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Usage of Fiber-Reinforced Composites (i) &

Laboratories

= Over the past 50 years, increased usage of composite materials
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Composite Damage Modes ()

Laboratories

= Susceptible to damage due to:

= Strain, impact, chemical
penetrants, multi-axial fatigue

};@Jé“&@
= Damage modes: f&*‘:h*j;": ";;-"»
= Matrix cracking a LA SR
" Fibel‘-bl‘eakage Visual inspection ' C-SCAN ultrasound i 1mage
= Delamination CFRP panel after 20 Joule impact

= Transverse cracking

= Fiber-matrix debonding
= Matrix degradation

= Blistering

=  Difficult to detect
= Internal to laminate structure
= Nearly invisible to naked eye

» Current methods are laborious
Aircraft ultrasonic inspection (Composites World)
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Emerging Sensing Technologies
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National
Laboratories

Wireless Sensors and Sensor
Networks

UCI DuraNode
Chung, et al. (2005)

Wang, et al. (2008)

= Advantages:
= Low Cost
*  Dense instrumentation
* Reconfigurable

= Disadvantages:
* Point sensors
* Indirect damage detection
*  Physics-based models

Passive sensing

Array of piezoelectric ceramic sensors

Ultrasonics and
Guided-Waves

and actuators

= Advantages:

Sensors and actuators
Spatial damage detection

= Disadvantages:

Indirect damage detection

Wave propagation models or
pattern recognition

Thin structures
Expensive data acquisition

Micro-electromechanical
Systems (MEMS)

2

3-axis accelerometer
Lemkin (1997)

Weinberg (1999)

Advantages:
*  Miniaturized sensor designs
=  Complex sensors/actuators

Disadvantages:
* “Top-down” design
*  Expensive fabrication
equipment
* High costs

* Sensor sensitivity on par with
macro-scale counterpart
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. . . Sandia
SHM Design Considerations [ &,

Current SHM limitations:
= Indirect sensing approaches
= Point-based sensing
= Tethered sensors
= Lack of system scalability
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Boeing 787 (Boeing)

Successful SHM systemes:

1.

O LN

Directly detect and measure damage
Determine the damage location
Ascertain the size of the damage
Quantify the severity of the damage

Achieve multi-modal sensing
capabilities (i.e., delamination, cracking,
and chemical penetration)

Golden Gate Bridge (Wikipedia)
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Spatially Distributed SHM Paradigm () &=

Laboratories

= Current state-of-art in structural health monitoring:
* Passive SHM using acoustic emissions
= Active SHM using piezoelectric sensor/actuator pairs
= “Sensing skins” for spatial damage detection:
= Objective is to identify the location and severity of damage
= Monitor and detect damage over two- (or even three) dimensions
= Direct damage detection

(Boeing) (Boeing)
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Carbon Nanotubes () i

Laboratories

=  Multi-walled carbon nanotubes (MWNT):

Rolled concentric cylindrical structures constructed of graphene sheets
Diameter: 6 ~ 100 nm

High-aspect ratios: ~10°to 107
Metallic conductivity
Five times stiffer and ten times stronger than steel

Aligned carbon nanotube forest TEM imagery of an end cap of a MWNT
Thostenson, et al. (2001) Harris (2004)
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Sprayable MWNT-Latex Thin Film () =,

= Rapid large-scale deposition
= Required for mass deployment of methodology

= MWNT-PSS/Latex paint formulation
= Collaborated to improve initial Sandia formulation

= Sub-micron PVDF creates mold for MWNT
organization

=  Off-the-shelf deposition method

J I >

sonicate with

J J ‘ nanotube ink
,J

(PSS wrapped MWCNT)

Kynar Aquatec™ latex solution Forms segregated
(avg. particle size 150nm) MWCNT network
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MWNT-Latex Morphology ()

Laboratories

= Creation of MWNT networks:
= FElectrical percolation above 1 wt% MWNTs

= Fiber-reinforced polymer deployment:
= Surface applied to post-cured composites
= Applied to fiber weaves for embedded sensing

Cross-section and MWNT network SEM images of 3wt% MWNT-Latex film
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MWNT-Latex Characterization () s

»  Electromechanical characteristics:
" Quasi-static testing

= Nearly same sensitivity as LbL
= Bi-functional strain response

= Linear

1.6

Applied 25 BiL PSS-MWNT/PVA TF
Applied 50 BiL PSS-MWNT/PVA TF
Applied 75 BiL PSS-MWNT/PVA TF

O/ _N\A/N

= Quadratic
- Cracking of film

= Thermo-resistance coupling:
= -50°Cto 80°C over 2 hours
= 2hour holds
= Inversely linear relationship

= Non-linear response @ -30°C
.~ Tg of PVDF
= Restructuring of MWNTs

Mormalized Resistance

= [
5,000 10,000 20,000 30,000 40,000
Strain [pe]
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Spatially Distributed SHM Paradigm () &=

Laboratories

= Current state-of-art in structural health monitoring:
* Passive SHM using acoustic emissions
= Active SHM using piezoelectric sensor/actuator pairs
= “Sensing skins” for spatial damage detection:
= Objective is to identify the location and severity of damage
= Monitor and detect damage over two- (or even three) dimensions
= Direct damage detection

(Boeing) (Boeing)
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Electrical Impedance Tomography (i)

Laboratories

= Opverview of spatial conductivity mapping

= Since film impedance calibrated to strain, conductivity maps can correspond to 2-D
strain distribution maps

© O
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Typical EIT Reconstruction

= Laplace’s equation:
V. (G V¢) — (), where 6 can vary by orders of magnitude

= Governs potential and conductivity relationship

= Forward problem: conductivity known, solve voltage

= Inverse problem: voltage known, solve conductivity

AC

|
I(w) Boun dﬁ

voltage ( Finite \
measurements element
@, = [v..v,]" formulation ( \
Vis . Vi
Predicted
Vs Sensing skin v boundary
Vi3 with inherent Vs voltage
via o-distribution ve output
(D.\J(’p
. " J \ )
\ Vio Vo Vs ): Iterate

: Ufjte No Forward

: Problem

I -

Output | o
o-map | PAUSE Minimize cost
! function
I Convergence? o) =
Yes | error < 0.05% % || o)y ||
I
[
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Linear EIT Reconstruction () s

AV
Vo

= Reconstructs small ¢ changes: Ao T
= Typically difference imaging G_ - ([_{ W[_{ + &R) (H W)
" o0,-0,<<o0, 0
= Maximum a posteriori (MAP): Ag AV
= H: sensitivity matrix = BA—
o), =2 S D
“% oo,
= Regularization hyperparameter: A
= Noise figure

20

R,
NF(2)= SRy 1
SNR,,.
= Use representative ¢ distribution —

=  W: Noise model g =
= N

= R:Regularization matrix 4

= Advantages: °

= Can pre-calculate H ; K .

= Many damage modes lead to small 0 20 . [40 | 60 78
ey

changes in ¢
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Applied Spatial Sensing
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Spatially Distributed
Sensitivity

= Understand sensitivity to
prescribed damage w.r.t.
spatial position in sensing
area

= 9holes distributed across
specimen

= 6.35 mm diameter

TR
Spatially Distributed
Sensitivity Specimen

Spatially Distributed
Strain Sensitivity
= 4-pt bending specimens y

* Homogeneous strain
between inner supports

= Tensile and compressive
strain values

= Small changes in g
conductivity

Spatially Distributed Strain
Sensitivity Specimen

Damage Size Sensitivity

Understand sensitivity to
increasing damage at center
of specimen

Least sensitivity point in
sensing region
6 progressively larger holes
o NN A
5/16”/ 3/8”

Damage Size Sen31t1v1ty
Specimen
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Spatially Distributed Sensitivity () .

= EIT Response

= Consistent cumulative amplitude response
= Linear response to increasing sustained damage

= Further from center, response more disperse
= Mean response at correct damage location

16
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Mumber of Holes

Specimen EIT Response Damage Metric
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Spatial Strain Sensing ()

Laboratories

= 4-pt bending = Strain sensitivity
= ASTM D7264 = Nearly linear

MWNT-Latex on GFRP

Stepped displacement profile

Tensile/compressive strain

0.8

04k n ~

Normalized Conductivity Change [%]
o
\

-0.41
re
0.8 :t::i

2 L 1 L L 1
-4,000 -2,000 0 2,000 4,000 6,000
Strain [pe]
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Damage Size Sensitivity [ &,

= EIT Response
= Increasing EIT response to increasing damage size
= Nearly linear response to size

= EIT response at corresponding location to damage but response size is
exaggerated

' 1 Ao
5, =LA
357 A° o
Q >0
78 10 3
_ &0 5 g = 25
40 ot Bz
P = 4
20 5 151
0 -10 1
o 20 40 &0 78
X [rmirn] 0.5
O 1 1
] 5 10
Hole Diameter [mm]
Specimen EIT Response Damage Metric
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Impact Damage Detection ()

Laboratories

= Drop-weight impact tests
= ASTM D7146
= 78 mm by 78 mm sensing region
= MWNT-latex on glass fiber weave
= Impactenergy: 20, 60, 100, 140 ]
= Before/after EIT measurements

= Verification: Drop-weight impact tester

= Photographic Imaging

= Surface damage
EEEEEEEE
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Impact setup Impact specimen
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Laboratories

Impact Damage Detection ()

= EIT reconstruction captures conductivity decrease in damaged region

= Decreasing amplitude and increasing response region with increase in impact
energy

= Linear response w.r.t. damage metric with good repeatability
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EI'l INCOpPULLdT vppvone face of
Plot of the damage metric versii$pacted specimen

impact energy
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Embedded Spatial Sensing, () i

. . Current Injection Pattern
= Embedded sensing architecture 78 i

= MWNT-Latex on GF fiber weave
= Embedded within epoxy matrix

[*N)
(e
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= Specimens
= [0°/+45°/90°/-45°, 0
* Unidirectional GF

= 150 mm x 100 mm
= ASTM D7146 Standard

20 40 60 78

= Anisotropic EIT " i1vessnus )

. . = g

= Isotropic > Anisotropic . » G “:;

E

= Scalar » Matrix: o ; - E

= 000 > 0900 by ~2:1 : %

= _ . & =
V(o V¢)=0 ALITYYY
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Embedded Spatial Sensitivity () Gt

Laboratories

= Embedded sensing validation:
= Determine conductivity change
sensitivity
= Process:

= Progressively larger drilled holes:

n 1/16II, 1/8111 3/16II, 1/4/// 5/16II, 3/8111 1/211 €0 -2

= Anisotropic EIT performed "2
B

= Conductivity change from pristine g
sample g 5 %

g

bt

20

0 -10
0 20 40 &0 78
X [mim]
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Laboratories

Impact Damage Detection ()

= Drop-weight impact tests -
= ASTM D7146
= 78 mm by 78 mm sensing region

= MWNT-latex on glass fiber weave
= Impactenergy: 20, 60, 100, 140 ]
= Before/after EIT measurements

|

I a AL A

W

= Verification: Lssmadv e

= Thermo graphy ey ‘% N _ﬂ.‘ .eighl’ i
= Matrix Cracking

= Delamination

= Photographic Imaging

Top Bottorm

= Surface damage
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CEFRP Damage Detection ()

Laboratories

= Carbon Fiber-Reinforced Polymers
= High-strength-to-weight ratio
applications
= ~50% weight of Boeing 787

= Primary structural material in
SpaceShipTwo

Visual inspection ~ C-SCAN ultrasound image
CFRP panel after 20 Joule impact

Conductive
CFRP Structure

Boéiter787 (BoeEy
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CFRP EIT Validation ()

Laboratories

= Applied sensing measurements Current Injection Pattern
" [145, 0/90]85 CFRP Composite 140

= 100 mm x 145 mm sensing region >
100

= 6 x9 electrodes scheme = 30 electrodes %
= 5 mm electrodes 60

* 10 mm spacing 40

= Anisotropic material injection scheme 20

= Investigate stability and efficiency:

i
. 140
= Computational demand gﬂ
= ~1 sreconstruction time 120 1 i
100 |, &
= Accuracy characterization: = 8
» g a0 E
= Conductivity: £, =
= Known removal of material e B0 ﬁ
L
= Spatial feature ID sensing resolution 40 =
= 6.3 mm diagonal line 20 E
; Z
0
I 50 100
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CEFRP Impact Damage Detection

= Drop-weight impact tests
= ASTM D7146
= [%45,0/90]g, CFRP composite
= 100 mm x 145 mm specimens
= Impactenergy: 20, 35, 50 ]

= Before/after EIT measurements
50T Impact

Y [rorm)
Mormalized Conductivity Change

'
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{m

1
0 20 40 &0 &0 100
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Sandia
Summ ary @ National
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= Propose a next-generation SHM system
= Direct in situ damage detection
= Monitor location and severity of damage

= Embedding multi-modal sensing capabilities
= Development of MWNT-nanocomposites for SHM
= Characterized electromechanical response to monotonic
= Response to temperature swings

= QOutline validation of EIT for damage detection
= Applied GFRP, embedded GFRP, and CFRP specimens
= Strain sensitivity
= Damage sensitivity
= Impact damage
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Thank You! ()

Laboratories

Exceptional

Questions?
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national
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