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What is adult neurogenesis?

* Robust process

— Thousands of new
neurons integrate
into dentate gyrus
monthly




What is adult neurogenesis?

* Robust process
* Highly regulated

— Both proliferation
and survival
controlled

— Activity, enrichment,
stress, diet, aging,
disease...




What is adult neurogenesis?

Robust process
Highly regulated
Extended
maturation

— Several weeks to
begin integrating
into circuit

— Still “immature”
several months later
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What is adult neurogenesis?

Robust process
Highly regulated

Entorhinal

Extended Cortex
maturation
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Incremental learning <«——» One-shot learning

— Dentate gyrus is
initial stage of
hippocampus

— Network amp“ﬁes Aimone, Deng and Gage

Trends in Cog. Sci., 2010
effect of new neurons


http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904863/figure/F5/

Neurogenesis results in a
mixed population of GCs
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Inhibitory inputs onto
maturing neurons

courtesy Yan Li



Inhibitory inputs onto
maturing neurons
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What are new neurons doing?

Learning
Behavior

?

In vivo
Physiology

Physiology



What are new neurons doing?

Learning
Behavior
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Modeling adult neurogenesis

e Neural network
model of DG circuit

Lateral Entorhinal Cortexl
Medial Entorhinal Cortex |

Granule Basket

---------------------------------------------

Aimone et al., Neuron 2009



Modeling adult neurogenesis

e Neural network
model of DG circuit

* Biologically realistic
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Measure response in equally spaced locations.
No plasticity during testing
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Modeling adult neurogenesis

e Neural network
model of DG circuit

* Biologically realistic
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through
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Aimone et al., Neuron 2009



Neurogenesis process allows pattern
separation on temporal context
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Contextual specialization
of adult-born neurons

 Neurons learn to represent
environment present during
maturation

* Prolonged exposure to
environment will result in a
population of DG granule cells
that are “specialized” to that
environment

* Networks without
neurogenesis stop developing
specialized groups of neurons
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Summary of model-proposed
functions for adult neurogenesis

* Pattern integration

— Immature neurons are indiscriminant while mature
neurons separate inputs

* Temporal pattern separation

— Different immature neurons are utilized for memories
encoded at different times

* long-term specialization

— New neurons acquire information about environments
experienced during maturation



What does this mean for the DG
pattern separation hypothesis?

Overlapping EC inputs are encoded separately by the DG
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Associative memories formed in CA3 do not
interfere with one another
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Deng, Aimone, and Gage
Nature Reviews Neuroscience; 2010



Is “pattern separation” too
simple a framework?
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Immature and mature neurons encode
information differently

A Immature neurons B Mature neurons
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Tuning of immature neurons
Tuning of mature neurons

Low information coding of all content High information coding of some content

Aimone, Deng and Gage
Neuron; 2011



As neurons mature, they become high

information encoders themselves
A a O @ < =N

T W

Memories encoded by Memories rely on
high and low information neurons: low information neurons:
Okay without neurogenesis Impaired without neurogenesis.

Maturation of neurons allows
memories to now be encoded Aimone, Deng and Gage

by high information neurons Neuron; 2011



What are new neurons doing?

Memories encoded by Memories rely on .
high and low information neurons: low information neurons:
Okay without neurogenesis Impaired without neurogenesis. I
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Contextual fear conditioning

Learning of an association between a distinctive place and an aversive event.

v
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Learning of the context: indicated by freezing behavior subsequent to conditioning.
Fear extinction: less freezing subsequent to repeated contextual exposure without shock.

courtesy Wei Deng



Immediate shock focuses hippocampal learning
to context pre-exposure

Freezing (%)

Immediate shock deficit (ISD) Contextual pre-exposure facilitation
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* Animals need time to explore the * Pre-exposure gives animals the chance to
environment in order to associate explore the chamber and thus rescues the ISD.
context with the shock. * The hippocampus is important for the contextual

pre-exposure facilitation.
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An immediate shock deficit
based context discrimination task

PE-ISD protocol

day 1 day 2
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courtesy Wei Deng



Pre-exposure is important for contextual learning
and context discrimination paradigm (PE-ISD)

24 h
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Knocking out different populations of young neurons
affects freezing behavior differently
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Do immature neurons specialize to
temporally distinct inputs?
* Prediction: Presenting animal with different

contexts / experiences at different time should
result in specialized granule cells



Do immature neurons specialize to
temporally distinct inputs?
* Prediction: Presenting animal with different

contexts / experiences at different time should
result in specialized granule cells
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courtesy Lara Rangel and Andrea Chiba



Do immature neurons specialize to
temporally distinct inputs?

A

Context 1 Context 1 Context 1 Recording
Context 2 Context 2 All Contexts

4 Days

Context 3 *
5 Days 5 Days 5 Days
SuTgery s 9Day mmbsm 9Day mem 9 Day
Rest Interval Rest Interval Rest Interval
Recovery Period and Dentate Gyrus Targeting * *
v
30 min Enriched Environment Daily
Training Phase Test Phase

I Sclective to One Context
[ Selective to Two Contexts
I Activity in All Three Contexts

43%

33%

courtesy Lara Rangel and Andrea Chiba



Do immature neurons specialize to
temporally random inputs?
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