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Scientific Motivation 
•  Resistive and extended 

MHD models a variety of 
important plasma physics 

•  Astrophysics: Solar flares, 
sunspots, reconnection 

•  Geophysics: Earth’s 
magnetospheric sub-storms, 
geo-dynamo


•  Fusion: Magnetic 
confinement (ITER - 
Tokamak), Inertial conf. (NIF, 
Z-pinch) 

•  Technology/Engineering: 
Plasma Reactors, MHD 
Pumps, .. 

•   … 

ITER
 FSP Report


Sandia

Z-Machine


Magnetosphere 

Credit: Steele Hill/NASA


Mathematical / Computational 
Motivation:  Achieving Scalable 
Predictive Simulations of 
Complex Highly Nonlinear 
Multi-physics PDE Systems 



Mathematical / Computational Motivation: Achieving Scalable Predictive Simulations 
of Complex Highly Nonlinear Multi-physics PDE Systems 

 What are multi-physics systems? (A multiple-time-scale perspective)

These systems are characterized by a myriad of complex, interacting, nonlinear multiple 
time- and length-scale physical mechanisms.


These mechanisms can balance to produce: 

•  steady-state behavior,  

•  nearly balance to evolve a solution on a dynamical time scale that is long relative 
to the component time scales,  

•  or can be dominated by one, or a few processes, that drive a short dynamical time 
scale consistent with these dominating modes.  

e.g. Nuclear Fusion / Fission Reactors;  Astrophysics; Conventional /Alternate Energy Systems 

Our approach - pursue new applied math/algorithms to develop robust, 
accurate, scalable, and efficient  implicit formulations and fully-coupled Newton-
Krylov methods with integrated optimization/UQ tools for predictive simulation 
technologies for complex coupled multi-physics systems.




Multiple-time-scale systems: E.g. Driven Magnetic Reconnection with a 

Magnetic Island Coalescence Problem (Incompressible)   


Approx. Computational Time Scales:  
•  Ion Momentum Diffusion: 10-7 to 10-3 
•  Magnetic Flux Diffusion:  10-7 to 10-3   

•  Ion Momentum Advection: 10-4 to 10-2 
•  Alfven Wave                    : 10-4 to 10-2 
•  Whistler Wave                 : 10-7 to 10-1 
•  Magnetic Island Sloshing: 100  
•  Magnetic Island Merging: 101 



Z-pinch Double Hohlraum Schematic  

Z Machine (Approximate Ranges) 

100ns current rise time  for  
      20 MA Electrical Current 

250 ns plasma shell collapse 
       and stagnation 

10-30 ns X-ray power pulse 
   ~280 TW power 

Computational Stability Constraints: 

Hyperbolic Operators: Δt < Δx/2c 
•  Alfven waves 
•  Magneto-sonic waves 
•  Material transport 
•  Radiation transport  

Parabolic Operators: Δt < Δx2/D 
•  Magnetic Diffusion 
•  Heat Conduction 

Hall Physics: Whistler waves 
        ->  Δt < Δx2/(VA di) 



Extended MHD Equations 

Divergence Conservation Form 

Involution: 

Extended MHD Model in Residual Form 

General Case a Strongly Coupled, Multiple Time- and Length-Scale, Nonlinear, 
Nonsymmetric System with Parabolic and Hyperbolic Character


Involution: 



Magnetic Vector Potential Formulation (2D) 

Remarks:

•  Convection/Diffusion/Reaction equation  can use SUPG Stabilization.

•  On interior of Elements Div B = 0; Only weakly divergence free however


Solenoidal involution is automatically satisfied provided that the 
discrete differential operator enforces                            to machine 
accuracy.


r ¢r £ = 0

Select a Coulomb-type Gauge and in 2D 



Summary of Initial Stabilized FE Weak form of Equations 
 for Low Mach Number MHD System;                                                                                                            

Governing 
Equation 

Stabilized FE Residual  (following Hughes et. al.,  
Shakib - Navier-Stokes; Salah et. al. 99 & 01, Codina et. al. 2006 -Magnetics ) 

Momentum 

Total Mass 
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Energy 

Magnetics 
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Summary of Structure of Linear Systems Generated in 
Newton’s Method 
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Stabilized FE (Hughes et. al)  
Q1/Q1 V-P elements, SUPG like terms and  
Discontinuity Capturing type operators 

T −     
+       

      

M 0 v vA B
N 0 P PBR K





e
m

e
dρτ

Ω

= ∇Φ•∇Φ Ω∑ ∫K

(B + L) 

Galerkin FE (Mixed interpolation FEM): 

v = (u, T, Az)



Lagrange Multiplier Form. ( Dedner et. al. 2002, Codina 2006, …)  

Remarks:

•  Only weakly divergence free in FE implementation

•  VMS formulation for convection & coupling effects under development

•  Elliptic constraint used to enforce divergence free condition.

•  Can show relationship with a projection method (e.g. Brackbill and Barnes 

1980) when a 1st order-split integration is used


= 0 



Lagrange Multiplier Form. (contd.) 
Stabilization to circumvent inf-sup (LBB) condition(s): 

Consistent residual-based stabilization: Hughes et. al.   Filtering type: Dohrmann-Bochev-Gunzburger  

Consistent residual-based stabilization: Hughes et. al.   Filtering type  



Advanced Discretizations 

•  allows access to finite element, finite volume, and finite difference methods via a common API 

•  compatible node-, edge-, face-, and cell-based discretizations 

•  enables hybrid discretizations (FE, FV, FD) on unstructured grids 

•  reference-map-based low- and high-order FE discretizations on standard cells 

•  “direct” low-order FV and FD discretizations on arbitrary polyhedral cells 

1 

 Lagrange elements of order 1,2,3 Nedelec element Raviart-Thomas element 

Completed development of basic finite element reconstruction operators (Bochev, Ridzal): 



Stable, Accurate, Scalable, and Efficient xMHD Unstructured FE Solution Methods 

Currently:

•  Variable density and Low Flow-Mach-Number compressible 
Resistive MHD

•  Initial MHD Formulations (weak divergence free):


•  2D Vector Potential

•  2D & 3D B field Projection and 

  Lagrange Multiplier Method;


•  Fully-implicit: 1st-5th variable order BDF (Rhythmos) & TR;

•  2D & 3D Unstructured Stabilized FE [            &             ]

•  Automatic Diff. Enabled Implementation (Saccado); 

•  Direct-to-Steady-State (NOX); Continuation, Linear Stability 
and Bifurcation (LOCA / Anasazi), PDE Constrained 
Optimization (Moocho)

•  Efficient Parallel Newton-Krylov Solution Methods


•  Additive Schwarz DD w/ Var. Overlap; (AztecOO)

•  Aggressive Coarsening Graph Based Block Multi-level 
[AMG] for Systems (ML); 

•  Initial Physics Based Preconditioning


In Development & Implementation:

•  Extended MHD

•  High-resolution Hyperbolic Solver 
(FE-TVD/FCT)

•  Physics Compatible Discretizations 
(e.g. Div B = 0)                                     

 [e.g De Rham complex, Nodal, Edge, 
Face, volume elements (Intrepid)]




Flux Expulsion 
(Unstructured Mesh) 

Analytic Solution: 



Flux Expulsion (Unstructured Mesh) 



MHD Rayleigh Flow and Alfven Wave 
(Transient w/ Analytic Solution) 

Fluid 
U 

Analytic Solution: 

B0 



MHD Rayleigh Flow and Alfven Wave 



MHD Duct Flow Test for 
SUPG Stabilization 

Y 

X 
Z 



Why Newton-Krylov Methods? 

Newton-Krylov


Direct-to-steady-state
 Fully-implicit transient


Stability and Accuracy Properties


•  Stable (stiff systems)


•  High order methods


•  Variable order techniques


•  Local and global error control possible


•  Can be stable and accurate run at the 
dynamical time-scale of interest in 
multiple-time-scale systems (e.g. Knoll et. 
al., Brown & Woodward., Chacon and Knoll)


 

F( x,x,λ1,λ2 ,λ3,..) = 0

e.g.

∂c
∂t

n+1

+∇ • ρcu[ ]n+1( ) −∇ • Dn+1∇cn+1 + Sc
n+1 = 0



Why Newton-Krylov Methods? 

Newton-Krylov


Direct-to-steady-state
 Fully-implicit transient


Convergence properties


•  Strongly coupled multi-physics often 
requires a strongly coupled nonlinear 
solver


•  Quadratic convergence near 
solutions (backtracking, adaptive 
convergence criteria)


•  Often only require a few iterations to 
converge, if close to solution, 
independent of problem size


F(x,λ1,λ2 ,λ3,..) = 0

   
Solve  Jpk = −F(x k );     until   

Jpk +F(x k )

F(x k )
≤ηk

   x k+1 = x k +Θp k

Inexact Newton-Krylov


Mpk = v

Jpk =
F(x +δpk ) - F(x)

δ
 ;  or by AD

Jacobian Free N-K Variant


See e.g. Knoll & Keyes, JCP 2004 



Why Newton-Krylov Methods? 

Newton-Krylov


Direct-to-steady-state

Globalized Newton w/AD


Fully-implicit transient

1st – 5th order BDF, MP, TR


Convergence

Properties


Characterization 

Complex Soln. Spaces


Parameter

Continuation


Bifurcation

Analysis


Stability

Analysis


Design

Optimization;


Inverse 

Problems;


Adjoint Sensitivities 

& Error Est. for


Deterministic (UQ);




Hydro-Magnetic Rayleigh-
Bernard Stability  

Stable Fields/Flow  at  
Ra = 4000, Q = 81 

Unstable Flow  at  
Ra = 4000, Q = 144 

Vx 

Jz 



Characterizing Complex Nonlinear Solution Spaces with a 
Transient Code is Difficult 

p=5 p=15 p=10   Hopf Bifurcation? 

Various discrete time integration methods: 
•  can produce “spurious” stable and unstable steady solutions and limit cycles 
•  can stabilize unstable solutions of the ODE/PDE 
•  can produce very different dynamics and bifurcation behavior than ODE/PDE 



Characterizing Complex Nonlinear Solution Spaces with a 
Transient Code is Difficult 

p=5 p=15 p=10   Hopf! 

Various discrete time integration methods: 
•  can produce “spurious” stable and unstable steady solutions and limit cycles 
•  can stabilize unstable solutions of the ODE/PDE 
•  can produce very different dynamics and bifurcation behavior than ODE/PDE 

In addition: 

•  turn a BVP -> IBVP with unknown initial data (basin of attraction of solutions) 
•  require very long time integration near critical points 
•  require a detailed sampling of parameter space to characterize a solution space 
•  produce complex interactions between temporal and spatial discretizations 
•  cannot be used to efficiently “track” location of critical points with multiple parameters 

(can also be said of discrete spatial approx) 

e.g. Helen Yee - Very nice study of these issues 
Yee, Sweby, IJCFD, 4, 1995 
Yee, Sweby, RIACS Tech. Rept. 1997 



1950 1960 1970 1980 1940 Ra 

Evectors for unstable  
e-value at Bifurcation 

Nonlinear Stable 
Solution 

Vx 

Bx 

Temp. 

Hydro-Magnetic Rayleigh-Bernard Stability: Direct Determination of Linear 
Stability and Nonlinear Equilibrium Solutions (Steady State Solves)  

Chandrasekhar Number Q = 10 

Temp. 

Vx 

Vy 

By 

Bx 



Hydro-Magnetic Rayleigh-Bernard Stability: Direct Determination of Linear 
Stability and Nonlinear Equilibrium Solutions (Steady State Solves) 

•  2 Direct-to-steady-state solves at a given Q

• Arnoldi method using Cayley transform to determine 

approximation to 2 eigenvalues with largest real part

• Simple linear interpolation to estimate Critical Ra*




Q=10


Q=0


Bifurcation / Stability  (Two-Parameter) Diagram 

Vx


Ra


Q


Ra


Q


   Fields, No Flow


     Fields  & Buoyancy 

Driven Flow


•  “No flow” does not equal “no-structure” – pressure and magnetic 
fields must adjust/balance to maintain equilibrium. 


•  LOCA can perform multi-parameter continuation




•  Turning point formulation: 

•  Newton’s method (2N+1): 

•  4 linear solves per Newton iteration: 

Moore-Spence


Hydro-Magnetic Rayleigh-Bernard:  
Directly Determining Critical Stability and Critical Points  

Solve extended system 
with Newton’s method 

Turning Point Tracking: 

Linear Stability of Computational 
Solution by Normal Mode Analysis 

Approximately invert by ML 
preconditioned Krylov solve 



Direct Determination of Bifurcation Points (Ra*, Q*)  (multiple steady state solves)  



Why Newton-Krylov Methods? 

Newton-Krylov


Direct-to-steady-state
 Fully-implicit transient


Convergence

Properties


Characterization 

Complex Soln. Spaces


Parameter

Continuation


Bifurcation

Analysis


Stability

Analysis


Design

Optimization;


Inverse 

Problems;


Adjoint Sensitivities 

& Error Est. for


Deterministic (UQ);




Why Newton-Krylov Methods? 

Newton-Krylov


Direct-to-steady-state
 Fully-implicit transient


Convergence

Properties


Characterization 

Complex Soln. Spaces


Design 

Optimization
 Stability
 Accuracy
 Efficiency


Very Large Problems -> Parallel Iterative Solution of Sub-problems


Krylov Methods - Robust, Scalable and Efficient Parallel Preconditioners

•  Approximate Block Factorizations

•  Physics-based Preconditioners

•  Multi-level solvers for systems and scalar equations 




ML library: Multilevel Preconditioners 

•  Aggregation is used to produce a coarse operator 
•  Create graph where vertices are block 

nonzeros in matrix Ak 

•  Edge between vertices i and j included if 
block Bk(i,j) contains nonzeros 

•  Decompose graph into aggregates 
(subgraphs) [Metis/ParMetis] 

•  Construction of simple restriction/interpolation 
operators (e.g. piecewise constants on agg.)  

•  Construction of Ak-1 as Ak-1 = Rk-1 Ak Ik-1 

Level 2 (36 nodes) Level 1 (9 nodes) Level 0 (3) nodes 

2-level and N-level Aggressive Coarsening Graph-based Block AMG 
(R. Tuminaro, M. Sala (BMW-Sauber), J. Hu, C. Siefert, M. Gee (UT Munich)) 

•  Galerkin and Petrov-Galerkin 
Projections 

•  Nonsmoothed & smoothed aggregation 
•  Smoothers: domain decomposition 

smoothers (sub-domain GS and ILU(k)) 
•  Coarse grid solver can use fewer 

processors than for fine mesh solve 
(direct/approximate/iterative) 

Visualization of effect of partition of matrix graph on mesh 

Aggregation based Multigrid: 
•  Vanek, Mandel, Brezina, 1996 
•  Vanek, Brezina, Mandel, 2001 

Aggregation used in DD: 
•  Paglieri, Scheinine, Formaggia, Quateroni, 1997 
•  Jenkins, Kelley, Miller, Kees, 2000 
•  Toselli, Lasser, 2000 
•  Sala, Formaggia, 2001 



Choice of Prolongation/Restriction 

♦  Smoothed aggregation and a Galerkin projection. Damped Jacobi a typical choice for smoothing 
prolongator in smoothed aggregation (optimal smoothing parameters for Laplace, etc.) 

♦  Petrov-Galerkin type smoothed aggregation preconditioner for nonsymmetric linear systems 
[Sala and Tuminaro, SISC 2008] 

+  Perform restriction smoothing 
+  Restriction operator does not correspond to transpose of prolongator for nonsymmetric problems 
+  Rather than use a single damping parameter, calculate values to minimize Pi and Ri 

♦  Non-smoothed aggregation and a Galerkin Projection (simple choice, good stability, more 
optimal for hyperbolic operators) 

•  Sub-domain decomposition smoothers (sub-domain GS and ILUT, ILU(k), LU) 
•  Coarse grid solver can use fewer processors than for fine mesh solve (sparse 

direct (KLU, SuperLU) / approximate (ILUT) / iterative 



By = B0 
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Scaling Performance for Fully-coupled Resistive MHD/ Block AMG - Cray XT3/4 

By


Velocity


MHD

Pump


~20x 



Multicore Performance of Fully-coupled Resistive MHD Simulations - Cray XT3/4 

By


Velocity


MHD

Pump


Our Largest Fully-coupled Direct-to-steady-state 
Simulation to Date: 

1+ Billion unknowns 
250 Million Quad elements 
24,000 cores Cray XT3/4 

Newton-GMRES / ML: PG-AMG 4 level  
18 Newton steps 

86 Avg. No. Linear Its. / Newton step 
33 min. for solution  

Nodes Cores Compute Jac
+Prec 

Linear Solve Total 

Time 
(sec) 

η (%)
 Time 
(sec) 

η (%)
 Time 
(sec) 

η (%)


4096 1 16.9 --- 4.3 --- 21.2 --- 

2048 2 18.2 93 4.5 95 22.6 94 

1024 4 17.7 95 4.9 88 22.6 94 



Hydro-Magnetic Rayleigh-Bernard Stability: Direct Determination of  
Nonlinear Equilibrium Solutions (Steady State Solves, Ra = 2500)  

Bx 

By 

Jz , B-vec 

Vx 

Vy 

T 



Hydro-Magnetic Rayleigh-Bernard Stability: Direct Determination of  
Nonlinear Equilibrium Solutions (Steady State Solves, Ra = 2500)  

Robustness and Efficiency of DD and Multilevel Preconditioners 



(initial) Kelvin-Helmholtz  

vx = -1 

Slip BC 

Slip 
BC 

Outflow  
BC 

Outflow  
BC 

vx = 1 

Re = 10,000 Re = 1,000 



Kelvin Helmholtz: Re=5000, Weak scaling at CFL=2.5 
• Run on 1 to 256cores 

• Pressure - PSPG, Velocity - SUPG (residual and 
Jacobian) 

Transient Kelvin-Helmholtz 

1.  SIMPLEC strongly dependent on CFL 

2.  Block methods scale as well as AggC 



(initial) Hydro-magnetic Kelvin-Helmholtz  

vx = -1 

Slip BC 

Slip 
BC 

Outflow  
BC 

Outflow  
BC 

vx = 1 

Re = Rem = 1,000; 

Q = 10,000; 

By0 



t=0.0 t=9.0 

t=10.0 t=12.0 

Multiple-time-scale systems: E.g. Driven Magnetic Reconnection with a 

Magnetic Island Coalescence Problem (Incompressible – resistive MHD)   




Multiple-time-scale systems: E.g. Driven Magnetic Reconnection with a 

Magnetic Island Coalescence Problem (Incompressible – resistive MHD)   


Approx. Computational Time Scales:  
•  Ion Momentum Diffusion: 10-7 to 10-3 
•  Magnetic Flux Diffusion:  10-7 to 10-3   

•  Ion Momentum Advection: 10-4 to 10-2 
•  Alfven Wave                    : 10-4 to 10-2 
•  Whistler Wave                 : 10-7 to 10-1 
•  Magnetic Island Sloshing: 100  
•  Magnetic Island Merging: 101 



Sloshing in Resistive MHD:  
Island Coalescence problem (FE MHD) 



Preliminary Weak Scaling Results on Island Coalescence Problem 
(@resistivity η=1.0e-3) 

Grid Newton GMRES/dt CPU(s)

64x64 3.3 3.3 222

128x128 4 4.5 1087

256x256 4.5 6.2 5834

512x512 4.7 8.3 27380

Chacon & Knoll, 
FV Physics-
based Prec. 


Only ~4-5 times slower, considering...

•  Research code – no investment in efficiency (coming soon)

•  Unstructured FE vs Structured FV solver: no leveraging of mesh structure.

•  No physics based preconditioning (Block - AMG)

•  Need faster and lower memory physics based approach for transients and 

lower resistivity. 


Charon_xmhd, FE 

Procs Mesh # Unk Newton / 

0 t

Gmres / 

Newton

Time / 

Newton

Gmres / 

0 t

Time / 

0 t

Est. 

Serial 

Time

Ratio

1 64x64 16K 3.9 4.4 2.1 17.2 8.1 810 3.6486

4 128x128 64K 4.6 5.8 2.6 26.7 11.9 4760 4.379

16 256x256 .25M 4.9 6.3 2.9 30.9 14.2 22720 3.8944

64 512x512 1M 6.2 8.8 4 54.6 24.6 157440 5.7502

Δτ
 Δτ
Δτ




Towards simulation of a 3D Ideal Kink Instability in Tokamak Geometry  
(Solov’ev equilibrium) [B field solver – Lagrange multiplier method.] 

A representative Solov’ev 
equilibrium pressure field. 

Kappa = 2  

Transient rearrangement  of a 
pressure field.  

Kappa = 2 

Unstructured FE mesh for 
tokamak geometry. Kappa = 1  



Conclusions 

•  Initial results for stabilized FE formulation of low Mach number 
resistive MHD system is encouraging 


•  Newton-Krylov /block AMG methods can provide a very effective, 
robust and flexible solution technology for analysis and 
characterization of complex nonlinear solution spaces. 

•  Parallel multilevel preconditioners have shown promising results for 
algorithmic scalability and CPU time performance for initial MHD 
solutions.

 (Issues: Hyperbolic operators, FE aspect ratios for multilevel 
methods)

•  For transient simulations physics based preconditioners are 
required for fast solutions. Use block AMG as sub-system solvers.

•  Next 3D formulations, physics-based preconditioners, new Schur 
complement approximations,  and tokamak geometries 




Bifurcation Analysis 
 LOCA


DAEs/ODEs:

Transient Problems 


Rythmos


Eigen Problems:

Linear Equations:


 Linear Problems                     

AztecOO


Belos

Ifpack, ML, teko


Anasazi


Vector Problems:

Matrix/Graph Equations:


Distributed Linear Algebra
 Epetra


Tpetra


Optimization


MOOCHO

Unconstrained:

Constrained:


Nonlinear Problems
 NOX
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Trilinos: Full Vertical Solver Coverage  
(Part of DOE: TOPS SciDAC Effort) 


