

Lighting Technologies, Costs & Energy Demand: Global Developments to 2030

Jeff Tsao*, Harry Saunders**, Randy Creighton*, Mike Coltrin* & Jerry Simmons*

*Sandia National Laboratories, **Decision Processes Incorporated

<http://www.americancolorpictures.com/gallery/yourimageisusold4.jpg>

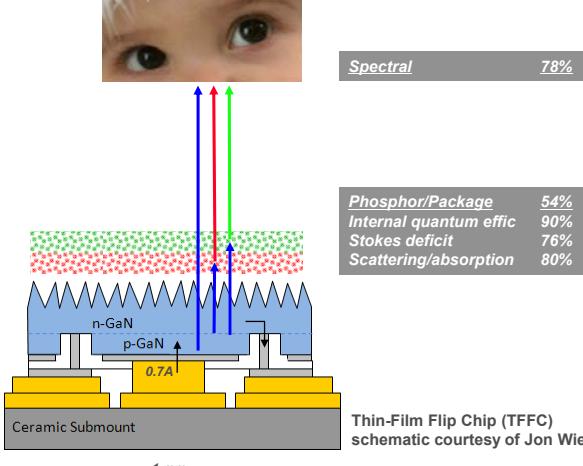
Acknowledgements: Paul Waide (IEA), George Crawford (Philips Lumileds), Mary Crawford (Sandia)

Work at Sandia National Laboratories was supported by Sandia's Solid-State-Lighting Science Energy Frontier Research Center, funded by the U.S. Department of Energy, Office of Basic Energy Sciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Security Administration under Contract DE-AC04-94AL85000.

JY Tsao & JA Simmons

World Bank 2010 Sep 28

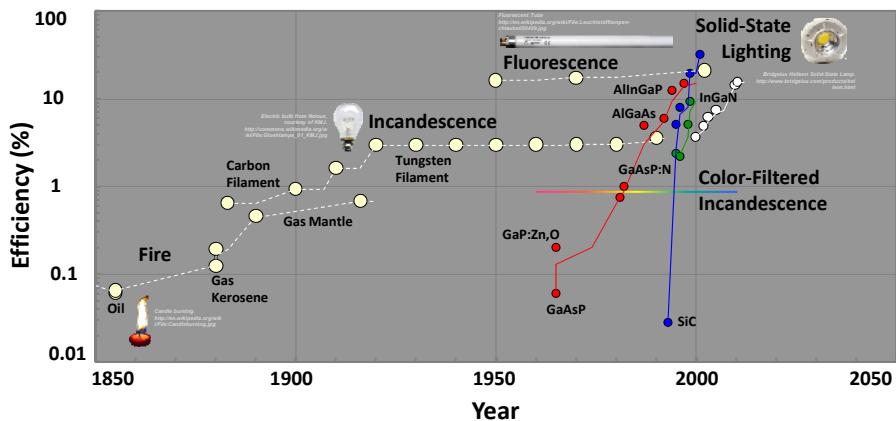
1/14


Anatomy of State-of-Art Commercial SSL

$\epsilon = 16\%$
 $\eta_\phi = 66 \text{ lm/W}$
CRI = 85
CCT = 3,100K

Spectral 78%

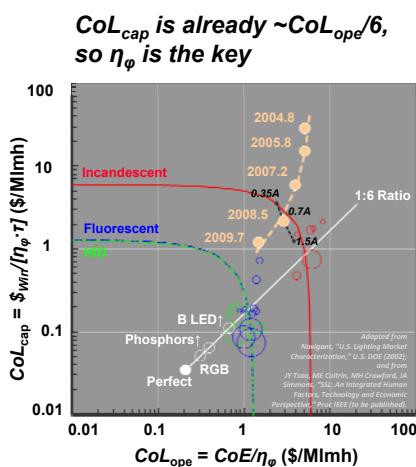
Blue LED 38%
Joule 90%
IQE at low power 75%
Droop at high power 70%
Light extraction 80%


JY Tsao & JA Simmons

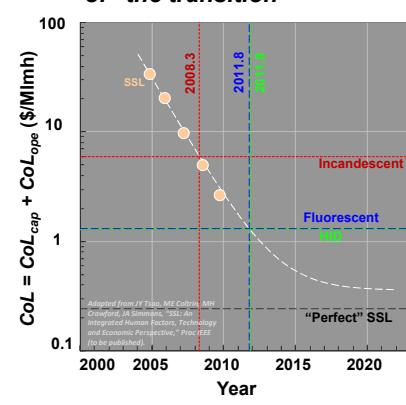
World Bank 2010 Sep 28

2/14

200 Years of Lighting Technology Efficiency


JY Tsao & JA Simmons

World Bank 2010 Sep 28


3/14

What about Cost of Light?

2012 may be the beginning of "the transition"

JY Tsao & JA Simmons

World Bank 2010 Sep 28

4/14

A Progression of Productive Uses for Colored and White Solid-State Lighting

HP calculator.
<http://www.hpmuseum.org/32.jpg>

Center high-mount stop light (CHMSL).
<http://www.honda-tech.com/chmsl/reed.php?r=2413558>

Traffic light.
<http://niku88.blogspot.com/2009/11/relayon.html>

NASDAQ's Giant Video Display in Times Square, New York (Jeff Tsao)

Surefire U2 flashlight.
<http://en.wikipedia.org/wiki/File:SurefireU2IP0.jpg>

Nokia camera phone with LED flash.
<http://www.itechnnews.net/wp-content/uploads/2009/07/Nokia-3720-Classic-the-most-rugged-mobile-phone.jpg>

Sharp QuadPixel RGB LED-backlit LCD Display.
http://www.pcworld.com/article/145541/2010/01/sharp_quadpixel.html

<http://tan-moneyonline.com/wp-content/uploads/2008/03/earthstringht-asia1.jpg>

JY Tsao & JA Simmons

World Bank 2010 Sep 28

5/14

Rebound and the Undeveloped World

THE COAL QUESTION

An Inquiry Concerning the Progress of the Nation, and the Probable Exhaustion of our Coal-mines

BY THE LATE
W. STANLEY JEVONS, M.A., LL.D., F.R.S.

EDITED BY
A. W. FLUX, M.A.

SONDIER FELLOW OF ST. JOHN'S COLLEGE, CAMBRIDGE.
WILLIAM DOW PROFESSOR OF POLITICAL ECONOMY IN MCGILL UNIVERSITY, MONTREAL.
PRESIDENT STANLEY JEVONS PROFESSOR OF POLITICAL ECONOMY IN THE UNIVERSITY OF MANCHESTER.

THIRD EDITION, REVISED

London
MACMILLAN AND CO., LIMITED
NEW YORK: THE MACMILLAN COMPANY
1906

All rights reserved

LIGHT UP THE WORLD The Power to Illuminate Lives

[HOME](#) [ABOUT LUTW](#) [PROJECTS](#) [PRODUCTS](#) [GET INVOLVED](#) [DONATE](#) [NEWS & MEDIA](#) [CONTACT](#)

WHAT'S NEW AT LUTW?

INSPIRED TO
Inspired by LUTW, SAIT students have built a hybrid solar power plant to provide light to people in developing countries. Click on the data link above to read more.

08/30/2010
On August 29th, LUTW hosted a seminar on the socio-economic impact of solar energy and small-scale solar systems. Click on the data link above to read more.

08/12/2010
A team of 100 Tech students and faculty staff completed the installation of solar lighting systems in 10 homes. Click on the data link above to read more.

[View All News](#)

[PHILIPS](#)
STRATEGIC PARTNER
Sustainable LED Lighting

LIGHT UP THE WORLD solar powered LED lighting systems improve education and literacy for children in the developing world. Click on the data link above to read more.

PROJECTS **PRODUCTS** **DONATE**

[Archived Newsletters](#) [Join our Email List](#) [Facebook](#) [Twitter](#)

[Home](#) [Contact](#) [Donate](#) [Site Map](#)

Copyright © 2009 Light Up The World

Site Design by KNACK

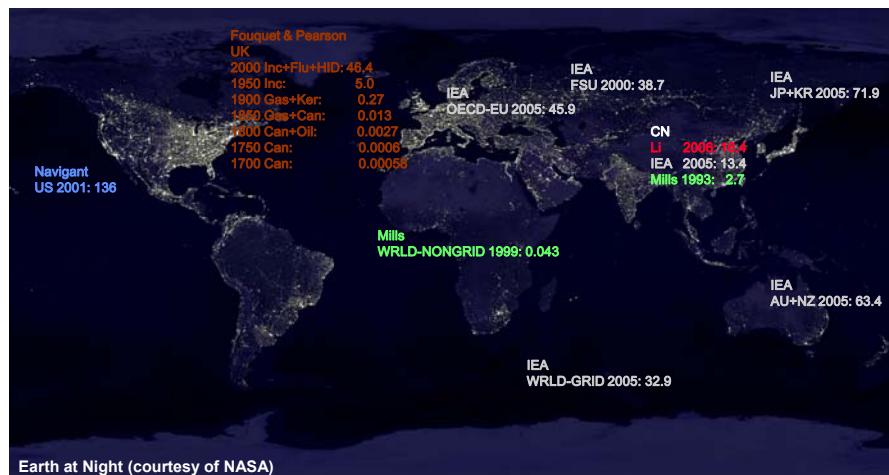
JY Tsao & JA Simmons

World Bank 2010 Sep 28

6/14

Estimates of Light Consumption, spanning:

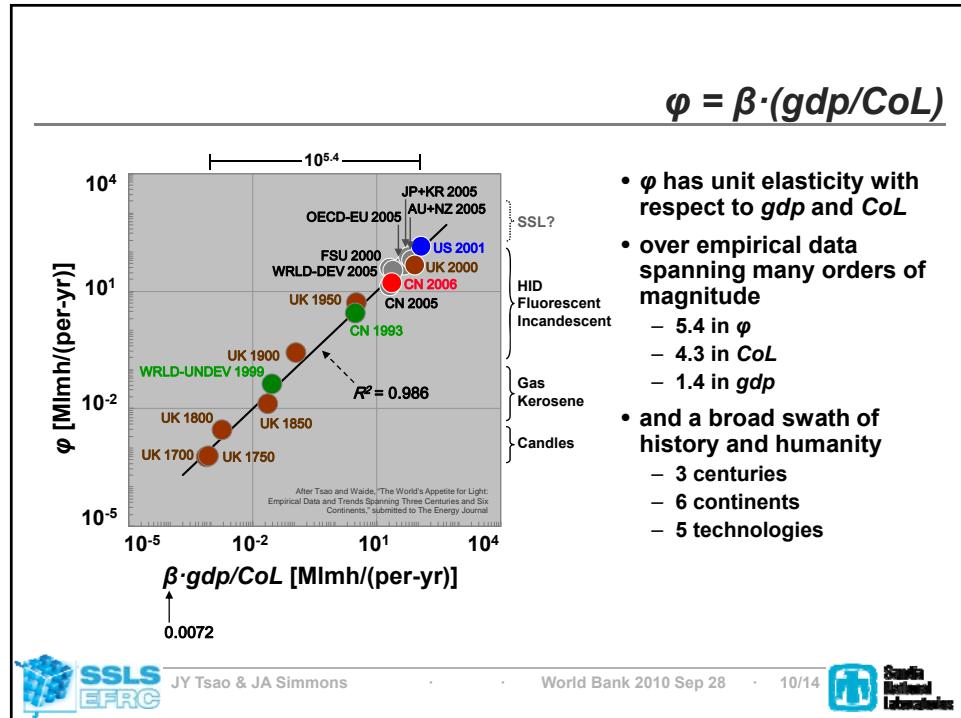
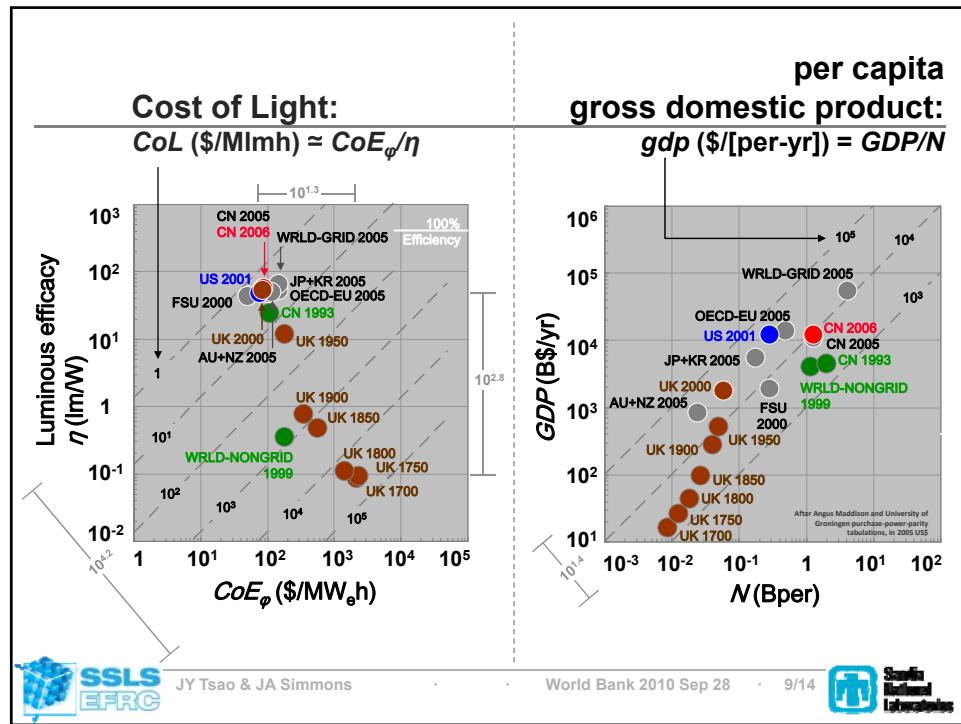
- 3 centuries, 6 continents, 6 technologies, and 7 orders of magnitude in light consumption
- Commercial, residential, industrial, outdoor sectors
- Grid, fuel and vehicle lighting


JY Tsao & JA Simmons

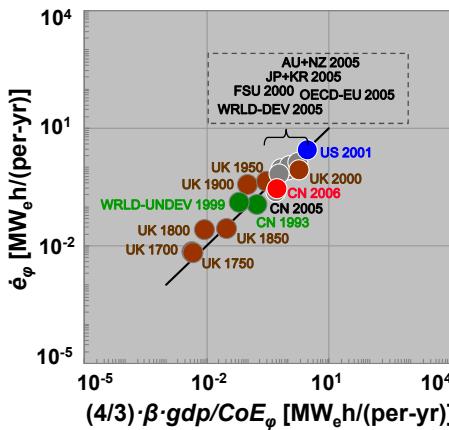
World Bank 2010 Sep 28

7/14

per capita Consumption of Light: ϕ , in Mlmh/(person-yr)

JY Tsao & JA Simmons


World Bank 2010 Sep 28

8/14

$$\dot{e}_\varphi \approx (4/3) \cdot \beta \cdot (gdp/CoE_\varphi)$$

$$\begin{aligned} \dot{e}_\varphi & \approx \frac{gdp}{CoE_\varphi} \cdot \frac{\eta_\varphi \cdot \dot{e}_\varphi}{\eta_\varphi} \\ \varphi & = \beta \cdot \frac{gdp}{CoL} \quad \text{where} \quad \beta = \frac{4/3}{\eta_\varphi} \cdot \frac{CoE_\varphi}{\eta_\varphi} \end{aligned}$$

- \dot{e}_φ has been
 - proportional to gdp
 - inversely proportional to CoE_φ
 - independent of η_φ

Profit maximization in a two-factor economy

$$\pi(\chi, \varphi) = [A \cdot \chi^\alpha \varphi^\beta] - [\chi \cdot CoX + \varphi \cdot CoL]$$

Annotations:

- $\pi(\chi, \varphi)$ (Profit): per capita consumption of everything else
- $A \cdot \chi^\alpha \varphi^\beta$ (production): Cobb-Douglas with constant returns to scale ($1 = \alpha + \beta + 0.7$) Labor component
- $[\chi \cdot CoX + \varphi \cdot CoL]$ (cost): Cost of Light (φ) Cost of everything else (χ)

Profit Maximization

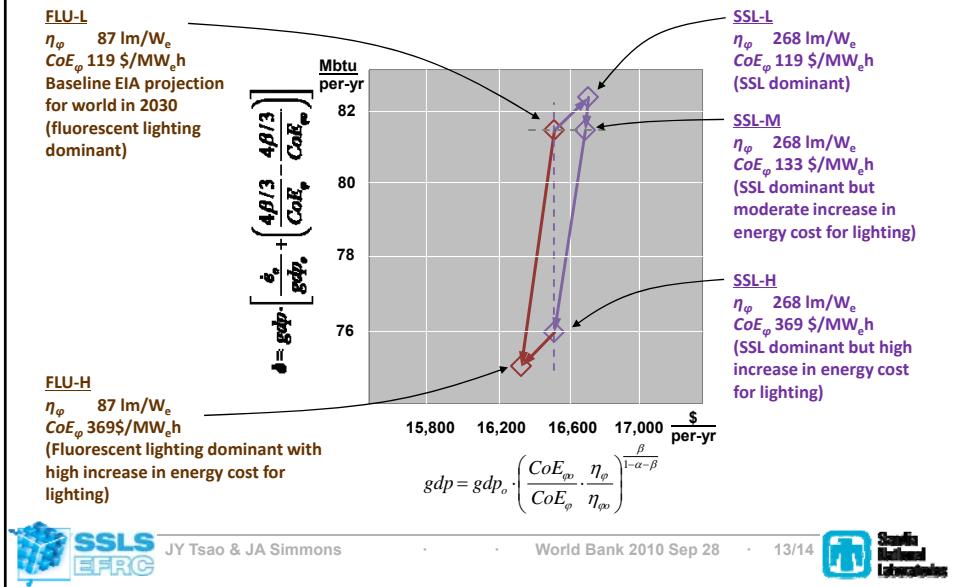
$$\frac{\partial \pi}{\partial \chi} = 0$$

$$\frac{\partial \pi}{\partial \varphi} = 0$$

Profit-maximizing φ and χ

$$\chi = \frac{gdp}{CoX} \quad 0.2928$$

$$\varphi = \frac{gdp}{CoL} \quad 0.0072$$


Profit-maximizing gdp and \dot{e}

$$gdp = A^{\frac{1}{1-\alpha-\beta}} \cdot \left(\frac{\alpha}{CoX} \right)^{\frac{\alpha}{1-\alpha-\beta}} \cdot \left(\frac{\beta}{CoL} \right)^{\frac{\beta}{1-\alpha-\beta}}$$

$$\begin{aligned} \dot{e} &= \frac{\chi}{\eta_\chi} + \frac{\varphi}{\eta_\varphi} \\ &= \frac{\alpha \cdot gdp}{CoX \cdot \eta_\chi} + \frac{\beta \cdot gdp}{CoL \cdot \eta_\varphi} \end{aligned}$$

These cancel!

Possible Worlds in 2030

Main Points

- Past 300 years: $\beta = 0.0072$
 - Consumption of artificial light has increased with gdp/CoL
 - Consumption of energy for artificial light has increased with gdp/CoE_φ
 - gdp has increased as consumption of artificial light and human productivity have increased
- Coming 20 years scenario 1: $\beta = 0.0072$ continues
 - Likely in undeveloped world as usage patterns from developed world are borrowed
 - Possible in developed world as new uses are developed (e.g., outdoor evening illumination, integration of illumination with displays)
 - Massive potential for continued increases in consumption of light and human productivity
 - SSL won't by itself contribute to decreasing C emissions
- Coming 20 years scenario 2: $\beta = 0.0072$ does not continue
 - Maybe consumption of light will saturate
 - Maybe demand for secondary "human factors" associated with light will saturate
 - Maybe governments will mandate consumption of light to saturate
 - SSL would contribute to decreasing C emissions