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Examples: quantum computers are good for
•Quantum data base search
•Simulation of quantum physical process in chemistry and solid state physics

Quantum computers
Modern encryption is based on the assumption that it is 

impossible to prime-factorize a large digit number within 
a reasonable time frame. 

Classical computer
A 200-digit number was prime-factorized after 170 CPU years. 

Quantum Computer
A 600-digit number can be prime-factorized in 6 CPU days! 
( Shor’s algorithm)



•Superconducting circuits.

•Semiconductor impurities: contain electrons by using donor atoms in 

semiconductor material.

•Quantum dots: isolate single electrons in a semiconductor physically and/or 
electrostatically.

Solid state quantum computers: coherence times

T1=1-10 μs     T2 = 0.1-1μs

T1 >1000 s     T2 ~ 60 ms for electron spins
       T2 = 1s for electron spins

GaAs:  T1=1s     T2 spin-echo  = few hundreds of μs
Si/SiO2:  T1=1s     T2  = 0.3 μs for mobile electrons
Si/SiGe:  T1= Few seconds     T2  = No results so far



Topological Quantum computers: Advantages

➡Information is encoded in the single 
particle states.

➡Superposition states of 
the qubits are very fragile.

➡Any stray interaction with the 
environment including the 
imperfections in the host material can 
result in loss of information.

➡Error correction schemes would be 
challenging beyond  ONE error in 
every 10, 000 steps.

Information is encoded in the many-
body/non-local states . 

Topological properties are unaffected 
by small perturbations.  

Built-in resistance to environmental 
decoherence.

Error rate < 10-30

Utilizes the edge state in a quantum Hall system, 
protected by an energy gap. 

Sankar Das Sarma, Michael Freedman & Chetan Nayak, Phys. Rev. Lett. 94, 166802 (2005)
Sankar Das Sarma, Michael Freedman & Chetan Nayak, Physic Today (2006)



•ν = 5/2 fractional quantum Hall excitations are 
proposed to be non-Abelian with topological 
properties.

•Not many studies on ν = 5/2 excitations in reduced 
dimensions

Topological Quantum gates
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previous section, and thus could support universal topolog-
ical quantum computation.

A non-abelian quantum Hall state is currently the most
promising route to topological quantum computation and
perhaps the most promising route of any kind to scalable,
fault-tolerant quantum computation. However, we should
also look elsewhere for a topological quantum computer,
even though that search requires reinventing the wheel that
is already in motion in the context of the fractional quantum
Hall effect. We need to understand how and when topologi-
cal phases can occur in other physical systems. Some possi-
bilities are p-wave superconductors such as strontium
ruthenate16 (see PHYSICS TODAY, January 2001, page 42), frus-
trated quantum magnets17 (see PHYSICS TODAY, February
2006, page 24), and cold atoms in optical lattices18 (see

PHYSICS TODAY, March 2004, page 38). Where to find such
phases is very much an open problem. One might be only
half-joking in suggesting that the easiest way to solve that
problem might be to build a fractional quantum Hall
quantum computer first and then use it on the solid-state
physics problems that must be solved to develop a “high-
temperature” topological quantum computer.

Outlook
The most important issues facing topological quantum com-
putation are twofold: (1) finding or identifying a suitable
system with the appropriate topological properties (that is,
non-abelian statistics) to enable quantum computation; and
(2) figuring out a scheme to carry out the braiding operations
necessary to achieve the required unitary transformations.

With a device like that shown in the
figure, one can determine whether
the observed quantum Hall state at a
filling factor ν of 5/2 is non-abelian
by performing a simple quantum
computation with a topologically pro-
tected qubit.13 The device consists of
a quantum Hall bar that has two indi-
vidually gated “antidots,” labeled 1
and 2, in its interior. (An antidot is the
opposite of a quantum dot; it is a
region from which electrons are
excluded as a result of an electrostat-
ic potential applied to a gate elec-
trode.) By tuning the voltages applied
to the six gate electrodes around the
perimeter, one can control the tunnel-
ing (dashed lines) between the top and bottom edges at those
points. There are three basic steps to our computation: (i) per-
form a nondemolition measurement of the qubit, (ii) flip the
qubit, and (iii) measure it again.

As per the rules set forth in the text for the first example of
non-abelian anyons, the device forms a qubit when there is
one quasiparticle (or any odd number14,15) on each antidot.
One can determine which state the qubit is in by measuring
the longitudinal conductivity σxx, because it is determined by
the interference between two processes that are sensitive to
the topological state of the quasiparticles on the antidots.
When appropriate voltages are applied to the gates at M and
N and at P and Q so that tunneling can occur there with
amplitudes t1 and t2, those two processes are a quasiparticle
tunneling from M to N, and a quasiparticle continuing along
the bottom edge to P, tunneling to Q, and then moving along
the top edge to N. (The amplitude t2 includes a phase factor
associated with the extra distance traveled in the second
process.) The relative phase of the amplitudes for these
processes depends on the state of the qubit: σxx ∝ |t1 ± it2|2,
where the amplitudes are added if the qubit is in state |0〉 and
are subtracted if the qubit is in state |1〉. Such a measurement
projects the qubit onto one of the eigenstates but otherwise
leaves it intact. Hence, it is an example of a quantum nonde-
molition measurement.

To flip the qubit, we apply voltage to the gates at A and B
so that one quasiparticle, with charge e/4, tunnels between the
edges. If the ν = 5/2 plateau is a non-abelian topological

state, as expected, the tunneling will transform the qubit from
|0〉 to |1〉 and vice versa. This is the logical NOT operation.
Measuring the qubit again should show the relative sign of the
tunneling amplitudes reversed, even though the magnetic
field, chemical potential, and gate voltages are precisely the
same. It may be useful to have a third antidot between A and
B to act as a turnstile ensuring that only a single quasiparticle
tunnels between A and B. If control of the tunneling between
A and B is imperfect, then some of the time an even number
of quasiparticles would tunnel between A and B, which would
produce no change in the conductivity, but some of the time
an odd number of quasiparticles would tunnel, thereby flip-
ping the conductivity, which is enough to confirm that the
ν = 5/2 state is non-abelian.

What is the stability of the qubit? A bit-flip error occurs
when, as in the controlled bit flip, a quasiparticle encircles
one of the antidots or passes between them from one edge to
the other. A phase-flip error occurs when a quasiparticle
encircles both dots. The rates for both sources of error are
similar since they are limited by the density and mobility of
excited quasiparticles. Hence, we expect that the error rate Γ
will have a thermally activated form: Γ/∆ ∼ T/∆ e−∆/T ∼ 10−30,
where ∆ is the quantum Hall state’s energy gap. This number
has sparked interest in topological quantum computing
because it is well below the fault-tolerance threshold and
many orders of magnitude smaller than the estimated error
rates for other proposed physical implementations of quantum
computation.

Box 2. Topologically protected qubits at the ν = 5/2 plateau
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e •Anyon braiding 
  forms the qubit states

•Trapping and manipulation of non-Abelian Anyons 
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QPCs defined by etching and side-gating
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Fractional quantum Hall effect in QPCs
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Quasiparticle tunneling in the 2nd Landau level
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Temperature dependance of 5/2 state
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Weak tunneling of quasiparticles 

Because the voltage drop between the two
counterpropagating edge states in the QPC is the
dc current multiplied by the Hall resistance, we
have labeled the horizontal axis with both the
current and the dc voltage using Rxy = 0.4 h/e2 (3).
All these traces saturate at the same value, R∞, at
high dc bias, higher than the expected value of
0.40 h/e2. The height of the peak, measured from
R∞, decreases with increasing temperature, fol-
lowing a power law in temperature with an
exponent of −1.3 (Fig. 4B). The full width at half
maximum (FWHM) of the peak increases linearly
with temperature and extrapolates to zero at zero
temperature, consistent with a zero intrinsic line
width (Fig. 4C). The data can be collapsed onto a
single curve (Fig. 4D) when the horizontal axis is
scaled by Tand the vertical axis is scaled by T −1.3

(after subtracting a common background R∞).

Extracting g and e*. The observed temper-
ature dependence of the peak height and
FWHM is consistent with the theoretical
predictions of weak quasi-particle tunneling
between fractional edge states (3, 18, 19). In
that picture, the zero-bias peak height is
expected to vary with temperature as T2g−2,
which gives g = 0.35 for the data in Fig. 4B.
The weak-tunneling expression, which in-
cludes the effects of dc bias (3) has the form

gT ¼ AT ð2g−2ÞF g,
e*IdcRxy

kT

! "

ð2Þ

[see (36) for details]. This functional form fits
the experimental data well, as seen in Fig. 4E.
(Note that RD and gT differ only by an offset
and scale factor.) All five temperatures are fit

simultaneously with four free parameters: a
single vertical offset corresponding to R∞, an
amplitude A, and the two quantities g and e*. A
least-squares fit over the full data set gives
best-fit values g = 0.35, the same value found
from the power law fit of the peak heights (Fig.
4B), and e* = 0.17. Uncertainties in these
values will be discussed below. Similar analy-
sis performed on data from a different device
(device 2 but energizing only gates G1 and G4)
yields quantitatively similar results.

To characterize the uncertainty of these mea-
sured values, we show in Fig. 5 a matrix of fits to
the weak-tunneling form, Eq. 2 with g and e*
fixed and A and R∞ as fit parameters. The color
scale represents the normalized fit error, defined
as the residual of the fit per point divided by
0.0005 h/e2, the noise of the measurement. A fit
error ≤ 1 indicates that fit is consistent with the
data within the noise of the measurement.
Higher values indicate worse fits (36) (figs. S4
and S5).

This matrix of fits allows various candidate
states at n ¼ 5=2 to be compared with the tun-
neling data. All of the candidate states predict
e* ¼ 1=4, but g can differ. States with abelian
quasi-particle statistics include the so-called 331
state (14, 15), which has a predicted g ¼ 3=8
(17), and the K = 8 state with g ¼ 1=8 (16).
States with nonabelian quasi-particle statistics
include the Pfaffian (6), with g ¼ 1=4 (17); its
particle-hole conjugate, the anti-Pfaffian (8, 9),
with g ¼ 1=2 (8, 9, 18); and the U(1) × SU2(2)
state (7), also with g ¼ 1=2. Parameter pairs
(e*, g) representing these candidate states are
marked in Fig. 5. Evidently the states with
e* ¼ 1=4 and g ¼ 1=2, both nonabelian, are
most consistent with our tunneling data. The
abelian state with e* ¼ 1=4 and g ¼ 3=8 cannot
be excluded; however, we note that weak tun-
neling of e* ¼ 1=2 quasi-particles appears in-
consistent with the data.

Strong tunneling. In contrast to device 1,
the dc bias data from device 2 show evidence
for strong tunneling. Device 2 has a long,
channel-like geometry, which should increase
the number of tunneling sites and hence the
tunneling strength. Diagonal resistance, RD, as
a function of dc bias at several temperatures is
shown in Fig. 6A, which should be compared
to those from the short QPC (Fig. 4A). At
higher temperatures, the zero-bias peak height
can be described by a power law in temperature
with an exponent similar to that in the QPC
(Fig. 6B and fig. S6B) and a FWHM that is
proportional to temperature (Fig. 6C). At lower
temperatures, the peak height deviates from a
power law and saturates at the lowest temper-
atures at a value of resistance consistent with
the resistance at n ¼ 7=3 (the resistance is higher
than3=7 h/e

2 by the background R∞ − 0.4), and the
FWHM deviates from the linearity seen at higher
temperature. We also observed that the peak
develops a flat top and strong side dips (Fig.
6A) at the lowest temperature.

∞ 

/

Fig. 4. (A) RD (device 1) as a function of dc bias at fixed magnetic field (B = 4.3 T, middle of n = 5=2) and
fixed gate voltage (Vg =−2.5 V) at several temperatures. The bias dependence of RD is proportional to that
of gT (right axis) up to a constant. (B) Zero dc-bias peak height as a function of temperature. The red line is
the best fit with a power law in which the exponent is –1.3. (C) The peak FWHM as a function of
temperature. The red line is the best fit with a line going through zero. (D) Data collapsed onto a single
curve using an exponent of –1.3. (E) Best fit of all the data in (A) with the weak tunneling formula (Eq. 2)
returns e* = 0.17 and g = 0.35.
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on this heterostructure. The mobility (before the
gates are energized) was 2 × 107 cm2 V–1 s–1,
the carrier density was 2.6 × 1011 cm−2, and the
n ¼ 5=2 energy gap was ~130 mK in the bulk
(34). The QPCs were formed by Cr/Au top
gates, which were patterned on the Hall bar
using e-beam lithography. By applying a nega-
tive gate voltage Vg to these gates, the electrons
underneath them were depleted, creating a
constriction tunable with Vg. We report measure-
ments on devices with two different gate geom-
etries (Fig. 1 bottom insets). Device 1 was a
simple QPC with gate separation of 800 nm.
Device 2 was a channel ~1200 nm wide, formed
by energizing the gates marked G1, G2, G3, and
G4 (gates A1 andA2were held at ground and not
used in this experiment). The sample was
mounted on the cold finger of a dilution refrig-
erator with a base temperature of less than 10
mK. In all figures and analysis, we quote electron
temperatures. At temperatures ≥ 20 mK, the
mixing chamber and electron temperatures were
measured to be equal with use of resonant elec-
tron tunneling in a lateral quantum dot. Temper-
atures below 20 mK were estimated by using
both resonant tunneling and by tracking several
strongly temperature-dependent quantum Hall
features in the bulk, with consistent results (36).

The magnetic field was oriented perpendicular to
the plane of the 2DES.

Measurements were performed by using
standard four-probe lock-in techniques with an
ac current excitation between 100 and 400 pA
and in some cases a dc bias of up to 20 nA. To
determine the tunneling conductance, gT, we
simultaneously measured the Hall resistance,
Rxy (voltage probes on opposite sides of the Hall
bar away from the QPC), and the diagonal
resistance, RD (voltage probes on opposite sides
of the Hall bar and also opposite sides of the
QPC) (34, 36, 37). For a schematic of the sample
and measurement setup, see fig. S1. In the weak
tunneling regime (3) when the bulk of the sample
is at a quantum Hall plateau, the tunneling
voltage is the same as the Hall voltage, whereas
RD reflects the differential tunneling conductance
via

gT ¼
RD − Rxy

R2
xy

ð1Þ

Rxy is independent of dc bias when the bulk is at a
FQH plateau. If one assumes that the underlying
edge has a filling fraction nunder, then the re-
flection of the 5=2 edge state can be calculated
as R = gTRxy

2/[(1/nunder)h/e
2 − Rxy].

Same filling fraction in QPC and bulk. A
key difference from previous tunneling exper-
iments (31–34) is that we were able to deplete the
electrons under the gates and induce tunneling
without substantially changing the filling fraction
in the QPC. This was achieved by applying a gate
voltage of –3 V while at 4 K and allowing the
system to relax for several hours, which we refer
to as annealing. We then cooled the sample and
limited the voltage to the range –2 to –3 V at
dilution refrigerator temperatures. After anneal-
ing, RD and Rxy were measured over several
integer plateaus, and the fields marking the ends
of the plateaus were found to coincide for the
QPC and the bulk (Fig. 1), indicating that the
filling factors are the same. The extra resistance
in RD at FQH states is consistent with tunneling.
Additional evidence that the filling fraction
changes little once the QPC is annealed is shown
in the Fig. 1 top inset: The slopes of Rxy and RD at
low magnetic field, inversely proportional to
carrier density, differ by 2% or less. For
comparison, we show data from a nonannealed
QPC in which the density decreases by ~15%.

Bias and temperature dependence. Focus-
ing on the dependence of gT on the dc bias, Idc,
through the QPC and Hall bar, Fig. 2 shows a
color-scale plot of the dependence of gTon both
Idc and magnetic field, B, at four temperatures;
a measurement of Rxy is shown for comparison.
As seen at the highest temperatures, these field
sweeps reveal a series of FQH states (38) around
n ¼ 5=2, including the 7=3 and the 8=3. At the
lowest temperatures, strong reentrant integer
quantum Hall (RIQH) features are also visible
on either side of 5=2, both in the bulk and in the
QPC (Fig. 2). The dc bias behavior at FQH
plateaus is quite different from that of the RIQH
features: At FQH plateaus, zero-bias peaks in gT
persist up to at least 50 mK (Fig. 2D). By
contrast, RIQH states havemore-complex dc bias
signatures, which decrease rapidly with temper-
ature, disappearing by 30 mK both in the bulk
(Rxy) and in the QPC (gT). Qualitatively similar
results were observed for device 1. To study the
FQH state at n ¼ 5=2, we set the magnetic field to
the center of a bulk FQH plateau (B = 4.31 T for
device 2, vertical line in Fig. 2C, and B = 4.3 T
for device 1).

With the field set to the center of the plateau,
we investigated the effect of Vg on the zero-bias
peak at several temperatures (Fig. 3). At the
lowest temperatures (Fig. 3A), the zero-bias peak
persists throughout the Vg range. At higher
temperatures, a peak in both dc bias and Vg was
observed, centered near Vg = −2.5 V (Fig. 3C).
To study quasi-particle tunneling, we setVg to the
center of this peak, the feature that persists to the
highest temperature, because theory predicts that
tunneling decreases slowly, as a power law, with
temperature.

With the magnetic field and gate voltage set,
we measured the dc bias dependence in device
1 at various temperatures (Fig. 4). The traces in
Fig. 4A are slices along the dashed lines in Fig. 3.

Fig. 2. (A to D) Differen-
tial tunneling conduct-
ance gT (device 2) as a
function of magnetic field
and dc bias current at
several temperatures. On
each graph, the zero dc-
bias Rxy trace from the
same temperature is su-
perimposed (right axis).
The field range encom-
passes the FQH states 7=3,
5=2, and 8=3 (marked with
horizontal dot-dash lines).
At the higher temperatures,
dc bias nonlinearities exist
only at the fractional pla-
teaus. All other features,
such as those from the re-
entrant quantum Hall ef-
fect, disappear at ~30 mK.

Fig. 3. Differential tun-
neling conductance gT
(device 1) as a function
of Vg and dc bias at
several temperatures: (A)
T = 13 mK, (B) T = 20 mK,
and (C) T = 40 mK. The
vertical dashed line marks
the gate voltage at which
the zero-bias peak persists
to highest temperature.
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Supporting Online Material

Estimating electron temperature. Electron temperatures have been measured using several
methods. The first is to extract electron temperature using resonant electron tunneling in a lateral
quantum dot. To extract electron temperatures, one uses the standard form given in Ref. (1). At
temperatures ≥ 20 mK, the mixing chamber and electron temperatures are found to be equal
within measurement error using this method, while the base electron temperature is estimated
to be � 16± 3 mK (the base mixing chamber temperature is ≤ 6 mK).

In addition, we estimate electron temperatures below 20 mK by tracking several
temperature-dependent quantum Hall features around ν = 3 in the bulk of the same sample
in which the tunneling experiments are performed. Specifically, the magnetic field position of
the corners of the ν = 3 gap in Rxx (the low field corner is indicated in Fig. S2 with a black
arrow) and the height of the Rxx peak on the high field side of the ν = 3 gap (orange arrow in
Fig. S2) have been monitored as a function of mixing chamber temperature (see. Fig. S3). For
the temperature range 21 mK to 42 mK the peak height (blue circles) is linear in temperature.
However it deviates from a line at lower temperatures presumably because the electrons can
no longer be cooled to the same temperature as the mixing chamber. Extrapolating the line,
electron temperatures below 20 mK can be estimated. The base electron temperature in this
case is estimated to be ≈ 13 ± 2 mK. Similarly, the temperature dependence of the low field
corner is linear in temperature over the range 21 mK to 72 mK. Assuming linearity to T=0, the
base electron temperature is found to be ≈ 9 ± 4 mK. Based on these measurements, we use
13 ± 3 mK for base electron temperature with error bars covering the other two temperature
estimates. Other temperatures between base and 20 mK are estimated similarly.

Weak quasiparticle tunneling. The differential tunneling conductance formula based on the
weak quasiparticle theory (2) is given by:

gT (T, Idc) = AT (2g−2)F (g,
e∗IdcRxy

kT
) (1)

F (g, x) = B(g + i
x

2π
, g − i

x

2π
){π cosh(x/2)− 2 sinh(x/2)Im[Ψ(g + i

x

2π
)]} (2)

where e∗ and g are the quasiparticle charge and Coulomb interaction parameter, respectively.
B(x, y) represents the Euler beta function and Ψ(x) is the digamma function.
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1Radu et al., Science 320, 899 (2008), X. G. Wen, Phys. Rev. B 44 5708 (191)

IDC (nA)

g T
 (a

.u
)

g = 0.8 e* = 0.25 (held)

12 mK
15mK
20mK
35mK
50mK



Tunneling on ν = 8/3 & 7/3  
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Conclusions

•All optical lithographed QPCs

•Well formed 7/3, 5/2 & 8/3 FQH states

•Tunneling experiments of quasiparticle conducted

•Effective charge and Coulomb interaction 
  parameters extracted from tunneling I-V curves


