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Scientific Motivation

Resistive and extended
MHD models a variety of
important plasma physics

Sandia
| Z-Machine

Astrophysics: Solar flares,
sunspots, reconnection

+ Geophysics: Earth’s
magnetospheric sub-storms,
geo-dynamo

Magnetosphere
Credit: Steele Hil/NASA

* [Fusion: Magnetic
confinement (ITER -
Tokamak), Inertial conf. (NIF,
Z-pinch)

* Sawtooth Region (q < 1) W Core
N Transport

* Core Confinement Region=-{'p \ J

* Magnetic Islands

* Edge Pedestal Region——

» Technology/Engineering:
Plasma Reactors, MHD
Pumps, ..

 Scrape-off Layer

*Vacuum/Wall/
Conductors/Antenna

MHD
Equilibrium

* .
Plasma-Wall \/ Large Scale Radiative Atomic Heating .
Interactions /\ Instabilities Transport Physics Current Drive,
Fig. 2: Illustration of the interacting physical processes within a tokamak discharge.

Mathematical / Computational : ~
Motivation: Achieving Scalable ITER FSP Report
Predictive Simulations of

Complex Highly Nonlinear

Multi-physics PDE Systems @ Sandia
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Mathematical / Computational Motivation: Achieving Scalable Predictive Simulations
of Complex Highly Nonlinear Multi-physics PDE Systems

What are multi-physics systems? (A multiple-time-scale perspective)

These systems are characterized by a myriad of complex, interacting, nonlinear multiple
time- and length-scale physical mechanisms.

These mechanisms can balance to produce:
« steady-state behavior,

» nearly balance to evolve a solution on a dynamical time scale that is long relative
to the component time scales,

 or can be dominated by one, or a few processes, that drive a short dynamical time
scale consistent with these dominating modes.

e.g. Nuclear Fusion / Fission Reactors; Astrophysics; Conventional /Alternate Energy Systems

Our approach - pursue new applied math/algorithms to develop robust,
accurate, scalable, and efficient implicit formulations and fully-coupled Newton-
Krylov methods with integrated optimization/UQ tools for predictive simulation
technologies for complex coupled multi-physics systems.
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Multiple-time-scale systems: E.g. Driven Magnetic Reconnection with a
Magnetic Island Coalescence Problem (Incompressible

Time = 0.000

e S
e s i o
S, i
B Z

SRS
R e,
PR ST TR T,
LRI TS
R eso s
LI

e
SRR
e
SRR
S
538

<
g
B
ey

5.000e+01

3.025e+01

2. 250e+01

wirite 1ot imags | 8:750e%00
xport Plot Dt Write: ViewPt lmage: | -5.000e400

pprox. Computational Time Scales:
e lon Momentum Diffusion: 107 to 103

* lon Momentum Advection: 104 to 10-2
_ b

« Alfven Wave (- 5, /) :10“4to 102
o ; . -7 -3 0
Magnetic Flux Diffusion: 10" to 10 Whistler Wave (- - V’,,d - 10 to 10"
« Magnetic Island Sloshing: 10°

Magnetic Island Merging: 10'



Z-pinch Double Hohlraum Schematic

Z Machine (Approximate Ranges)

100ns current rise time for
20 MA Electrical Current

250 ns plasma shell collapse
and stagnation

10-30 ns X-ray power pulse
~280 TW power

Computational Stability Constraints:

Hyperbolic Operators: At < Ax/2c
+ Alfven waves

* Magneto-sonic waves

» Material transport

* Radiation transport

Parabolic Operators: At < Ax2/D
* Magnetic Diffusion
* Heat Conduction

Hall Physics: Whistler waves
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Extended MHD Equations

Extended MHD Model in Residual Form

O(pv 2
o(p)
Ry= "5 +V-[pv] =0
O(pe
Re = (;)+v [pve+q] —T:VvEq|J|? Q¢ +Q =0
R 0B o 7 — 1V B E= vxB+ J+ (JxB VP, Involution:
B—W—*—VX 0 = X n el V.-B=0
Hall
Divergence Conservation Form aa—[—i—VOF—l—S 0
B p T [~ pV ] [ 0 i
B pv B pV V—l_OB 2B — T+ ||B||'I S — 0
U= ot F= pEv]—T~V+E><B+q Q' +Q
I B | i Vr:}zi:lB—B':}:{:rV—}%(VB—VBT) | i 0 ]

T =fE+5 o[BI Eoeq Ly

Involution: V.-B=10

General Case a Strongly Coupled, Multiple Time- and Length-Scale, Nonlinear,
Nonsymmetric System with Parabolic and Hyperbolic Character
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Magnetic Vector Potential Formulation (2D)

B=VxA—-V-B=V-VxA

Solenoidal involution is automatically satisfied provided that the
discrete differential operator enforces V-V x A =0 to machine
accuracy.
O0A '
E=-V&-—o- > %‘;‘—vx(vXAH%vXVXA:—VQ

Select a Coulomb-type Gauge and in 2D

T 0A,
Ho ot Ho

Remarks:
- Convection/Diffusion/Reaction equation - can use SUPG Stabilization.
 On interior of Elements Div B = 0; Only weakly divergence free however
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Summary of Initial Stabilized FE Weak form of Equations
for Low Mach Number MHD System;

Governing Stabilized FE Residual (following Hughes et. al.,
Equation Shakib - Navier-Stokes; Salah et. al. 99 & 01, Codina et. al. 2006 -Magnetics )
Momentum
- [®R, dQ+Y [pr,(usVO)R, dQ+Y [v, VO *GVudQ

Q e Q¢ e e
Total Mass F, fch dQ +E f pt Vd*R_dQ

Z/ pTm VP - [—)+V ovev]|+ VP -V -II-J xB] ds2
Thermal A . o (€
Energy F, = ichng +Z Qf pC,t, (ueVO)R,dQ +Z givTch GVTdQ
Magnetics
(Vector =f(I)RAZdQ +2 f o7y (u VO )RAZdQ +2 fVAZV(D *G°VA,dQ
Potential) Q e Qe e Q°
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Summary of Structure of Linear Systems Generated in
Newton’s Method

Galerkin FE (Mixed interpolation FEM):

M0

0 O

v
P

+

Stabilized FE (Hughes et. al)

Q1/Q1 V-P elements, SUPG like terms and
Discontinuity Capturing type operators

\Y
P

M0
N 0

+

A
B

A

(B+L)K

B’
0

B’

<

v=(uT, A,)

K= E [ pT, VO VOIQ
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Lagrange Multiplier Form. ( Dedner et. al. 2002, Codina 2006, ...)

ov) |y [pv®v—iB®B+(P+LHB\|2)I—H] —0
ot 1o 2140
d(p)
W-}-V-[pv]—o
ai—l—v-[v@B—B@v—i(VB*—(VB*)W)}: -Vy =0
ot o
V.-B=0
Remarks:

« Only weakly divergence free in FE implementation

« VMS formulation for convection & coupling effects under development

- Elliptic constraint used to enforce divergence free condition.

- Can show relationship with a projection method (e.g. Brackbill and Barnes
1980) when a 1st order-split integration is used Sondia
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Lagrange Multiplier Form. (contd.)

Stabilization to circumvent inf-sup (LBB) condition(s):

F, = / ®Rpd) + G(v,B,p; ?)
Q

Consistent residual-based stabilization: Hughes et. al. Filtering type: Dohrmann-Bochev-Gunzburger

Z/ pTmV® - [ )+v [ov®v]|+ VP -V II - JxB]dQ /l(P—wP)(cb—ch)dQ
Q H

Fy = /Q<I>R¢dﬂ +G(v,B,y; ®)

Consistent residual-based stabilization: Hughes et/ \ Filtering type

Z/ BV - [—+v [v®B—B®v—%(VB—VBT)]—V¢]d9 /Q%(w—vmb)(@—ﬂ‘b)dﬂ
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Advanced Discretizations

|IIII‘BI]I(| Tn'[inos toolbox for discretizations (Bochev, Ridzal, Peterson, Pawlowski).
» allows access to finite element, finite volume, and finite difference methods via a common API

e compatible node-, edge-, face-, and cell-based discretizations

X

H(Qgrad) —— H(Qecurl) 5 H(Q,div) — L*(Q)
11

7 8

5 6 1 A9, 2

‘ A g A (‘5 4|8

® 3 ¢ I /j 1» 1
3 | 4 47 3 y

1 2 o

e enables hybrid discretizations (FE, FV, FD) on unstructured grids
e reference-map-based low- and high-order FE discretizations on standard cells

o “direct” low-order FV and FD discretizations on arbitrary polyhedral cells

Completed development of basic finite element reconstruction operators (Bochev, Ridzal):

3

Lagrange elements of order 1,2,3 Nedelec element Raviart-Thomas element
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Stable, Accurate, Scalable, and Efficient xMHD Unstructured FE Solution Methods

Currently:

+ Variable density and Low Flow-Mach-Number compressible
Resistive MHD

+ Initial MHD Formulations (weak divergence free):
+ 2D Vector Potential
- 2D & 3D B field Projection and
Lagrange Multiplier Method;
* Fully-implicit: 15t-5t" variable order BDF (Rhythmos) & TR;
» 2D & 3D Unstructured Stabilized FE [ (Az)* & (Az)® ]
- Automatic Diff. Enabled Implementation (Saccado);

* Direct-to-Steady-State (NOX); Continuation, Linear Stability
and Bifurcation (LOCA / Anasazi), PDE Constrained
Optimization (Moocho)

- Efficient Parallel Newton-Krylov Solution Methods
+ Additive Schwarz DD w/ Var. Overlap; (AztecOO)

- Aggressive Coarsening Graph Based Block Multi-level
[AMG] for Systems (ML);

- Initial Physics Based Preconditioning

In Development & Implementation:
- Extended MHD

* High-resolution Hyperbolic Solver
(FE-TVD/FCT)

- Physics Compatible Discretizations
(e.g. DivB =0)

[e.g De Rham complex, Nodal, Edge,
Face, volume elements (Intrepid)]
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Flux Expulsion
(Unstructured Mesh)

Analytic Solution: Az = Im[Bgf(r)e'] 2

~ pJo(pro)
o — "[2J1(pro) — proJo(pro)]
pJo(pro)

f(r) =DJi(pr),r < ro

V Rem
0
_ (1 —1)kg
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Flux Expulsion (Unstructured Mesh)

Flux Expulsion Problem

Flux Expulsion Problem
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MHD Rayleigh Flow and Alfven Wave
(Transient w/ Analytic Solution)

Analytic Solution: _
Fluid

e | =
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MHD Rayleigh Flow and Alfven Wave

Order of Accuracy Study Order of Accuracy Study
Spatial Integration Leor . Time Integration

—#-BE - vx Error
_— -=-Mid Point - vx Error

-
- - -
- "
1.E-02 - "
/ BE - Bx Error - -’/-/-/' 2/5
—
1.6-03 - Mid Point - Bx Error

/ -5~ Mid Point - vx Error o7 BE - Az Error - /Z//
= 1.E-04 - = Mid Point Az Error

1.E-02 1.E-01 1.E-05 1.E- 1E-03  1.E-02
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MHD Duct Flow Test for
SUPG Stabilization

—

uy =0

142;:_5_>

Vector Potential Az

$F ity

Vx

Velocity Vx
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Why Newton-Krylov Methods?

/ Newton-Krylov \

Fully-implicit transient

Stability and Accuracy Properties
F(X,x,A,A,,A;,.)=0 _
- Stable (stiff systems)

e.g. + High order methods

‘3_" " 4V ([pcu]"”)_ Ve[D"'Ve ]+ =0 Variable order techniques
t

+ Local and global error control possible

« Can be stable and accurate run at the
dynamical time-scale of interest in

multiple-time-scale systems (e.g. Knoll et.
al., Brown & Woodward., Chacon and Knoll)
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Why Newton-Krylov Methods?

/ Newton-Krylov \

Direct-to-steady-state

Convergence properties

« Strongly coupled multi-physics often
requires a strongly coupled nonlinear
solver

- Quadratic convergence near
solutions (backtracking, adaptive
convergence criteria)

- Often only require a few iterations to
converge, if close to solution,
independent of problem size

F(x,A,A,,A;,.)=0

Inexact Newton-Krylov

|9, + Fx,)|

Solve Jp, =-F(x,); until HF(Xk)H

S?’]k
X, ., =xk+®pk

k

Jacobian Free N-K Variant

Mp, =v
_Fx+0dp,)-F(x)

Jp, 5 ; or by AD

See e.g. Knoll & Keyes, JCP 2004

Laboratories




Why

Newton-Krylov Methods?

Convergence
Properties

/
Conmtin

Fully-implicit transient
1st— 5" order BDF, MP, TR

Design
Optimization;
Inverse
Problems;
Adjoint Sensitivities
& Error Est. for

‘ \ Deterministic (UQ);
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) ) Stable Fields/Flow at
Hydro-Magnetic Rayleigh- Ra = 4000, Q = 81

Bernard Stability

Unstable Flow at
Ra =4000, Q =144




Characterizing Complex Nonlinear Solution Spaces with a

Transient Code is Difficult

0.04

0.00

Amplitude

-0.02

0.02 H

-0.04
0

p=5

Amplitude

0.02

0.01

0.00

-0.01

i

-0.02
0

p=10 Hopf Bifurcation?

5

Time

10

Amplitude

1.0

05 | i
-
—-05 }

-1.0
0

5 10
Time

p=15

Various discrete time integration methods:

« can produce “spurious” stable and unstable steady solutions and limit cycles

» can stabilize unstable solutions of the ODE/PDE

 can produce very different dynamics and bifurcation behavior than ODE/PDE
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Characterizing Complex Nonlinear Solution Spaces with a
Transient Code is Difficult

0.04 T 0.02 T 1.0
0.02

I E 0.01 05 | I
0.00 WW\MMMNWVWNW 0.00 = 00 MWMMNWWW\MJ N
-0.02 b —-0.01 H -0.5
—0.04 ! - . -1.0 .
0.02
0 5 10 0 5 10 0 5 10

Amplitude
Amplitude
Amplitude

Time Time Time

p=5 p=10 Hopf! p=15

Various discrete time integration methods: (can also be said of discrete spatial approx)
» can produce “spurious” stable and unstable steady solutions and limit cycles

 can stabilize unstable solutions of the ODE/PDE

 can produce very different dynamics and bifurcation behavior than ODE/PDE

In addition:

* turn a BVP -> IBVP with unknown initial data (basin of attraction of solutions)

* require very long time integration near critical points

* require a detailed sampling of parameter space to characterize a solution space

» produce complex interactions between temporal and spatial discretizations

« cannot be used to efficiently “track” location of critical points with multiple parameters

e.g. Helen Yee - Very nice study of these issues

Yee, Sweby, IJCFD, 4, 1995 Sandia
Yee, Sweby, RIACS Tech. Rept. 1997 m"%ﬁ



Hydro-Magnetic Rayleigh-Bernard Stability: Direct Determination of Linear
Stability and Nonlinear Equilibrium Solutions (Steady State Solves)

V- 0 0 0 0O 0O O O O =
X PMaliee e e e e e ee voe s

Nonlinear Stable
Solution

Evectors for unstable
e-value at Bifurcation

Vx (at x=0.5, y=0.25,2z=00)
)

- Chandrasekhar Number Q =10

g J) N 1 | L | N
1940 1950 1960 R, 1970
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Hydro-Magnetic Rayleigh-Bernard Stability: Direct Determination of Linear
Stability and Nonlinear Equilibrium Solutions (Steady State Solves)

Q

Ra* | Ra.. [Chandrasekhar||]] | % error

0| 1707.77 1707.8 0.002
101 | 1945.78 1945.9 0.006
102 | 3756.68 3757.4 0.02

- 2 Direct-to-steady-state solves at a given Q
- Arnoldi method using Cayley transform to determine

approximation to 2 eigenvalues with largest real part

- Simple linear interpolation to estimate Critical Ra*
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Bifurcation / Stability (Two-Parameter) Diagram

VX Q | Fields & Buoyancy
1 Driven Flow

Ra

e S — —.—..,—.&"2:— [R—

Q=10
- / Fields, No Flow

Ra Q

* “No flow” does not equal “no-structure” — pressure and magnetic
fields must adjust/balance to maintain equilibrium.
« LOCA can perform multi-parameter continuation
Sandia
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Hydro-Magnetic Rayleigh-Bernard:
Directly Determining Critical Stability and Critical Points

Linear Stability of Computational
Solution by Normal Mode Analysis

0iBq; = F q;

/ I

(F —n.B) ' (F — pu.B)w = vw

Approximately invert by ML
preconditioned Krylov solve

Turning Point Tracking:

F(x,Ra™,Q") =0
Fv=0
r‘v—1=0

Solve extended system
with Newton’s method

Moore-Spence

 Turning point formulation:

f(z,p) =0
Jn =20
p-n—1=0
* Newton’s method (2N+1):
(Jn)z J Jpn| |An| = —Jn
0 o 0 Ap 1—9¢l.n

* 4 linear solves per Newton iteration:
Ja=—f
Jb = —fp
Je= —(Jn)za — Jn
Jd = —(Jn)zb — Jpn
Ap=(1—-¢-n—¢-c)/(¢-d)
An =c—+ Apd
Ax = a-+ Apb Sandia
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Direct Determination of Bifurcation Points (Ra*, Q*) (multiple steady state solves)
Magnetic Field Compresses Most Unstable Mode as Q Increases

| LI B | lll I I LI B A | | I [
@ Analyvtic (Chandresckhar) Legding mode
4000 B W Leading Eigenvalue at Q=100: 20 cells /- is 26 cells
¢4 Leading Eigenvalue at Q=100: 26 cells 1
3000
Non-zero Fields & Flow
Ra
2000
-
- —
\ Leading mode Non-zero Fields, No Flow
is 20 cells

150903 1 | L1111 I | 1 | L1 1 | | 11

] }JJU 1 I Q I 1{K)

©)(c](€)€)ELIRRBEIPERE)EECIEEEE)

Mode: 20 Cells: Q=100, Ra=4017

Mode: 26 Cells: Q=100, Ra=3757




Why Newton-Krylov Methods?

Convergence
Properties

/
Conmtin

A
AR

N\
i

Fully-implicit transient
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Why Newton-Krylov Methods?

Fully-implicit transient

/1 N\

Stability || Accuracy ||Efficiency

Direct-to-steady-state

. .
Convergence Design
Properties | | ‘ Optimization
Characterization \
Complex Soln. Spaces
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ML library: Multilevel Preconditioners

(R. Tuminaro, M. Sala (BMW-Sauber), J. Hu, C. Siefert, M. Gee (UT Munich))
2-level and N-level Aggressive Coarsening Graph-based Block AMG

« Aggregation is used to produce a coarse operator | « Galerkin and Petrov-Galerkin

- Create graph where vertices are block Projections
nonzeros in matrix A, * Nonsmoothed & smoothed aggregation
+ Edge between vertices i and j included if » Smoothers: domain decomposition
block B,(i,j) contains nonzeros smoothers (sub-domain GS and ILU(k))
« Decompose graph into aggregates » Coarse grid solver can use fewer
(subgraphs) [Metis/ParMetis] processors than for fine r_nesh solve
- Construction of simple restriction/interpolation (direct/approximate/iterative)

operators (e.g. piecewise constants on agg.)
« Construction of A,_; as A,_; = R A |4

Level 2 (36 nodes) Level 1 (9 nodes) Level 0 (3) nodes
Aggregation based Multigrid:
» Vanek, Mandel, Brezina, 1996
_\ * Vanek, Brezina, Mandel, 2001

Aggregation used in DD:
 Paglieri, Scheinine, Formaggia, Quateroni, 1997
 Jenkins, Kelley, Miller, Kees, 2000

Visualization of effect of partition of matrix graph on mesh | * Toselli, Lasser, 2000
- Sala, Formaggia, 2001




Choice of Prolongation/Restriction

Non-smoothed aggregation and a Galerkin Projection (simple choice, good stability, more
optimal for hyperbolic operators)
~ {1 if i€ agg(a) . R=PT

P(i, ) = 0 if otherwise ’

Smoothed aggregation and a Galerkin projection. Damped Jacobi a typical choice for smoothing
prolongator in smoothed aggregation (optimal smoothing parameters for Laplace, etc.)

P — (I o w-D_lA)P- ]5Z tentative prolongator
1 T 1 1 .
R— pT D = diag(A)

w;: damping parameter

Petrov-Galerkin type smoothed aggregation preconditioner for nonsymmetric linear systems
[Sala and Tuminaro, SISC 2008]

P, = <I — wiD_lA)PZ-

R; = PT(I — AD"'w")

+ Perform restriction smoothing
+ Restriction operator does not correspond to transpose of prolongator for nonsymmetric problems

+ Rather than use a single damping parameter, calculate values to minimize P, and R,

» Sub-domain decomposition smoothers (sub-domain GS and ILUT, ILU(k), LU)

» Coarse grid solver can use fewer processors than for fine mesh solve (sparse
direct (KLU, SuperLU) / approximate (ILUT) / iterative
Sandia
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Scaling Performance for Fully-coupled Resistive MHD/ Block AMG - Cray XT3/4

3000
4096 procs
o
& 2500 ettt
0 ﬁ—xlmmuzjr;
c 3 bevel NSO, TLU(1,1)
° 2000 4 —u—!l::velEminllu[l.l)
E Estimate 1 level [LU[2,1) /
1024 procs,
2 1500 g
~ ///
9 1000 256 prees:
- /
g‘ 500 +—— 64 prees—
< 16 procs.
0 . —
1.0E+05 1.0E+06 1.0E+07

Weak Scaling Study: Resisitve MHD VP
Formulation (2D MHD Pump)

Number of Unknowns

1.0E+08

O

sloc

Vx Profiles for Faraday Conduction MHD Pump

Avg. CPU Time / Newton

Step (sec.)

Weak Scaling Study: Resisitve MHD VP Formulation

800

(2D MHD Pump)

4096 procs.
1 bevel [LUfav=2FlI=1)
700 W 1 vl [LU(2,3)
e e 1 el [LU(2,7)
3 bevel NSO, TLUGL 1)
600 3 bevel Emin [LU(1,1)
Estimate 1 bevel [LU2,1)
500 /-
400 1024 procs. ///
300
/| +20x
200
256 procs. /
100 64 procs:
16 procs.
J 3
(o E——— " i "
1.0E+05 1.0E+06 1.0E+07 1.0E+08

Number of Unknowns




Multicore Performance of Fully-coupled Resistive MHD Simulations - Cray XT3/4

Nodes Cores Compute Jac Linear Solve Total
+Prec
Time | (%) | Time M (%) Time | n(%)
(sec) (sec) (sec)
4096 1 16.9 4.3 - 21.2 -
2048 2 18.2 93 4.5 95 22.6 94
1024 4 17.7 95 4.9 88 22.6 94

Our Largest Fully-coupled Direct-to-steady-state
Simulation to Date:

1+ Billion unknowns

250 Million Quad elements

24,000 cores Cray XT3/4

Newton-GMRES / ML: PG-AMG 4 level

18 Newton steps

86 Avg. No. Linear Its. / Newton step
33 min. for solution

Sandia
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Hydro-Magnetic Rayleigh-Bernard Stability: Direct Determination of

Nonlinear Equilibrium Solutions (Steady State Solves, Ra = 2500)

Nonlinear Solver Convergence; Ra = 2500 Linear Solver Convergence; Ra = 2500, Q= 4

1Eres 1.£+00
1LE+04 X +-Qm=o0 ~#- 15t Newton Step DD
\ *+Qmi @ 1st Newton Step ML

LEvey *Qm=4 & 2nd Newton Step DD
Q=9 -#- 2nd Newton Step ML

1.E-D1 1

linea
noo
2 8
Scaled Linear Norm
"
N

;
_,_-0"""4

T T T T T ) LE-04
o 5 10 15 20 25 30 0 200

400 600 500 1000 1200
Iteration No. Iteration No.
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Hydro-Magnetic Rayleigh-Bernard Stability: Direct Determination of

Nonlinear Equilibrium Solutions (Steady State Solves, Ra = 2500)

Robustness and Efficiency of DD and Multilevel Preconditioners

proc | fine grid | fine grid 1-level ILU 3-level V(1,1) ILU-ILU-KLU
size unknowns | avg its/ time | medium | coarse | avg its/ | time
Newt (sec) | unkns | unkns | Newt | (sec)
step size size step
2048 | 50025000 12.5M 1910[40] | > 7200* | 412450 | 13745 | 115[17] 226

Sandia
National
Laboratories



(initial) Kelvin-Helmholtz

N\

Time = 0.00000




Transient Kelvin-Helmholtz

102 Linear Iterations: Re=5000 with PSPG (Newton Linearization) 10° Linear Iterations: Re=5000 with PSPG

5 Time/Nonlinear step: Re=5000 with PSPG
10 T T T
—e AggC —e AggC —e AggC

H e—e DD e—e DD e—e DD
e—e PCD-ILU —*’/\/ e—e PCD-ILU e—e PCD-ILU

e—e SIMPLE-ILU e—e SIMPLE-ILU e—e SIMPLE-ILU
10% ] 107+
g g g
a g 9
= c
= 10t F ] = £
% 2 -~ —

0 L 0 . . . 0 . . .
10 10 10
10" 10° 10 10° 10° 10° 10’ 10° 10° 10° 10° 10’ 10°
CFL Number Number of unknowns Number of unknowns

Time/NI tep

Kelvin Helmholtz: Re=5000, Weak scaling at CFL=2.5

*‘Run on 1 to 256cores
*Pressure - PSPG, Velocity - SUPG (residual and
Jacobian)

1. SIMPLEC strongly dependent on CFL

2. Block methods scale as well as AggC

Sandia
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(initial) Hydro-magnetic Kelvin-Helmholtz
Re = Re,, = 1,000;

Slip BC

e i

Byo

Q = 10,000; Rt
Laboratories



Multiple-time-scale systems: E.g. Driven Magnetic Reconnection with a
Magnetic Island Coalescence Problem (Incompressible — resistive MHD)

s

S




Multiple-time-scale systems: E.g. Driven Magnetic Reconnection with a
Magnetic Island Coalescence Problem (Incompressible — resistive MHD)

Time = 0.000

Jz

5.000et01

3.025e+01

2. 250e+01

Grace ot Ein 8.750e+00
¢ laa (314 Nriter s

-5.000e+00

Approx. Computat!onal_ Time S7cales:3 « lon Momentum Advection: 10 to 10-2

* lon Mor_nentum I_)lffu§|on: 10'7 to 10'3 . Alfven Wave (7="32") :10%to 107

* Magnetic Flux Diffusion: 10" to 10 Whistler Wave (=V’,:—d) : 107 to 10-1
 Magnetic Island Sloshing: 10°

« Magnetic Island Merging: 10*




Sloshing in Resistive MHD:
Island Coalescence problem (FE MHD)

Reconnection Rate

3.E-02

2.E-02

1.E-02

0.E+00

Reconnection Rate at X point

-+-resistivity = 0.001
#resistivity = 0.0001
-resistivity = 0.00001

A

15 20

10Time

Reconnection Rate (¥:)

Peak Reconnection Rate at X point

1.0E-01 1

[J Knoll, Chacon 512 x 256 FV Phys. Plasmas 2006
—— Constant Rate = 0.021
— — sqgrt(eta)

¢ High eta range 512x256 = 130K FE

® Low eta range 512x256 = 130K FE

<> High eta range unstructured 40K FE

A Low eta range Unstructured 47K

s *

1.0E-02 1

1.0E-03

1.E-06

1.E-05 1.E-04 1.E-03
Resistivity (1)

1.E-02
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Preliminary Weak Scaling Results on Island Coalescence Problem
(@resistivity n=1.0e-3)

Charon_xmhd, FE

Procs [Mesh #Unk |Newton/|Gmres/ [Time/ [Gmres/|Time/ |Est. Ratio
AT Newton [Newton At At Serial
Time
1 64x64 16K 3.9 4.4 2.1 17.2 8.1 810 3.6486
4 128x128 | 64K 4.6 5.8 2.6 26.7 11.9 4760 4.379
16 256x256 | .25M 4.9 6.3 2.9 30.9 14.2 22720 |3.8944
64 512x512 iM 6.2 8.8 4 54.6 24.6 | 157440 |5.7502
Grid Newton | GMRES/dt| CPU(s) | Chacon & Knoll,
64x64 3.3 3.3 222 '
128x128 4 4.5 1087 E;lszgys;gi
256x256 45 6.2 5834 )
512x512 4.7 8.3 27380

Only ~4-5 times slower, considering...

* Research code — no investment in efficiency (coming soon)

* Unstructured FE vs Structured FV solver: no leveraging of mesh structure.

* No physics based preconditioning (Block - AMG)

- Need faster and lower memory physics based approach for transients and .

lower resistivity. National
ratones



Towards simulation of a 3D Ideal Kink Instability in Tokamak Geometry
(Solov’ev equilibrium) [B field solver — Lagrange multiplier method.]

Unstructured FE mesh for
tokamak geometry. Kappa = 1

4
W
]
% /i
0/

/4

N
N
S,

A representative Solov’ev

equilibrium pressure field. pressure field. —
National

Kappa = 2 Kappa = 2 et}



Conclusions

* Initial results for stabilized FE formulation of low Mach number
resistive MHD system is encouraging

* Newton-Krylov /block AMG methods can provide a very effective,
robust and flexible solution technology for analysis and
characterization of complex nonlinear solution spaces.

- Parallel multilevel preconditioners have shown promising results for
algorithmic scalability and CPU time performance for initial MHD
solutions.

(Issues: Hyperbolic operators, FE aspect ratios for multilevel
methods)

* For transient simulations physics based preconditioners are
required for fast solutions. Use block AMG as sub-system solvers.

- Next 3D formulations, physics-based preconditioners, new Schur
complement approximations, and tokamak geometries

Sandia
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Trilinos: Full Vertical Solver Coverage
(Part of DOE: TOPS SciDAC Effort)

L
0

Optimization
Unconstrained:

Find v e R* that minimizes g(u)

Constrained: Find ze€R™ and ue®R" that 81 MOOCHO
' minimizes g(xz,u) s.t. f(z,u) =0 3
Given nonlinear operator F(x,u) € gprTm | chU
Bif tion Analysi OF . -
ifurcation Analysis For F(z,u) =0 find space uelU s>t { 4 C LOCA
Transient Problems Solve f(z(t),z(t),t) =0 ";' .
/
DAEs/ODEs: t€[0,7],2(0) = zqg,z(0) = zq = E Rythmos
for xz(t) € Rt € [0, T] 20
o =
Nonlinear Problems Given nonlinear operator F(x) e R — X ) (D_) NOX
Solve F(x) =0 ze&®R" b
-
Linear Problems | Given Linear Ops (Matrices) A, B € R™M*" O AZI;Z:;C;O
>
Linear Equations: Solve Az =0b for zec®R" < | ifpack, ML, teko
Eigen Problems: Solve Av =ABv for (all) veR", e Anasazi
Distributed Linear Algebra Epetra
Matrix/Graph Equations:| Compute y = Az; A = A(G); A € R™*" G € FM*X"
Vector Problems: Compute y = azx + Bw;,a = (z,y); z,y € R" Tpetra




