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Refurbished Z machine & stripline load enable
accurate ramp-compression experiments to > 300 GPa
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e current pulse of up to 26 MA delivered to
parallel flat-plate electrodes shorted at one end

» magnetic (J x B) force induces ramped stress
wave in electrode material

e stress wave propagates into ambient material,
de-coupled from magnetic drive

e controllable pulse shape, rise time 100-700 ns

e identical magnetic loading of sample pairs
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1. Stripline load development (6 slides)
2. Pulse shaping (2 slides)
3. Data analysis (4 slides)

4. Preliminary results on tantalum (2 slides)
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Small misalignments of coaxial anode/cathode
geometry can cause significant apparent time shifts

Standard ramp-compression load design on pre-refurbished Z
* samples on separate anodes, two coupled A/K gaps

* 1% uncertainty in stress requires electrodes parallel to < 5 pm across 25 mm
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New stripline geometry offers several advantages

* single B-field waveform QL
drives two samples /. %

* higher magnetic o
pressure for given current =

* larger lateral extent of | P _
uniform 1-D flow A SN[

/ o | ®insensitive to vertical i {
angular misalignment - S

Unconfined B-field:

e vertically non-uniform
distribution of current
inside/outside the gap

* shielding of diagnostics
and samples Sandia
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'Measurement of vertical non-uniformity of B-field
shows need for functional tapering of stripline width
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Flyer Velocity (km/s)

Semi-empirical functional tapering of stripline width
should eliminate vertical non-uniformity of B-field
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Simulations predict highly uniform B-field in the
lateral and normal directions over most of the gap

t=2.6004¢-06 s

2-D Alegra-MHD:
Resistive MHD
QMD/LMD conductivity
Sesame EQOS
Circuit model
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Simulations predict highly uniform B-field in the
lateral and normal directions over most of the gap

t=2.7004¢-06 s
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Simulations predict highly uniform B-field in the
lateral and normal directions over most of the gap

Magnetic Field (line contours)
Density (filled contours)
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Simulations predict highly uniform B-field in the
lateral and normal directions over most of the gap

Magnetic Field (line contours)
Density (filled contours)
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Simulations predict highly uniform B-field in the
lateral and normal directions over most of the gap

t=3.0000e-06 s

Magnetic Field (line contours)
Density (filled contours)
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Simulations predict highly uniform B-field in the
lateral and normal directions over most of the gap

t=3.0400e-06 s

Magnetic Field (line contours)
Density (filled contours)
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Time (ns)

Simulations predict highly uniform B-field in the
lateral and normal directions over most of the gap
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'VISAR fiber darkening issues have been addressed

X-rays generated at corners
inside inner-MITL feed?

“D-hole” anode opening
decreased to 4-mm
minimum A-K distance

“Radial” feed for
axisymmetric-to-stripline
transition
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Shaped pulses are obtained by staggering
gas-switch times and modifying water switches

pulse-forming line (PFL)

output-transmission-line 1 (OTL1)

laser-triggered gas switch

intermediate-store capacitor

output-transmission-line 2 (OTL2)

water convolute

£8
LS
N
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insulator stack

MITL's

Shorted, 3.5 cm, H main water SWItCh (3 channels)

or standard 6-14 cm

pre-pulse water switch (4 channels)

Shorted, or standard 2-4 cm
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' Recent improvements to the Bertha circuit model
of Z have increased accuracy of predictions

Recovers effect of 1-cm change in main water-switch gaps of 30 short-pulse lines!

85-kV standard = 13cm gap
Z1934 at 12cm instead
(standard for 80-KV on Z1933)

! :
—71934BMAD_2X /’\
20.0 IMITL 13 cm

——IMITL 12 cm \
\ e working with L-3 Communications

on final version of model

<

= V\A * calibrate pulse-forming section

IS against flat-MITL shots

S 10.0 e will include 2-D transmission-line
sections (OTL2, stack and outer
MITLs)
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Inverse Lagrangian analysis of velocity from two
samples gives quasi-isentropic stress-density response

)

VISAR

¥

thick sample

electrode

A-K gap

electrode

thin sample
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Inverse Lagrangian analysis of velocity from two
samples gives quasi-isentropic stress-density response

t 1. measure velocity at back faces
VISAR . .
i) of two different-thickness samples
2. make initial guess of in-situ u*(t)
thick sample at each measurement location
electrode 3. determine material response by
Lagrangian analysis of in-situ u*(t)
A-K gap .
4. use material response to map
electrode measured U, (t) to in-situ u*(t)
thin sample 5. repeat steps 3-4 until material
A response converges
VISAR

Uod \ m oh
map using respo}

Lagrangian ana{@
initial guess > CL(U*)

measured T in-situ .f material response P

e assumes isentropic, simple-wave behavior .
. . . . . Sandia
« valid ONLY while electrode/sample interface states identical | National
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Inverse Lagrangian analysis of velocity from two
samples gives quasi-isentropic stress-density response

T electrode/sample interface
1. measure velocity at back faces (unknown state) find intersections between
VISAR ) ) A positive/negative characteristics
i) of two different-thickness samples t
2. make initial guess of in-situ u*(t) L
thick sample at each measurement location ] insitu projection
electrode 3. determine material response by T~
; ; AL * initial condition
AK gap Lagrangian analysis of in-situ u*(t) slong constant X
1 -
I y 4. use material res.pon.se tao map undisturbed aosltive \ X
: . . robes undisturbed region
thin sample 5. repeat steps 3-4 until material = > &
A response converges o Lljse .Rlemann.lnvatr)lants to
VISAR - solve intersections between
¥ _— 1. negative characteristics
Upd . u * Oy A projected forward in time
map using respo} 2. positive characteristics
Lagrangian ana{@ projected backward in time
initial guess * . . .
g ¢ (u*) e project points on 1%t negative
> . .
measured T in-situ T material response P | characteristic forward to

e assumes isentropic, simple-wave behavior
* valid ONLY while electrode/sample interface states identical

measurement position
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Two-sample approach is limited in accuracy and
maximum stress by pulse shape and reverberation

e uncertainty in ¢, = AX / At depends on relative uncertainty in thickness difference
— must maximize difference in thickness between samples

A-K Gap
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Two-sample approach is limited in accuracy and
maximum stress by pulse shape and reverberation

e uncertainty in ¢, = AX / At depends on relative uncertainty in thickness difference
— must maximize difference in thickness between samples

e requirement for 1-D shock-free loading limits maximum thickness
— imprecision in pulse shaping makes ideal shock-up distance difficult to attain

Predicted B-Field
Experiment B-Field
Predicted Velocity
Experiment Velocity
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Two-sample approach is limited in accuracy and
maximum stress by pulse shape and reverberation

e uncertainty in ¢, = AX / At depends on relative uncertainty in thickness difference
— must maximize difference in thickness between samples

e requirement for 1-D shock-free loading limits maximum thickness
— imprecision in pulse shaping makes ideal shock-up distance difficult to attain

e arrival of back-surface reflection at sample’s front surface (reverberation) limits
minimum thickness to achieve desired stress state

* increasing rise time to delay shock formation in thick sample reduces peak stress at
front surface of thin sample
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Optimization technique determines magnetic-field

history in A-K gap from electrode “drive” measurement

» Dakota optimization framework drives Alegra 1-D MHD simulations
* B(t) represented by constrained cubic spline (25-50 points) with

time shift and stretch factors

* objective function is metric of isometry between simulated and

experimental velocity history at electrode back surface

1.4 e

¢
VISAR [
v 1.2}
thick sample _. Lo}
- [
Y -
electrode ~ 0.8
5 I
i} Q
A-K gap B(t) i 0.6}
electrode (a2 0.4:
1
VISAR 0.2
v _
0.0

MHD simulations:

Initial-Guess B-Field
—— Post-Optimization B-Field
—— Measured Drive Velocity

—— Post-Optimization Velocity

2.7
Time (us)

2.8 2.9

* high confidence in aluminum EOS and conductivity models
* high spatial resolution (2.5-um cells)
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Single sample yields quasi-isentrope by iterating inverse

Lagrangian analysis with simulated “zero-thickness” velocity

t

VISAR

¥

thick sample

electrode

A-K gap B(t)

electrode

)

VISAR
¥

UpA

measured

1. measure velocity at back faces of sample and opposite electrode
2. use optimization to determine B(t) from electrode measurement

3. use B(t) and first-guess sample EOS (Sesame table + strength) to
simulate electrode/sample interface “zero-thickness” velocity

4. perform inverse Lagrangian analysis on simulated “zero-thickness”
velocity and measured back-face velocity of sample

cy and 77V, equating stress to pressure (strength folded into EOS)

7. repeat steps 4-6 until material response converges

5. convert resulting g,(p) curve to full tabular EOS by assuming constant

6. use B(t) and new tabular EOS to simulate electrode/sample interface

Oy
NN
inverse Lagrangian,analysis >
u*
B -
—T material response [
simulation

optimization @ickness i
A-K gap l _________.__--—-""""" .

Sandia
National
Laboratories:



' Outer loop of single-sample approach converges

result changes < 0.015% from 6t" to 7t" iteration
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Single-sample measurement of tantalum to 320 GPa
decreases uncertainty over two-sample measurement
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Single-sample measurement of tantalum to 320 GPa
decreases uncertainty over two-sample measurement
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Single-sample measurement of tantalum to 320 GPa
decreases uncertainty over two-sample measurement
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Further work is planned to fully establish a capability
for multi-megabar ramp compression measurements

* Analyze additional single-sample and two-sample
data sets on Ta, Be, LiF, Al, Cu, and Au

e Use independently measured strength to correct
quasi-isentrope to isentrope

e Extract LiF index-of-refraction window correction

e Quantify sensitivity of results to
1. aluminum EOS used for B-field optimization
2. LiF EOS used for windowed samples
3. B-field gradients across sample diameter
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* The stripline load with the single-sample analysis approach has the
potential to measure quasi-isentropic loading paths to multi-megabar
pressures with uncertainties of ¥1% in density and ~3% in stress

e Recent design and pulse-shaping improvements suggest measurements
to > 5 Mbar are possible on high-Z materials at full machine charge voltage
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