.

= This entire field is made possible by recent developments in DNA sequencing (“next-
generation” or “ultra high-throughput” sequencing techniques)



“FISH-n-Chips” Microfluidic Processor
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Metegenomics of the oral microbiome (NYU)

the persistent presence of bacteria at the tumor sites in oral cavity raises intriguing questions about the role of
bacteria in progression of oral squamous cell carcinoma (OSCC). We sequenced (by 454) ~26,000 PCR amplicons
that span the V4-V5 hypervariable region of ribosomal RNAs from saliva samples of two OSCC patients.
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Our initial study provides numerous examples of previously undiscovered, low-abundance phylotypes. We are expanding
our sequencing efforts of both OSCC and normal samples, with an aim of discovering relevant targets for further analysis.

Newly discovered 16S sequences will be used to design FISH probes for identifying and selecting individual cells of
interest from saliva samples. FISH or antibody-based sorting can also be used to deplete saliva samples of high-
abundance species, to improve the chances of finding rare species. FISH probes need to distinguish among near
neighbors in saliva but not necessarily from the entire bacterial domain.



FISH for bacterial identification
(FISH = Fluorescent In Situ Hybridization)

= Hybridize labeled oligonucleotide probe to RNA in intact, fixed cells.

- Usually 16S rRNA to establish identity (can be thousands of copies per cell —
good signal amplification).

— Probing for mRNA is also possible, usually weaker signal.

= Technique is robust, but somewhat labor-
intensive ¥ O

= Signals can be assigned to specific cells =D
via imaging or flow cytometry \

= Alow degree of multiplexing is possible (1-
3 probes plus a DNA stain like DAPI)

= Drawbacks: signal can be weak for e
environmental samples; can have et
problems with sample loss or difficulty
finding cells in samples with low cell {
density.

Amman and Fuchs, Nat. Rev. Microbiol. 2008
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Example — GFP-expressing E. coli
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Chip Flow Cytometry

We have built a microscale flow cytometer for analyzing on-chip cell labeling experiments.

The chip cytometer demonstrates sufficient sensitivity to distinguish FISH-labeled environmental isolates Dv RCH1
and Pseudomonas RCH2 from unlabeled cells (RCH1 has weak signal, RCH2 is much stronger).

The chip cytometer has sorting capabilities which have previously been demonstrated for bacteria (E. coll).
Chip cytometer has throughput scaled properly for on-chip FISH hybridization.
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Chip results are comparable to BD FACScan

FISH-hybridized Dv, Pseudomonas, and Geobacter (RCH1, RCH2, and RCH3) cells
are readily distinguished from unhybridized cells on a conventional BD FACSscan, with
similar results to the on-chip cytometry. Sorting based on FISH is also possible with a

FACSAria cytometer.
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488 nm laser excitation; FL1 = 530/30 nm; FL3 > 670 nm; 10,000 counts per sample
Fixed cultured cells hybridized with FISH probe and 7-Amino-actinomycin D (7-AAD, a far-red DNA stain)



Microdroplets for single-cell compartmentalization

«  Wecan use a microfluidic channel to segment fluids into a series of highly
uniform microdroplets with 10-1000 pL volume

« Similar to “emulsion PCR” techniques, except the droplets are generally
larger, and much more uniform in size.

. Droplets can be generated at rates of ~10-1000/second
- many fewer compartments than emulsion PCR

- many more compartments generated in a few minutes than a
microtiter plate

. In glass channels — utilize “radial micropore” etching technique to create
droplet orifices that are smaller than the channel.

. Opposite flow regime from 2-phase extraction
-~ Small capillary number (Ca = uU/y)
- Even with surfactants, v is relatively large
- Interfacial forces are dominant

Perroud et al, Lab Chip 2009




Encapsulating bacteria within droplets

« To ensure single-cell encapsulation, rely upon stochastic loading
<<1 cell per droplet; most droplets are empty

* Future: on-demand droplet generation

» Goal is to perform a whole-genome amplification in the droplet

— Small reaction volume has been shown to improve fidelity of $29
polymerase MDA reaction (picoliter volume has not been tested!)

— Asecond stage of MDA at larger scale will be needed to generate enough
DNA for sequencing.

E. colilabeled with
16S FISH probe

Encapsulated E. coli




Expected impact

Combined tools (FISH, sorting, and nano-scale genome amplification) should
improve the efficiency of single-cell sequencing studies, with improved fidelity
of sequencing.

For our sponsor (NIDCR) — could lead to enhanced understanding of role of
microbial community in inflammation associated with oral disease, e.g. OSCC.

For microbiology community as a whole — single-cell sequencing is a rapidly
expanding research objective for many types of sample — human (mouth, gut,
skin, etc), enivronmental (bioremediation, etc), enzyme prospecting,
metagenomic surveillance, etc.

Challenges:

- Integration of multiple disparate functions in a single device is always a
challenge, especially with a small team and small budget.

- Individual technologies can be made to work independently of one another;
non-chip versions of each technology can be used while validating each chip
process.



