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A little about me …

• Grew up on a farm in Filer, Idaho

• Love outdoor activities (backpacking, 
hiking, fly fishing, etc.)

• BS Chemical Engineering, Brigham 
Young University, 2008

• PhD Chemical Engineering, Brigham 
Young University, 2012

• Dissertation topic: Developing a new 
method to predict chemical potential 
using molecular simulations



Sandia Projects

• Been at Sandia since August, 2012

Projects:

• LAMMPS (molecular dynamics) code development: Added and improved 

long-range electrostatic methods

• Modeling of a dipolar fluid in an external electric field (uses LAMMPS)

• Advanced force field development (SNAP) (uses LAMMPS, working to 

develop a quantum accurate SiO2 force field)

• Aleph (PIC-DSMC) code development: Added an automatic mesh 

coarsening method for particle interactions (based on oct-tree algorithm) 

• Modeling of triggered vacuum gap switches

Thanks to Paul Crozier for being a great mentor during my time at Sandia



Importance of Algorithms

• Computing resources limited

• Gains in processor speed not as dramatic as before

• Increasing number of processors increases power consumption

• Better algorithms can save time and money

• Example: Fast Fourier transform (FFT) vs traditional discrete Fourier 

transform



Introduction

 Hybrid particle-in-cell (PIC) and direct simulation Monte 
Carlo (DSMC) methods are frequently used to simulate 
low density interacting plasmas

 A single mesh is often used for both PIC and DSMC 
calculations 

 The mesh size for PIC is often limited by the Debye length

 The collision cell size for DSMC is limited by the mean 
free path (can be much larger than the Debye length)

 Too few computational particles per DSMC collision cell 
can lead to errors

 Therefore, the optimal PIC mesh may be suboptimal for 
calculating DSMC collisions

Parts of this work were done in collaboration with Paul Crozier, Chris Moore, 
and Matt Bettencourt



Overview of New Patching Method

 Use a fine mesh for PIC (unstructured)

 Use a rectangular grid to conglomerate many PIC elements 
into a single DSMC collision cell

 Size DSMC collision cells based on mean free path, λmfp

 Use oct-tree algorithm to adjust the size of DSMC collision 
cells on the fly



Patch Method

 Original (unstructured) PIC mesh



Patch Method

 Apply rectilinear grid based on element centroid



Patch Method

 Assign elements to patches (based on element centroid)



Patch Method



Patch Method

 Patched mesh

 Use patches to compute DSMC collisions



Oct-tree Refinement

 Use oct-tree algorithm to refine mesh based on mean free path



Oct-tree Refinement

 Refined mesh



Temporal Averaging

 Calculate λmfp for each element as:

 With a high computational particle weighting, temporal 
smoothing is needed. Can use either:

 Sometimes can get zero interactions in a timestep. With the first 
option, this leads to division by zero

 Found that the second option works much better
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v = velocity
Z = interaction frequency
n = number of particles



Automatic Sizing of Patches

Patch size is dynamically adjusted based on the local mean 
free path λmfp:

1. Compute λmfp for each interaction on an elemental 
basis (using all species)

2. For each interaction, average λmfp over elements in the 
oct-tree cell

3. Take the minimum of all the average λmfp and divide by 
2, use this to size patches using the oct-tree algorithm



HI Test Problem

 Hydrogen iodide (HI) molecules interacting with elastic 
collisions

 Use variable hard sphere (VHS) interaction cross section

 T = 594.6 K, n = 1020 m-3

 3D cubic system, L = 5 cm

 Analytic λmfp = 3.67 cm

 0.5*λmfp => minimum of 27 patches, but oct-tree on cube 
uses powers of 8 => 64 patches



3 Meshes

 Adjust particle weighting  approximately 30 particles per 
element or patch

fine mesh
56,557 elements

coarse mesh
96 elements

patched mesh
64 patches

1,696,710 particles 1,920 particles 2,880 particles



Accuracy Comparison

Ran each simulation for 3 hours (Δt = 10-5 s) on one 
processor, repeated 6 times with a different random 
number seed

Average Collision Frequency:

 fanalytic = 1.0667·1020 s-1

 ffine = 1.0668·1020 s-1  0.007% relative error

 fpatch = 1.0665·1020 s-1  0.025% relative error

 fcoarse = 1.0666·1020 s-1  0.021% relative error



Results for the HI Test Problem

 Error bars represent 95% confidence intervals

Nearly 20x speedup 
using patching



Another 2 Meshes

 Same HI test problem (ran for 2000 timesteps)

 Patched mesh runs nearly 4x faster (with virtually the same accuracy)

 Global average (0D problem) may hide errors

fine mesh
1,184 elements

patched mesh
64 patches

1,223 particles 1,223 particles



 Electrons gain energy due to the field

 Electrons lose energy due to inelastic collisions with N2

particles (fixed in space)

 Vary N2 particle weight so that there are approximately:

1. 10 computational particles per cell 

2. 0.1 computational particles per cell

 About 10 λmfp across the gap

1D Inelastic Collision Problem

Cathode
0 V

Anode
200 V

10 micron gap filled with N2

injected e- 



Electron Energy Distribution Function (EEDF)

 Using patching gives a more realistic EEDF (crucial for 
simulating accurate breakdown voltages)

 Patching allows one to use fewer N2 particles

10 N2 particles 
per cell

0.1 N2 particles 
per cell

0.1 N2 particles per cell 
with patching



2D Vacuum Gap Breakdown

 Air injected at high velocity and high temperature from 
the anode

 Low density electrons injected from the cathode

 Air ionizes and eventually will form plasma and break the 
gap

Cathode
0 V

Anode
350 V



Species Densities (m-3)



Dynamic Sizing of DSMC Collision Cells



Parallelization

 Currently each processor uses an independent oct-tree (simple):

 Issue: can lead to narrow/small cells (can happen with 1 proc too)

 In the future, could use a more robust method like inter-processor 
communication with ghosting, load balancing, etc.

1 3 42

1 processor:

4 processors:



Conclusions

 Developed a new method (patching) to enhance hybrid 
PIC-DSMC simulations

 Using fewer particles with patching gives similar 
accuracy and uncertainty as using a fine mesh with many 
particles

 Allows one to dramatically speed up the simulation if the 
PIC mesh is too small for DSMC collisions

 Allows one to dynamically adjust the size of DSMC 
collision cells on the fly (based on mean free path)



Sandia Projects

• Been at Sandia since August, 2012

Projects:

• LAMMPS (molecular dynamics) code development: Added and improved 

long-range electrostatic methods

• Modeling of a dipolar fluid in an external electric field (uses LAMMPS)

• Advanced force field development (SNAP) (uses LAMMPS, working to 

develop a quantum accurate SiO2 force field)

• Aleph (PIC-DSMC) code development: Added an automatic mesh 

coarsening method for particle interactions (based on oct-tree algorithm) 

• Modeling of triggered vacuum gap switches

Thanks to Paul Crozier for being a great mentor during my time at Sandia



Why do we care about LRE?

• Electrostatics are extremely important in many atom-
level (and coarser) models.

• Long-range part usually cannot be neglected in 
molecular simulations (simple cutoff can lead to 
artifacts).

• Large fraction of compute cycles are used in LRE 
calculations.

• LRE calculations represent a scaling bottleneck in 
many MD calculations.

LRE = long-range electrostatics

Parts of the LAMMPS long-range electrostatic work were done in collaboration 
with Paul Crozier, Steve Plimpton, and Stephen Bond



The motivation: FFTs don’t scale very well
(and HPC core counts are growing quickly)

• LAMMPS originally had two methods for computing long-range electrostatics: 
Ewald and particle-particle/particle-mesh (PPPM)

• Ewald summation is fastest for small systems (or very high accuracy), but 
expensive for large systems

• PPPM relies on FFTs, which don’t scale well on many processors: 

http://lammps.sandia.gov/bench/rhodo.fixed.jpg



Multilevel-summation method (MSM) background

 Multi-grid method (but not iterative); split potential and 
approximate the slowly varying part on a hierarchy of grids

 No FFTs are required, so the communication cost of MSM is 
expected to scale better than PPPM on large core counts

 PPPM scales with number of atoms as O(N log N) while MSM 
scales as O(N)

 MSM may be faster for large problems running on large core 
counts

D. J. Hardy, Ph.D. thesis, University of Illinois at Urbana-Champaign (2006).

D. J. Hardy, J. E. Stone, and K. Schulten, Parallel Comput. 35, 164 (2009).



MSM Algorithm pieces

1. Short-range part

2. Anterpolation

3. Direct sum

4. Restriction

5. Prolongation

6. Interpolation



Algorithm pieces

1. Short-range part

2. Anterpolation

3. Direct sum

4. Restriction

5. Prolongation

6. Interpolation

Particles interact within a spherical cutoff to get short-
range forces, energy, and pressure



Algorithm pieces

1. Short-range part

2. Anterpolation

3. Direct sum

4. Restriction

5. Prolongation

6. Interpolation

Interpolate charges from atoms to the finest mesh



Algorithm pieces

1. Short-range part

2. Anterpolation

3. Direct sum

4. Restriction

5. Prolongation

6. Interpolation

Mesh points interact within a spherical cutoff to get 
long-range electric field, energy, and pressure



1. Short-range part

2. Anterpolation

3. Direct sum

4. Restriction

5. Prolongation

6. Interpolation

Algorithm pieces

Interpolate charge from finer mesh to coarser mesh

Repeat steps 3 and 4 until finished on coarsest mesh



Algorithm pieces

1. Short-range part

2. Anterpolation

3. Direct sum

4. Restriction

5. Prolongation

6. Interpolation

Interpolate electric field from coarser mesh to finer mesh

Repeat step 5 until the finest mesh is reached



Algorithm pieces

1. Short-range part

2. Anterpolation

3. Direct sum

4. Restriction

5. Prolongation

6. Interpolation

Compute force from electric field on finest mesh and 
back-interpolate force from mesh to atoms



Non-Periodic BCs

 MSM works for both periodic and non-periodic 
boundary conditions

 Ewald and PPPM only work for periodic or slab 
(periodic in x and y and non-periodic in z) 
boundary conditions 

Periodic Slab

Non-periodic



Parallelization Strategy

 Challenge: lots of work on finest grid, very little work on 
coarsest grid

 Use same domain-decomposition layout on all levels 
(simple)

 Inactive processors don’t participate in MPI 
communication routines 

 Use neighbor point-to-point communication for fine grids

 Use MPI AllReduce for coarse grids

Processor 1 2 3 4 Restrict to coarser mesh Deactivate procs 2 and 4



Enhancements to MSM

 Error estimator (important for comparing to other 
methods like PPPM)

 Pressure calculation

 Added heuristic to estimate optimal parameters, 
including automatic adjustment of Coulombic
cutoff (based on work by Hardy)

 Per-atom energy/virial

 Fast scalar pressure

 OMP threaded version of MSM (Axel Kohlmeyer)



 Use hemisphere (instead of full sphere) for direct sum 
interactions to avoid double computations

 Using a hemisphere can also (sometimes) reduce the 
amount of communication needed

 Added various other code optimizations

 Compared to Hardy’s NAMD-lite code, LAMMPS MSM was 
60% faster for periodic and 25% faster for non-periodic (1 
processor, two point-charges in a box, order 4)

Improving Single-Core Performance

[David J. Hardy, NAMD-Lite, http://www.ks.uiuc.edu/Development/MDTools/namdlite/, 
University of Illinois at Urbana-Champaign, 2007.] 



Fast (Scalar) Pressure Calculation

 Calculation of the 6-component pressure tensor is 
expensive with MSM (increases cost by ~2x)

 Often only scalar pressure [i.e. 1/3*(Pxx + Pyy + Pzz)] 
is needed

 For Coulombic systems, can use a virial “trick” to 
relate energy to scalar pressure (much cheaper)

 For SPC/E system, reduces overall cost by 20% 
(short-range part has some overhead)

 Can use scalar pressure to run isotropic barostat



LRE speed and scalability tests

Chama

• Sandy-Bridge (2.6 GHz)

• 2012

• 16 cores/node

• 1,232 nodes

• 19,712 cores

• Infiniband 4X QDR, 
Fat Tree, Qlogic

Redsky

• Nehalem (2.93 GHz) 

• 2009

• 8 cores/node

• 2,816 nodes

• 22,528 cores

• Infiniband 4X QDR, 3D 
Torus, Mellanox

Rhodopsin benchmark

• NVT dynamics

• 1e-4 relative accuracy

• 32k atoms, replicable

• 2 fs timestep size



Redsky, 32k atoms, 10-4 accuracy

• PPPM is fastest at low 
core count

• MSM is fastest at high 
core count

• MSM scales better 
than PPPM since it 
doesn’t rely on FFTs

• Maxes out at 26 ns/day

Good

10 Angstrom cutoff, default parameters, MSM order 10 



Redsky, 256k atoms, 10-4 accuracy

• 8x as many atoms as 
before

• Ewald chokes

• PPPM FFT 
bottleneck pushed 
out to larger core 
count

• Scaling: MSM O(N), 
PPPM O(N log(N)), 
Ewald O(N1.5)



Chama, 32k atoms, 10-4 accuracy

• Chama gives better 
overall performance

• PPPM wins, but we 
can’t expect more 
scaling

• Maxes at 110 ns/day



SPC/E Water Benchmark

 36,000 atoms (strong scaling on Redsky)

 NVT, pressure computed every 50 timesteps

 1e-3 accuracy

Good

10 Angstrom cutoff, default parameters, MSM order 8 



SPC/E Water Benchmark



Other Enhancements to LRE in LAMMPS

 Per-atom energy/virial for kspace

 Compute group/group for PPPM and Ewald

 Triclinic for kspace

 Ewald/disp for point-dipoles

 Staggered PPPM (up to 4x faster for high accuracy)

Good for PPPM on large core counts:

 Fix verlet/split 

 2 FFT PPPM



Conclusions

 MSM works well for: 

• large core counts where many-to-many communication is 
expensive

• non-periodic BCs

• lower accuracy (1e-4 and below)

• large numbers of atoms (at least in theory due to better 
O(N) scaling)

 Ewald works well for small systems

 PPPM is good for many practical systems and is hard to 
beat



Thank You

Questions or Comments?


