

REPORT

GTI PROJECT NUMBER: 22481
DOE AWARD NUMBER: DE-EE0008637

Techno-Economic Analysis for GTI's Compact Hydrogen Generator

Reporting Period:

January 01, 2020 through July 20, 2020

Report Issued:

July 20, 2020

Prepared For:

G. Jeremy Leong
Technology Manager R&D Projects
U.S. Department of Energy | Energy Efficiency & Renewable Energy
Advanced Manufacturing Office
1000 Independence Avenue, SW
(202) 586-3910
Jeremy.leong@ee.doe.gov

GTI Technical Contact:

Mr. Jeff Mays
Program Manager
(818) 405-9549
jmays@gti.energy

Legal Notice

This information was prepared by Gas Technology Institute ("GTI") for DE-EE0008637.

Neither GTI, the members of GTI, the Sponsor(s), nor any person acting on behalf of any of them:

- a. Makes any warranty or representation, express or implied with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately-owned rights. Inasmuch as this project is experimental in nature, the technical information, results, or conclusions cannot be predicted. Conclusions and analysis of results by GTI represent GTI's opinion based on inferences from measurements and empirical relationships, which inferences and assumptions are not infallible, and with respect to which competent specialists may differ.*
- b. Assumes any liability with respect to the use of, or for any and all damages resulting from the use of, any information, apparatus, method, or process disclosed in this report; any other use of, or reliance on, this report by any third party is at the third party's sole risk.*
- c. The results within this report relate only to the items tested.*

Table of Contents

Legal Notice	i
Table of Contents.....	ii
Table of Figures	iii
List of Tables.....	iv
Executive Summary	5
Introduction	6
Conclusions	28

Table of Figures

	Page
Figure 1. Overall Approach to the Technoeconomic Analysis	6
Figure 2. Block Flow Diagram of Steam Methane Reforming without CO ₂ Capture	9
Figure 3. Block Flow Diagram of Steam Methane Reforming with 90% carbon capture	9
Figure 4. Block Flow Diagram of GTI's compact hydrogen generator without CO ₂ capture and compression.....	10
Figure 5. Block Flow Diagram of GTI's Compact Hydrogen Generator with 90% CO ₂ capture and compression.....	10
Figure 6. Sensitivity of cost of hydrogen on several variables whose values are listed in Table 22.....	28

List of Tables

Table 1 Summary of equipment costs for a 90MMSCFD Compact Hydrogen Generator	7
Table 2. Total direct materials cost of the CHG and SMR with and without capture, considering just the cost of the hydrogen plant and the CO ₂ capture plant, excluding CO ₂ compression (CO ₂ Compression direct materials is \$15.6-16.7MM)	8
Table 3. List of user inputs and key variables used for the technoeconomic analysis.....	12
Table 4. Design basis of the hydrogen plants and major assumptions.....	13
Table 5. Factors for determining startup costs, and explanations of working capital and interest during constructions.....	14
Table 6. Factors for determining Total Plant Cost, Total Capital Requirement, Fixed Operating Costs, and Variable Operating Costs.....	15
Table 7 Plant Performance Summary for the four cases evaluated.....	16
Table 8. Total Installed Cost and Total Plant Cost for the Base Case SMR without CO ₂ Capture	17
Table 9 Total Installed Cost and Total Plant Cost for the Base Case SMR with CO ₂ Capture .	17
Table 10 Total Installed Cost and Total Plant Cost for the CHG without CO ₂ Capture	18
Table 11 Total Installed Cost and Total Plant Cost for the CHG with CO ₂ Capture	18
Table 12 Yearly variable costs for the four cases evaluated	18
Table 13. Summary of operating labor staff requirements and total annual labor costs	19
Table 14. Summary of maintenance costs for the four different cases evaluated.	19
Table 15. Total Operation and Maintenance costs for the four cases evaluated.....	20
Table 16. Total Capital Requirements for the four cases evaluated.	21
Table 17. Summary of cash flows for steam methane reforming without CO ₂ Capture	22
Table 18. Summary of cash flows for steam methane reforming with 90% CO ₂ capture.....	23
Table 19. Summary of cash flows for the compact hydrogen generator without CO ₂ capture ..	24
Table 20. Summary of cash flows for the compact hydrogen generator with 90% CO ₂ capture	25
Table 21. Summary of Total installed cost, Total capital requirements, and levelized cost of hydrogen for the four hydrogen plants evaluated	26
Table 22. Sensitivity analysis for dependence of total capital requirements and levelized cost of hydrogen on several variables.....	27

Executive Summary

A technoeconomic analysis of the compact hydrogen generator compared to a traditional steam methane reformer (SMR) was performed for both processes with and without carbon capture. The project goal for the technoeconomic analysis was to demonstrate a minimum of 20% lower CAPEX and 15% lower levelized cost of hydrogen compared to SMR with and without carbon capture. GTI obtained baseline capital and costs for the SMR with and without and methodology to calculate the levelized cost of hydrogen from an IEAGHG Technical Report: 2017-02 Techno-Economic Evaluation of SMR Based Standalone (Merchant) Hydrogen Plant with CCS. This methodology was then applied to GTI's compact hydrogen generator using direct material costs previously obtained from a reputable engineering procurement and construction company, CB&I Howe-Baker. The analysis was performed for plants producing 90MMSCFD (million standard cubic feed per day) of hydrogen. Direct material costs were converted to total installed costs and total capital requirements using the same multiplying factors for both processes. We have found that the direct materials cost of the compact hydrogen generator is less than half the direct materials cost required for SMR without capture, and about one quarter the direct materials cost of SMR with carbon capture. This low materials cost translates into a significant CAPEX savings and lower levelized cost of hydrogen that exceed the goals of the techno-economic assessment. We have found that the CHG has a 43% lower installed cost and capital requirement compared to SMR without capture, that results in a levelized cost of hydrogen that is 19% lower than SMR. When 90% CO₂ capture is added to the plants, the advantages is even better. The CHG has a 51% lower installed and capital requirement compared to SMR with capture, resulting in a 28% lower levelized cost of hydrogen. A sensitivity analysis was performed and showed natural gas feedstock cost and discount rate to be the main contributors to hydrogen price sensitivity. Given these significant cost advantages, GTI is encouraged to continue to develop the technology and market the economic advantages as well as the efficiency gains and ability to inherently capture CO₂.

Introduction

The overall approach to the technoeconomic analysis is presented in the steps outlined in Figure 1. GTI sized the compact hydrogen generator plant for 90MMSCFD in order to match the size of an SMR with published economics found in an IEAGHG report 2017-2 (“Techno-Economic Evaluation of SMR based Standalone (Merchant) Hydrogen Plant with CCS.” more detail on that report below).

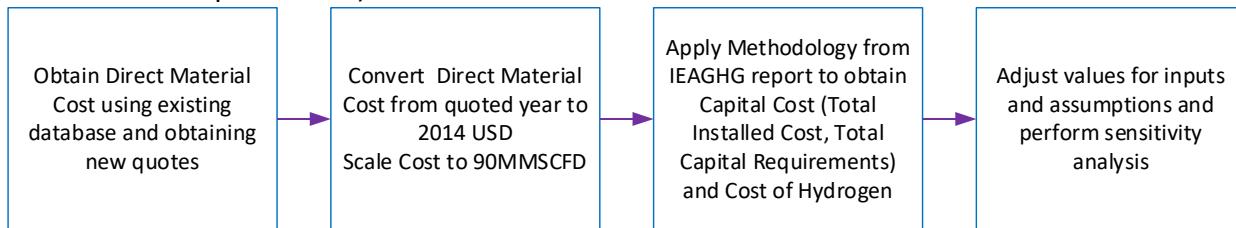


Figure 1. Overall Approach to the Technoeconomic Analysis

The foundation of the direct materials cost for the compact hydrogen generator is a detailed equipment cost list for a 60MMSCFD hydrogen plant developed by CB&I Howe-Baker International during an assessment performed in June 2005. GTI has scaled these costs to 2014 dollars using the Chemical Engineering Plant Cost Index (CEPCI). Costs were adjusted to 2014 since that is the same year basis for the costs in the IEAGHG report 2017-2. Additionally, GTI scaled the costs of the CHG technology to 90MMSCFD capacity using a scaling factor of $n=0.65$ for the equation:

$$\text{Cost of Size 2} = \text{Cost of Size 1} (\text{size 2} / \text{size 1})^n$$

A summary of the equipment list with cost scaled for size and adjusted for 2014 costs is provided in Table 1 below. The most expensive equipment is the pressure swing absorber (PSA) required for purification of the hydrogen. The IEAGHG report we used for comparison to SMR does not provide a detailed equipment lists with costs, rather it contains the total direct materials cost. The report does contain fine details of how that direct material cost was translated to a installed cost, total capital requirement and leveled cost of hydrogen.

Table 1 Summary of equipment costs for a 90MMSCFD Compact Hydrogen Generator

Equipment	Required	Total Cost
Pressure Vessels	11*	\$842,558
Heat Exchange Equipment	12*	\$3,849,108
Air Cooled Exchangers	1	\$561,200
Pumps	1	\$358,285
Fired Equipment & Aux components	7	\$2,834,971
PSA Units	1	\$5,094,919
Filters & Specialties	3	\$103,815
Instrumentation	4	\$1,781,127
Electrical Equipment	5	\$432,686
Total Valves and Specialties	3	\$732,966
	Total	\$16,591,635

*four pressure vessels and four heat exchangers are not required for no CO₂ capture case

In addition to the CHG equipment costs listed in Table 1, other required equipment for the compact hydrogen generator includes lockhoppers, solids handling equipment, and a hydrogen compressor (the latter required for capture case only).

The lockhopper equipment cost is \$3,350,491 including instrumentation and electrical costs. This is based on a GTI's quoted equipment database using lockhopper equipment costs from Jacobs. The solids handling equipment cost is \$3,992,884 scaled from the original CBI, Howe-Baker estimate for a 60MMSCFD hydrogen plant.

GTI obtained numerous quotes from vendors for a Hydrogen Compressor. The cost of \$3,900,000 was obtained using the exact stream composition and flowrate expected for the 90MMSCFD plant. We added 5% contingency to account for any added safety requirements such as explosion proof containment. The package includes a model 2TVL500 compressor, 2 stage, non-lubricated four throw, horizontal reciprocating compressor with four water-cooled cylinder per API 618 5th Edition. This compressor is only required for the compact hydrogen generator with CO₂ capture. It is used to increase the reactor product gas pressure from 120psig to 360psig delivery to the PSA unit. The non-CO₂ capture case reactor operates at 360psig and the compressor is not necessary.

The total direct materials costs for the CHG with and without capture is summarized and compared to SMR (reported in the IEAGHG 2017-2 report) with and without capture in Table 2. Without capture, the materials cost of the CHG is less than half that of a steam methane reformer. While the addition of an amine system doubles the material cost of a steam methane reformer to achieve 90% CO₂ capture, the cost of the compact hydrogen generator increases by just 22% to achieve 90% CO₂ capture. The total direct materials cost of the compact hydrogen generator with capture is just 27% the cost of the SMR with capture (prior to inclusion of utilities, balance of plant, and CO₂ compression).

Table 2. Total direct materials cost of the CHG and SMR with and without capture, considering just the cost of the hydrogen plant and the CO₂ capture plant, excluding CO₂ compression (CO₂ Compression direct materials is \$15.6-16.7MM)

	CHG without Capture	CHG with 90% Capture
Major Equipment	\$15,635,876	\$16,591,635
Lockhoppers	\$3,350,491	\$3,350,491
Solids Handling	\$3,992,884	\$3,992,884
Hydrogen Compressor		\$4,095,000
Total Direct Materials Cost	\$22,979,251	\$28,030,010
	Excludes Utilities and balance of plant	Excludes Utilities Balance of Plant and CO ₂ Compression
	SMR without Capture	SMR with 90% Capture
Direct Materials Cost	\$50,810,658	\$104,439,342
	Excludes Power Island and Utilities and Balance of Plant	Excludes Power Island and Utilities and Balance of Plant, and CO ₂ Compression

To translate the materials cost into a Total Plant Cost and Total Capital Requirement, and to calculate the leveled cost of hydrogen (LCOH) GTI used the methodology outlined in a publicly available IEAGHG Technical Report 2017-2. The report was prepared by researchers from AMEC Foster Wheeler, a company that designs and licenses steam methane reformers.

Therefore, GTI views the capital costs and technoeconomic analysis methodology to be highly reliable. GTI searched the literature for other publicly available reports for advertised SMR capital costs and leveled cost of hydrogen and found this IEAGHG report to be the most complete. GTI used the costs for IEAGHG Base case: SMR Plant equipped with Feedstock Pre-treatment, Pre-reforming, High Temperature shift and PSA as our base case for capital costs and leveled cost of hydrogen without CO₂ capture. GTI used the costs for IEAGHG Case 03: SMR with 90% capture of CO₂ from the flue gas using MEA as the baseline case for hydrogen generation with 90% CO₂ capture. The methodology used in the IEAGHG report to translate the direct materials cost into installed costs, total capital requirements, and calculate the leveled cost of hydrogen was applied to the direct materials costs of the compact hydrogen generator to prepare a rational comparison of the economics between the processes. GTI did not take into account any advantage the CHG may have with respect to modular construction.

Therefore, the factors use to convert materials cost to installed costs are the same for SMR and the CHG.

The IEAGHG report provided costs in fourth quarter 2014 basis euros. GTI used an exchange rate of \$1.249 per euro to convert to 2014 dollars, which was the average for the fourth quarter 2014.

Block flow diagrams for the four different cases (SMR without and with CO₂ capture, and CHG without and with CO₂ capture) are provided in Figure 2, Figure 3, Figure 4, and Figure 5 respectively. Detailed descriptions of the SMR cases can be found in the IEAGHG report. Some of the key details of this very standard process are reported here. Preheated natural gas is mixed with a slipstream of the purified produced hydrogen and fed to a pretreatment section

for preheat to 370°C and desulfurization, this gas is then mixed with steam to achieve a steam to carbon ratio of about 2.7-2.8 on a molar basis. This feed is sent to a pre-reformer to convert heavy hydrocarbons into syngas leaving the C2+ concentration in the remaining feed to less than 500ppmv. Steam is added to this stream to fine tune the steam to carbon ratio before entering the reformer. The product gas leaving the reformer contains 3.3-4% methane (dry molar basis). The reformer is air fired using a fuel blend of natural gas and pressure swing absorber (PSA) tail gas. The furnace exit gas temperature is as high as 900°C, and this hot gas stream is used to generate high pressure saturated steam. The syngas exiting the reformer is cooled to 320°C and fed into the High temperature shift convert where the excess steam reacts with CO to form H₂ and CO₂ over a fixed bed of supported nickel catalyst. The PSA then purifies the dried product gas from 75.6% to 99.5% hydrogen, recovering about 85-92% hydrogen from the PSA feed. Hydrogen is delivered to the battery limits at 363psig for all cases evaluated.

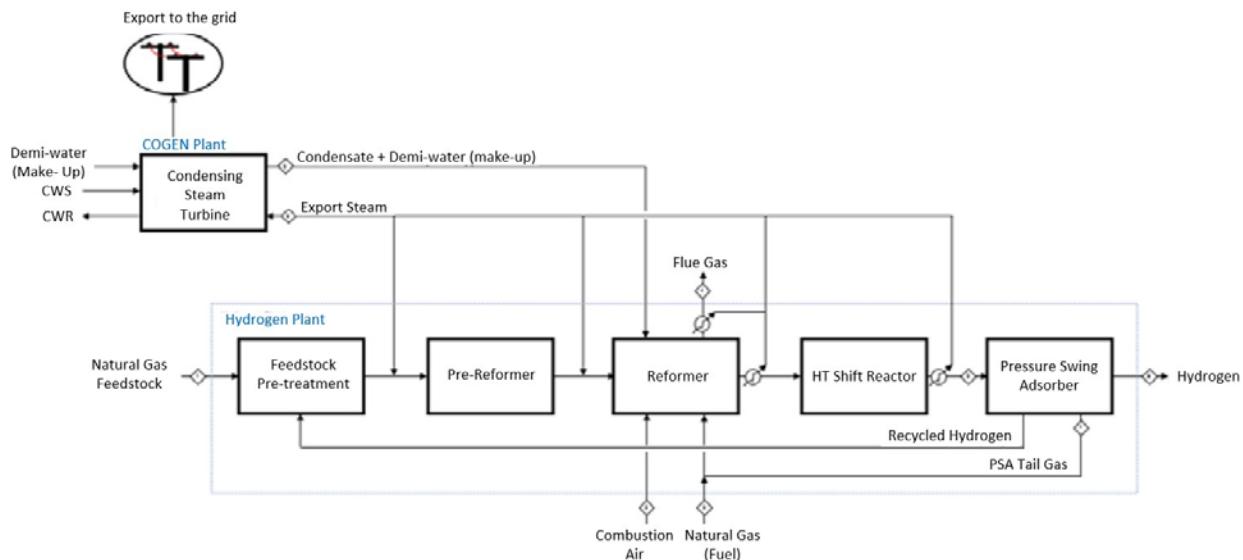


Figure 2. Block Flow Diagram of Steam Methane Reforming without CO₂ Capture

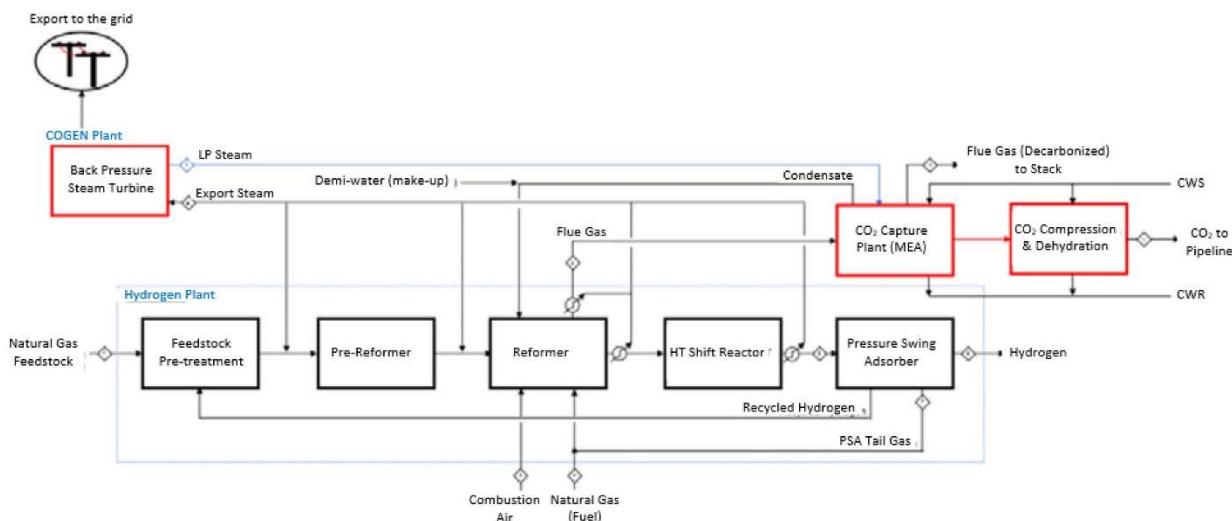


Figure 3. Block Flow Diagram of Steam Methane Reforming with 90% carbon capture

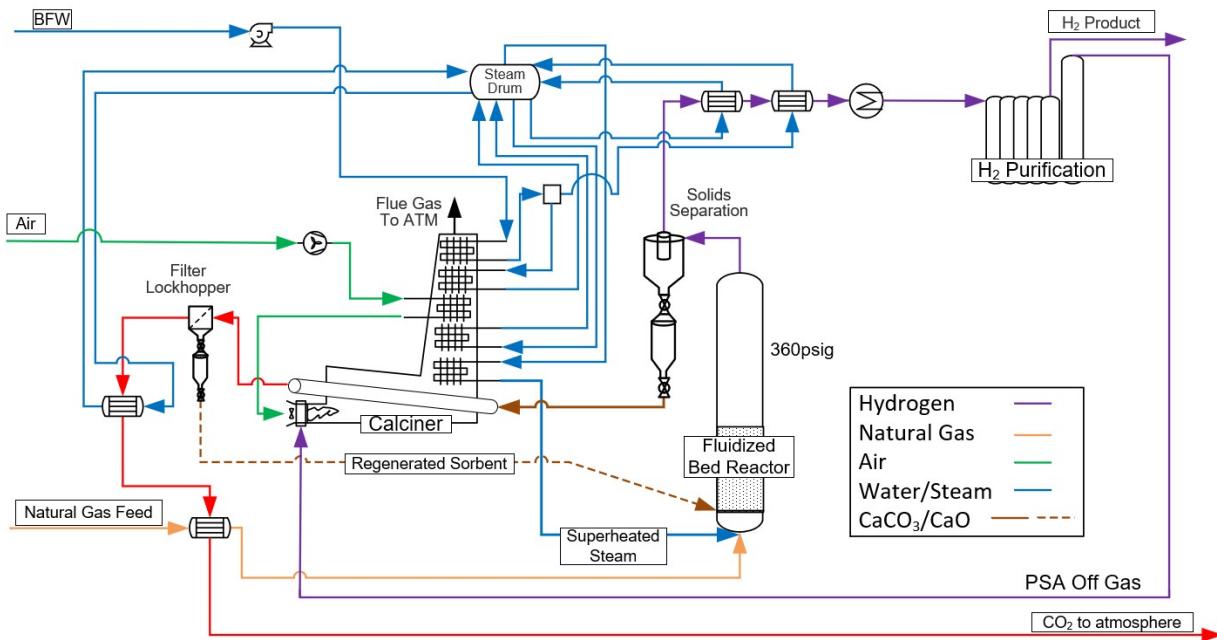


Figure 4. Block Flow Diagram of GTI's compact hydrogen generator without CO_2 capture and compression

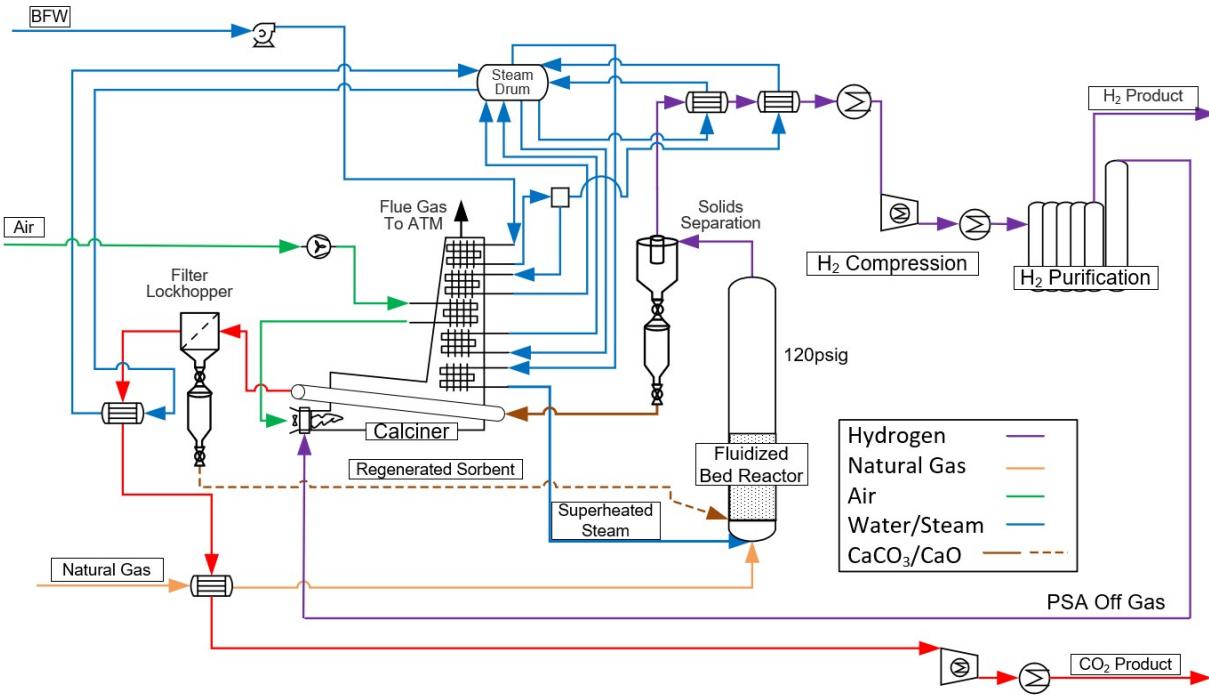


Figure 5. Block Flow Diagram of GTI's Compact Hydrogen Generator with 90% CO_2 capture and compression

There are two unique features of the SMR cases described by AMEC Foster Wheeler. The first is that a high firing temperature of the reformer results in the product gas leaving the reformer at 900-950°C, this results in high efficiency, and special metals must be used to achieve these

temperatures, GTI is not aware of the metallurgy used by AMEC Foster Wheeler to achieve these temperatures. The second is that cooling hot flue gas contributes to steam generation within the plant. A typical SMR at a refinery exports this steam for sale to the refinery. As the IEAGHG cases are standalone hydrogen plants the steam does not have a customer to export to. In order to monetize the steam, the IEAGHG cases include steam turbines used to generate electricity that is available for export and the credit for electricity sale is applied in the calculation for leveled cost of hydrogen. The direct material cost of the power island is \$10.6MM while the cost of the SMR hydrogen island is \$50.8MM. Without addition of the power island there would not be a way to credit the export steam.

The difference in the flow sheets for SMR without CO₂ capture (Figure 2) and with capture (Figure 3) are the addition of a solvent based CO₂ capture system using monoethyleamine (MEA) and the required CO₂ dehydration and compression. The differences are highlighted in red. This configuration captures 90% of the plant's CO₂ emissions by removal of CO₂ from the flue gas exiting the reformer furnace. The low-pressure steam exiting the steam turbine has sufficient energy to regenerate the MEA solvent in the CO₂ capture plant. The cooled, dried CO₂ is delivered to the battery limits at 1595 psig.

The compact hydrogen generator is steam neutral, it does not export steam and therefore a power island is not included in the economic assessment of the CHG. The SMR systems are net power exporters while the CHG systems are net power importers.

The CHG requires sulfur removal from the feed, however a pre-reformer is not necessary nor is a water gas shift reactor. Natural gas is mixed with superheated steam and fed to the fluidized bed reactor where the product (~94.1% H₂) is then purified to 99.5% H₂ using a PSA. The main differences in the configuration for the compact hydrogen generator with and without capture lie in the operating pressure of the reactor. High pressure operation results in lower conversion of natural gas. The CHG without CO₂ capture operates at 360psig to achieve optimal operating costs associated with taking advantage of feed natural gas pipeline pressure and the inlet pressure requirements of the PSA (and to match the H₂ delivery pressure of the IEAGHG baseline cases).

To achieve 90% CO₂ capture, higher conversion of natural gas is necessary which requires operating the reactor at lower pressure, specifically 120 psig. This requires a \$3.9MM hydrogen compressor and associated water knock out vessels, oil coalescers, and the addition of heat exchange equipment as mentioned in Table 1. Additionally, the capture case requires a CO₂ compressor, GTI used the AMEC Foster Wheeler provided centrifugal CO₂ compressor cost for consistency.

As stated above, detailed descriptions of the SMR and the methodology to calculate the capital costs are available in the IEAGHG report. The key details and results are presented here in the Table 3 through Table 20. Table 3 contains a list the key use inputs for utilities and other factors. These factors are converted from Euros to USD using a conversion rate of 1.239 USD per euro (for quarter 4, 2014) and modified somewhat from the IEAGHG report, specifically we

used lower natural gas and electricity prices than those assumed for the European placement of the plants in the IEAGHG report. Additionally, we assumed that the purchase cost of electricity for the CHG was higher than the sales price of electricity for the SMR cases. The calculations for capital cost and leveled cost of hydrogen of the baseline SMR cases were re-run by GTI using these inputs.

Table 3. List of user inputs and key variables used for the technoeconomic analysis.

Natural Gas	3	\$/MMBTU (LHV)
Raw Process water	0.000946	\$/gallon
Electricity sales price	40	\$/MWh
Electricity purchase price	67	\$/MWh
CO2 Transport and Storage	12.49	\$/tonne
CO2 emission cost	0	\$/tonne emitted
CHG Direct Materials Cost	22,979,251	\$ without capture
	42,907,382	\$ with 90% CO2 capture
Discount Rate	11%	
Labor Rate	74948	\$/year/person
Capacity Factor Y1	70%	
Capacity Factor Rest of Life	95%	

The basis for design of the SMR plants was the northeast coast of the Netherlands (Table 4). This location affects factors such as labor rates, installation costs, and taxes. GTI decided for simplicity to keep these factors constant, and while they ultimately affect the leveled cost of hydrogen, keeping them constant for both the SMR and CHG allows for a comparison of the percent decrease in total capital requirements and leveled cost of hydrogen regardless of the factor used (i.e. the % cost advantage should be mostly independent of the exact factors used, as long as they are consistently applied for all cases). The major assumptions used in this study are listed in Table 4 and show that the plant has a 3 year expected build time with investments costs spread across this time period. 20% contingency is added to the total installed cost, and the accuracy of the cost estimations for the IEAGHG report are +35%/15%. Factors for startup costs, and definitions of working capital and the description of how the interest during construction is calculated are described in Table 5.

Table 4. Design basis of the hydrogen plants and major assumptions

Design Basis	
Greenfield, northeast coast of the Netherlands, no major site preparation required	
Excess High Pressure steam is converted to electricity	
Major Assumptions	
Capacity Factor	
0.7	For first year of operation
0.95	For rest of the life of the plant
25	year plant life
0.11	discount rate
interest during construction is assumed same as discount rate Inflation rate, depreciation, decommissioning cost not considered in the discounted cash flow analysis	
3	year design and construction period
Year	Investment cost
1	20%
2	45%
3	35%
Expenditure is assumed to take place at the end of each year and interest during construction payable in a year is calculated based on money owed at the end of the previous year.	
+35%/-15%	accuracy, AACE Class 4 estimate
20%	Contingency is added to the capital cost to give a 50% probability of a cost overrun or underrun
Scaling Factor	0.65

Table 5. Factors for determining startup costs, and explanations of working capital and interest during constructions.

<u>Startup costs</u>
2% of the TPC to cover modifications to the plant
25% of monthly feedstock and fuel cost to cover any inefficient operation during the startup period
3 months of operating labor and maintenance labor cost to cover manpower and personnel training costs
1 month of chemical, catalyst, and waste disposal cost and maintenance materials costs start-up costs are charged to 3rd year of the project
<u>Working Capital</u>
Working capital includes inventories of fuel and chemicals (materials held in storage outside the process plants). Storage for 30 days at full load is considered for chemicals and consumables. It is assumed that the cost of these materials are recovered at the end of the plant life
<u>Interest during construction:</u>
calculated from the plant construction schedule and the rate is assumed to be equal to discount rate. Expenditure is assumed to take place at the end of each year and interest during construction payable in a year is calculated based on money owed at the end of the previous year.

Table 6 contains a summary of the multiplication and percentage factors used to determine total plant cost, total capital requirements, fixed and variable operating costs. All factors used were exactly as they were reported in the IEAGHG report and have been applied to the compact hydrogen generator. It can be seen IEAGHG assumed 38 employees for the SMR without capture and 43 employees total for the CO₂ capture case. GTI assumed a constant 38 employees for the compact hydrogen generator both with and without CO₂ capture. The basis for this was that for the CHG to enable carbon capture the only major equipment to be added are the H₂ and CO₂ compressors, a complicated amine system is not necessary, and therefore we don't expect a need for additional staffing. Another advantage given to the compact hydrogen generator is the lower catalyst cost due to the smaller reactor size. The CHG does have the added expense of sorbent replacement cost.

Table 6. Factors for determining Total Plant Cost, Total Capital Requirement, Fixed Operating Costs, and Variable Operating Costs

<u>Total Plant Cost (TPC)</u>					
Direct Materials					
Construction	0.632	x Direct Materials			
EPC Services	0.313	x Direct Materials			
Other Costs	0.046	x Direct Materials			
Contingency	0.2	x total installed cost (Direct material + construction + other + EPC services)			
<u>Total Capital Requirement</u>					
Total Plant Cost					
Interest during Construction					
Owners Costs	7%	of TPC, charged on first year of project			
Spare parts costs	0.50%	of TPC			
Working capital	0.35%	of annual fuel, chemicals, and catalyst cost, see assumptions			
Start-up costs	2.00%	of TPC, charged on 3rd year of the project			
<u>Fixed Operating Cost</u>					
Direct labor cost	\$74,948	per employee per year			
Administrative and general overhead cost	43.5%	of the direct labor			90%
Annual operating and maintenance cost	1.50%	of TPC		No CO2	
Insurance	0.50%	of TPC		Capture	Capture
Local taxes and fees	0.50%	of TPC	Employees 38		43
Maintenance labor	40%	of the overall maintenance costs			
Indirect Labors Costs (Overhead, administrative and support labor)					
30% of the direct labor costs and the maintenance labor cost.					
<u>Variable Operating Cost</u>					
Feedstock (natural gas)	Based on consumption				
Raw water make-up	Based on consumption				
Catalysts 25%	of SMR Catalyst cost is the CHG Catalyst, basis: 1/2 the life but 1/7 of the volume				
CHG Chemicals includes \$150 per ton and 1864 tons of sorbent replacement required per year.					

The plant performance summary, Table 7, contains the critical heat and material balance of the plants, the SMR data is obtained from the IEAGHG report while the CHG data is derived from Aspen Plus models. From this table some of the key advantages of the compact hydrogen generator can be seen. The total feedstock and fuel for the compact hydrogen generator is lower than SMR for both cases, additionally this figure is lower for the compact hydrogen generator with capture than for the SMR case without capture. With less natural gas fed to the system this results in the total emissions of the CHG for the 90% capture case being 14% lower than they are for SMR with capture. Accordingly, the specific CO₂ emissions of the compact hydrogen generator are lower than the SMR case. The steam methane reforming plants gain an advantage of being able to export power to the grid, as seen below this results in a revenue stream, this revenue stream is not significant enough to have a large effect on the cost of electricity, more on this below.

Table 7 Plant Performance Summary for the four cases evaluated.

	units	Base case SMR	SMR with 90% CO2 Capture	CHG without Capture	CHG with CO2 Capture
<u>Inlet Stream</u>					
NG to Feedstock	t/h	26.23	26.23	30.01	30.01
NG to fuel	t/h	4.33	7.35		
NG to Feedstock	kg/h	26,231	26,231	30,014	30,014
NG to fuel	kg/h	4,332	7,347	0	0
Total Feedstock and fuel	kg/hr	30,563	33,578	30,014	30,014
% Feed	%	0.86	0.78	1	1
% Fuel	%	0.14	0.22	0	0
LHV	MJ/kg	46.5	46.5	46.5	46.5
Total Energy Input	MW	395	434	388	388
	MMBTU/h	1,347	1,480	1,323	1,323
Make up water	kg/h	59,700	42,100	62,827	62,827
<u>Outlet Stream</u>					
Hydrogen to Battery Limits	t/h	8.994	8.994	8.994	8.994
	kg/hr	8.994	8.994	8.994	8.994
	Nm3/h	100,000	100,000	100,000	100,000
	SCF/h	3,730,997	3,730,997	3,730,997	3,730,997
LHV	MJ/kg	119.96	119.96	119.96	119.96
Total Energy in Product	MW	300	300	300	300
Captured CO2	kg/h		80048		71857
	tonne/h		80.05		71.86
CO2 emitted	kg/hr	80,910	8,880	79,501	7,644
	tonne/h	80.91	8.88	79.50	7.64
<u>Power Balance</u>					
Gross Power Output from COGEN Plant	MWe	11.5	11.7		
H2 Plant	MWe	-1.216	-1.314	-1.1	-11.03
COGEN Plant Auxiliaries, Utilities BOP	MWe	-0.366	-1.677		
CO2 Capture Plant	MWe		-2.001		
CO2 Compression and Drying	MWe		-6.282		-5.64
Export Power to the Grid	MWe	9.918	0.426	-1.1	-16.67
<u>Specific Consumption</u>					
NG to Feedstock	MJ/Nm3 H2	12.20	12.20	13.96	13.96
NG to Fuel	MJ/Nm3 H2	2.01	3.42	0.00	0.00
Total (Feedstock + Fuel)	MJ/Nm3 H2	14.21	15.61	13.96	13.96
Electricity component, (negative is credit)	MJth/h	-55,789	-2,396	6,188	93,753
Total (Feedstock + Fuel + Power Fuel)	MJ/Nm3 H2	11.64	12.17	14.02	14.89
Utility (Feed and fuel / hydrogen output)	MMBTU / 1000scf	0.361	0.397	0.355	0.355
Utility (Feed and fuel / hydrogen output)	kWh/kg	43.89	48.22	43.10	43.10
<u>Plant Performance</u>					
Specific CO2 Emissions	kg/NM3 H2	0.81	0.09	0.80	0.08
Specific CO2 Captured	kg/NM3 H2		0.80		0.72
Overall CO2 Capture Rate (Case Specific)	%		90%		90%
Overall CO2 Avoided (compared to base case)	%		89%	2%	91%
Specific CO2 Emissions	kgCO2/kg H2	9.00	0.99	8.84	0.85

Table 8 through

Table 11 show the detailed results when determining total plant cost from direct materials cost. GTI assumed the SMR and CHG utilities costs to be equivalent. GTI did not give any advantage to the CHG for low cost modular construction and applied the same multiplication factors to direct material costs to achieve total installed costs as those applied by IEAGHG for the SMR cases. GTI simply used the exact same utility costs for the utilities and balance of plant direct material costs for the CHG that IEAGHG used for the SMR. When capture was added to the SMR the utility and balance of plant increased, GTI applied this same cost increase to the CHG with capture. It may be noticed that the CHG CO₂ compression costs are slightly lower than the SMR CO₂ compression costs, this is due to the lower CO₂ volume flowrate in the captured CO₂ stream as discussed above. The CHG cases do not have a power island because they do not have a power generating steam turbine.

Table 8. Total Installed Cost and Total Plant Cost for the Base Case SMR without CO₂ Capture

	Hydrogen Plant (USD)	Power Island (USD)	Utilities and BOP (USD)	Total Cost (USD)
Direct Material Construction	\$50,810,658	\$10,691,261	\$23,543,508	\$85,045,427
Direct Field Cost	\$32,100,014	\$7,048,812	\$22,243,169	\$61,391,996
Other Costs	\$82,910,672	\$17,740,073	\$45,786,677	\$146,437,422
EPC Services	\$2,354,601	\$603,327	\$1,611,371	\$4,569,299
Total Installed Costs	\$15,926,344	\$2,604,426	\$8,412,857	\$26,943,626
Project Contingency	\$101,191,616	\$20,947,826	\$55,810,905	\$177,950,348
Total Plant Cost (TPC)	\$20,238,323	\$4,189,565	\$11,162,181	\$35,590,070
	\$121,429,940	\$25,137,392	\$66,973,086	\$213,540,417

Table 9 Total Installed Cost and Total Plant Cost for the Base Case SMR with CO₂ Capture

	Hydrogen Plant	Power Island	Utilities and BOP	CO ₂ Capture	CO ₂ Compression	Total Cost (USD)
Direct Material Construction	\$50,810,658	\$7,951,930	\$32,237,418	\$53,628,684	\$16,664,577	\$161,293,266
Direct Field Cost	\$32,100,014	\$5,043,967	\$28,216,485	\$29,742,915	\$8,244,225	\$103,347,606
Other Costs	\$82,910,672	\$12,995,897	\$60,453,903	\$83,371,599	\$24,908,802	\$264,640,872
EPC Services	\$2,354,601	\$354,752	\$1,976,116	\$2,038,572	\$659,538	\$7,383,578
Total Installed Costs	\$15,926,344	\$1,854,951	\$10,759,963	\$13,646,691	\$3,614,968	\$45,802,916
Project Contingency	\$101,191,616	\$15,205,599	\$73,189,981	\$99,056,862	\$29,183,307	\$317,827,365
Total Plant Cost (TPC)	\$20,238,323	\$3,041,619	\$14,638,496	\$19,812,372	\$5,837,161	\$63,567,971
	\$121,429,940	\$18,247,218	\$87,828,477	\$118,869,233	\$35,020,469	\$381,395,336

Table 10 Total Installed Cost and Total Plant Cost for the CHG without CO2 Capture

	Utilities and		
	H2 Plant	BOP	Total Cost
Direct Material	\$22,979,251	\$23,543,508	\$46,522,759
Construction	\$14,517,314	\$22,243,169	\$36,760,483
Direct Field Cost	\$37,496,565	\$45,786,677	\$83,283,242
Other Costs	\$1,064,874	\$1,611,371	\$2,676,245
EPC Services	\$7,202,730	\$8,412,857	\$15,615,587
Total Installed Costs	\$45,764,169	\$55,810,905	\$101,575,074
Project Contingency	\$9,152,834	\$11,162,181	\$20,315,015
Total Plant Cost (TPC)	\$54,917,003	\$66,973,086	\$121,890,089

Table 11 Total Installed Cost and Total Plant Cost for the CHG with CO2 Capture

	CO2		Utilities and	
	H2 Plant	Compression	BOP	Total Cost
Direct Material	\$28,030,010	\$15,535,417	\$32,237,418	\$75,802,844
Construction	\$17,708,169	\$7,685,612	\$28,216,485	\$53,610,266
Direct Field Cost	\$45,738,179	\$23,221,029	\$60,453,903	\$129,413,110
Other Costs	\$1,298,930	\$614,849	\$1,976,116	\$3,889,895
EPC Services	\$8,785,865	\$3,370,024	\$10,759,963	\$22,915,852
Total Installed Costs	\$55,822,974	\$27,205,902	\$73,189,981	\$156,218,857
Project Contingency	\$11,164,595	\$5,441,180	\$14,637,996	\$31,243,771
Total Plant Cost (TPC)	\$66,987,568	\$32,647,082	\$87,827,977	\$187,462,628

The detailed variable operating costs for the four cases evaluated are presented in Table 12. From this table it is clear that the natural gas consumption is the dominant variable costs, however the electricity import costs for the CHG with capture are significant, mostly due to the hydrogen and CO₂ compressors.

Table 12 Yearly variable costs for the four cases evaluated

Yearly Variable Costs	Base SMR		SMR with 90% Capture		CHG without Capture		CHG with 90% Capture	
	Consumption	Operating costs	Consumption	Operating costs	Consumption	Operating costs	Consumption	Operating costs
Includes 95% availability	Hourly kg/h	USD/year	Hourly kg/h	USD/year	Hourly kg/h	USD/year	Hourly kg/h	USD/year
Consumables								
Feedstock + Fuel								
Natural Gas	30,563	\$33,631,100	33,578	\$36,948,764	30,014	\$33,026,824	30,014	\$33,026,824
Auxiliary Feedstock								
Raw make-up water	59,700	\$124,159	42,100	\$87,556	62,827	\$130,664	62,827	\$130,664
Chemicals								
Catalysts		\$124,913		\$124,913		\$279,619		\$279,619
Total Yearly Operating Costs		\$399,720		\$399,720		\$99,930		\$99,930
		\$34,279,892		\$37,560,953		\$33,537,037		\$33,537,037
Revenues from electric by-product	MW	USD/year	MW	USD/year	MW	USD/year	MW	USD/year
Electricity sales /cost	9.92	\$3,301,504	0.43	\$141,807	-1.1	-\$613,331	-16.67	-\$9,293,214

The breakdown of labor costs assume by IEAGHG for the SMR cases is presented in Table 13. The reason for the non-round number for the annual salary is a result of converting from Euros in the IEAGHG report to US dollars for this analysis.

Table 13. Summary of operating labor staff requirements and total annual labor costs

Operating Labor Costs	Steam Reformer				Steam Reformer + CO2 Capture				
	Reformer + Utilities		Total	Notes	Reformer + CO2 Utilities		Capture	Total	Notes
Operations									
Area Responsible	1	1	daily position		1			1	daily position
Assistant Area Responsible	1	1	daily position		1			1	daily position
Shift Superintendent	5	5	1 position/ shift		5			5	1 position/ shift
Electrical Assistant	5	5	1 position/ shift		5			5	1 position/ shift
Shift Supervisor	5	5	1 position/ shift		5			5	1 position/ shift
Control Room Operator	5	5	1 position/ shift		5	5	10	2 positions/ shift	
Field Operator	5	5	1 position/ shift		5			5	1 position/ shift
Subtotal		27					32		
Maintenance									
Mechanical Group	3	3	daily position		3			3	daily position
Instrument Group	3	3	daily position		3			3	daily position
Electrical Group	3	3	daily position		3			3	daily position
Subtotal		9					9		
Laboratory									
Superintendent + Analysts	2	2	daily position		2			2	daily position
Subtotal		2					2		
Total		38					43		
Cost for personnel									
Yearly individual average cost					\$74,948			\$74,948	
Total Cost					\$2,848,005			\$3,222,743	

The maintenance costs were assumed to be 1.5% of the total plant costs. With the compact hydrogen generator having a significantly lower direct materials costs, the resulting maintenance costs for the technology as calculated in Table 14 are significantly lower than those for SMR. This lower materials cost also results in a lower insurance and taxes for the CHG as presented in Table 15 which contains a summary of the total annual operating and maintenance costs. As a result the total fixed annual operating and maintenance costs for the compact hydrogen generator are significantly lower than for SMR. The variable costs of the CHG without capture are roughly equivalent to SMR's variable costs, however the CHG does have an advantage when there is capture, mainly due to lower feedstock costs. The fixed and variable cost advantages of the CHG are negated by the electricity import costs, and the total annual operating and maintenance costs are roughly equivalent for the cases without capture and the same can be said for the cases with capture.

Table 14. Summary of maintenance costs for the four different cases evaluated.

Case	Maintenance			
	Maintenance Costs	% of TPC	TPC (USD)	USD/year
SMR	1.50%		\$213,540,417	\$3,203,106
SMR with Capture	1.50%		\$381,395,336	\$5,720,930
CHG	1.50%		\$121,890,089	\$1,828,351
CHG with Capture	1.50%		\$187,462,628	\$2,811,939

Table 15. Total Operation and Maintenance costs for the four cases evaluated

Annual O&M Costs	SMR with		CHG with	
	SMR \$/year	Capture \$/year	CHG \$/year	Capture \$/year
Fixed Costs				
Direct Labor	\$2,848,005	\$3,222,743	\$2,848,005	\$2,848,005
Adm./gen Overheads	\$1,238,775	\$1,653,329	\$1,238,775	\$1,238,775
Insurance and local taxes	\$2,135,404	\$3,813,953	\$1,218,901	\$1,874,626
Maintenance	\$3,203,106	\$5,720,930	\$1,828,351	\$2,811,939
Subtotal	\$9,425,290	\$14,410,955	\$7,134,032	\$8,773,345
Variable Costs (Availability 95%)				
Feedstock & Fuel	\$33,631,100	\$36,948,764	\$33,026,824	\$33,026,824
Raw Water (Makeup)	\$124,159	\$87,556	\$130,664	\$130,664
Chemicals & Catalysts	\$524,633	\$524,633	\$379,549	\$379,549
Subtotal	\$34,279,892	\$37,560,953	\$33,537,037	\$33,537,037
Total Fixed & Variable Costs	\$43,705,182	\$51,971,908	\$40,671,069	\$42,310,383
Other Revenues				
Electricity Export/Import	-\$3,301,504	-\$141,807	\$613,331	\$9,293,214
Other Costs				
CO2 Transportation and Storage		\$8,320,518		\$6,704,899
Annual O&M Costs	\$40,403,678	\$60,150,619	\$41,284,401	\$58,308,496

Table 16 contains a summary of the costs contributing toward the total capital requirements of the four evaluated plants. Here the low material cost advantage of the CHG continues to benefit the CHG resulting in lower costs than SMR for contingencies, spare, parts, startup CAPEX, fuel cost, operating and maintenance costs, owners costs, and interest during construction. The higher catalyst cost requirements of the SMR results in larger working capital costs than for the CHG cases.

Table 16. Total Capital Requirements for the four cases evaluated.

	Steam Methane Reformer	SMR with 90% Carbon Capture	Compact Hydrogen Generator	CHG with 90% Carbon Capture
Total Project Cost	\$177,950,348	\$317,827,365	\$101,575,074	\$156,218,857
Contingencies	\$35,590,070	\$63,567,971	\$20,315,015	\$31,243,771
Sub total	\$213,540,417	\$381,395,336	\$121,890,089	\$187,462,628
Spare Parts	\$1,067,702	\$1,906,977	\$609,450	\$937,313
Startup & Commissioning Cost				
Startup CAPEX	\$4,270,808	\$7,627,907	\$2,437,802	\$3,749,253
Additional Fuel Cost	\$700,648	\$769,766	\$688,059	\$688,059
O&M	\$1,512,778	\$2,235,918	\$1,169,089	\$1,414,986
Catalyst & Chemicals	\$203,875	\$431,215	\$147,495	\$147,495
Owners Cost	\$14,947,829	\$26,697,674	\$8,532,306	\$13,122,384
Interest during Construction	\$41,148,586	\$73,493,716	\$23,487,848	\$36,123,476
Working Capital	\$45,389	\$2,543,639	\$280,935	\$280,935
Subtotal	\$63,897,615	\$115,706,812	\$37,352,984	\$56,463,900
Total Capital Requirements	\$277,438,032	\$497,102,148	\$159,243,073	\$243,926,528

GTI calculated the Levelized Cost of Hydrogen using the methodology from the IEAGHG report which was defined as the “price of hydrogen which enables the present value from all sales of hydrogen (including additional revenue from the sale of electricity) over the economic lifetime of the plant to equal the present value of all costs of building, maintaining, and operating the plant over its lifetime.” A discounted cash flow was tabulated keeping prices for fuel and other costs constant over the 25 operating years of the plant. GTI replicated these calculations for the SMR cases, (Table 17, and Table 18) and created new tables for the CHG (Table 19 and Table 20). The price of hydrogen was then adjusted to set the cumulative discounted cash flows to zero, this price is the levelized cost of hydrogen with the units of \$ per kg H₂.

Table 17. Summary of cash flows for steam methane reforming without CO2 Capture

End of Investment Year	Fixed Cost						Variable Cost						Electricity Export to the grid	CO2 Tax	CO2 T&S	Total Costs before hydrogen revenues	Revenue from Hydrogen Sale	Total non discounted cash flow		Cumulative Discounted Cash Flow
	Direct Cost	Admin & General Overhead	Insurance and Local Taxes	Maintenance	Total Fixed O&M	Feedstock Cost	Fuel Cost	Make Up Water	Chemicals	Catalyst	Total Variable O&M Cost									
0	-58,172,009	0	0	0	0	0	0	0	0	0	0		0	0	0	-58,172,009	0	-58,172,009	-58,172,009	
1	-101,657,302	0	0	0	0	0	0	0	0	0	0		0	0	0	-101,657,302	0	-101,657,302	-91,583,155	
2	-96,452,986	0	0	0	0	0	0	0	0	0	0		0	0	0	-96,452,986	0	-96,452,986	-78,283,407	
3	-21,155,736	-2,848,005	-1,238,775	-2,135,404	-3,203,106	-9,425,290	-21,268,378	-3,512,432	-91,486	-124,913	-399,720	-25,396,929	2,432,687	0	0	-53,545,268	56,993,672	3,448,404	2,521,443	-225,517,127
4	0	-2,848,005	-1,238,775	-2,135,404	-3,203,106	-9,425,290	-28,864,228	-4,766,873	-124,159	-124,913	-399,720	-34,279,892	3,301,504	0	0	-40,403,678	77,348,555	36,944,876	24,336,734	-201,180,393
5	0	-2,848,005	-1,238,775	-2,135,404	-3,203,106	-9,425,290	-28,864,228	-4,766,873	-124,159	-124,913	-399,720	-34,279,892	3,301,504	0	0	-40,403,678	77,348,555	36,944,876	21,924,986	-179,255,407
6	0	-2,848,005	-1,238,775	-2,135,404	-3,203,106	-9,425,290	-28,864,228	-4,766,873	-124,159	-124,913	-399,720	-34,279,892	3,301,504	0	0	-40,403,678	77,348,555	36,944,876	19,752,240	-159,503,168
7	0	-2,848,005	-1,238,775	-2,135,404	-3,203,106	-9,425,290	-28,864,228	-4,766,873	-124,159	-124,913	-399,720	-34,279,892	3,301,504	0	0	-40,403,678	77,348,555	36,944,876	17,794,810	-141,708,357
8	0	-2,848,005	-1,238,775	-2,135,404	-3,203,106	-9,425,290	-28,864,228	-4,766,873	-124,159	-124,913	-399,720	-34,279,892	3,301,504	0	0	-40,403,678	77,348,555	36,944,876	16,031,361	-125,676,996
9	0	-2,848,005	-1,238,775	-2,135,404	-3,203,106	-9,425,290	-28,864,228	-4,766,873	-124,159	-124,913	-399,720	-34,279,892	3,301,504	0	0	-40,403,678	77,348,555	36,944,876	14,442,667	-111,234,329
10	0	-2,848,005	-1,238,775	-2,135,404	-3,203,106	-9,425,290	-28,864,228	-4,766,873	-124,159	-124,913	-399,720	-34,279,892	3,301,504	0	0	-40,403,678	77,348,555	36,944,876	13,011,412	-98,222,917
11	0	-2,848,005	-1,238,775	-2,135,404	-3,203,106	-9,425,290	-28,864,228	-4,766,873	-124,159	-124,913	-399,720	-34,279,892	3,301,504	0	0	-40,403,678	77,348,555	36,944,876	11,721,993	-86,500,924
12	0	-2,848,005	-1,238,775	-2,135,404	-3,203,106	-9,425,290	-28,864,228	-4,766,873	-124,159	-124,913	-399,720	-34,279,892	3,301,504	0	0	-40,403,678	77,348,555	36,944,876	10,560,354	-75,940,570
13	0	-2,848,005	-1,238,775	-2,135,404	-3,203,106	-9,425,290	-28,864,228	-4,766,873	-124,159	-124,913	-399,720	-34,279,892	3,301,504	0	0	-40,403,678	77,348,555	36,944,876	9,513,832	-66,426,738
14	0	-2,848,005	-1,238,775	-2,135,404	-3,203,106	-9,425,290	-28,864,228	-4,766,873	-124,159	-124,913	-399,720	-34,279,892	3,301,504	0	0	-40,403,678	77,348,555	36,944,876	8,571,020	-57,855,718
15	0	-2,848,005	-1,238,775	-2,135,404	-3,203,106	-9,425,290	-28,864,228	-4,766,873	-124,159	-124,913	-399,720	-34,279,892	3,301,504	0	0	-40,403,678	77,348,555	36,944,876	7,721,640	-50,134,078
16	0	-2,848,005	-1,238,775	-2,135,404	-3,203,106	-9,425,290	-28,864,228	-4,766,873	-124,159	-124,913	-399,720	-34,279,892	3,301,504	0	0	-40,403,678	77,348,555	36,944,876	6,956,432	-43,177,646
17	0	-2,848,005	-1,238,775	-2,135,404	-3,203,106	-9,425,290	-28,864,228	-4,766,873	-124,159	-124,913	-399,720	-34,279,892	3,301,504	0	0	-40,403,678	77,348,555	36,944,876	6,267,056	-36,910,590
18	0	-2,848,005	-1,238,775	-2,135,404	-3,203,106	-9,425,290	-28,864,228	-4,766,873	-124,159	-124,913	-399,720	-34,279,892	3,301,504	0	0	-40,403,678	77,348,555	36,944,876	5,645,996	-31,264,594
19	0	-2,848,005	-1,238,775	-2,135,404	-3,203,106	-9,425,290	-28,864,228	-4,766,873	-124,159	-124,913	-399,720	-34,279,892	3,301,504	0	0	-40,403,678	77,348,555	36,944,876	5,086,483	-26,178,110
20	0	-2,848,005	-1,238,775	-2,135,404	-3,203,106	-9,425,290	-28,864,228	-4,766,873	-124,159	-124,913	-399,720	-34,279,892	3,301,504	0	0	-40,403,678	77,348,555	36,944,876	4,582,417	-21,595,693
21	0	-2,848,005	-1,238,775	-2,135,404	-3,203,106	-9,425,290	-28,864,228	-4,766,873	-124,159	-124,913	-399,720	-34,279,892	3,301,504	0	0	-40,403,678	77,348,555	36,944,876	4,128,304	-17,467,389
22	0	-2,848,005	-1,238,775	-2,135,404	-3,203,106	-9,425,290	-28,864,228	-4,766,873	-124,159	-124,913	-399,720	-34,279,892	3,301,504	0	0	-40,403,678	77,348,555	36,944,876	3,719,193	-13,748,196
23	0	-2,848,005	-1,238,775	-2,135,404	-3,203,106	-9,425,290	-28,864,228	-4,766,873	-124,159	-124,913	-399,720	-34,279,892	3,301,504	0	0	-40,403,678	77,348,555	36,944,876	3,350,624	-10,397,572
24	0	-2,848,005	-1,238,775	-2,135,404	-3,203,106	-9,425,290	-28,864,228	-4,766,873	-124,159	-124,913	-399,720	-34,279,892	3,301,504	0	0	-40,403,678	77,348,555	36,944,876	3,018,580	-7,378,992
25	0	-2,848,005	-1,238,775	-2,135,404	-3,203,106	-9,425,290	-28,864,228	-4,766,873	-124,159	-124,913	-399,720	-34,279,892	3,301,504	0	0	-40,403,678	77,348,555	36,944,876	2,719,442	-4,659,550
26	0	-2,848,005	-1,238,775	-2,135,404	-3,203,106	-9,425,290	-28,864,228	-4,766,873	-124,159	-124,913	-399,720	-34,279,892	3,301,504	0	0	-40,403,678	77,348,555	36,944,876	2,449,947	-2,209,603
27	0	-2,848,005	-1,238,775	-2,135,404	-3,203,106	-9,425,290	-28,864,228	-4,766,873	-124,159	-124,913	-399,720	-34,279,892	3,301,504	0	0	-40,403,678	77,348,555	36,944,876	2,207,160	-2,443
28	45,389	0	0	0	0	0	0	0	0	0	0	0	0	0	0	45,389	0	45,389	2,443	0

Table 18. Summary of cash flows for steam methane reforming with 90% CO2 capture

End of Investment Year	Fixed Cost					Variable Cost					Electricity Export to the grid	CO2 Tax	CO2 T&S	Total Costs before hydrogen revenues	Revenue from Hydrogen Sale	Total non discounted Cash flow	Discounted Cash Flow	Cumulative Discounted Cash Flows	
	Direct Labor	Admin & General Overhead	Insurance and Local Taxes	Main-tenance	Total Fixed O&M	Feedstock Cost	Fuel Cost	Make Up Water	Chemicals	Catalyst									
0	-103,805,320	0	0	0	0	0	0	0	0	0	0	0	0	0	-103,805,320	0	-103,805,320	-103,805,320	
1	-181,356,032	0	0	0	0	0	0	0	0	0	0	0	0	0	-181,356,032	0	-181,356,032	-163,383,812	
2	-172,174,508	0	0	0	0	0	0	0	0	0	0	0	0	0	-172,174,508	0	-172,174,508	-139,740,693	
3	-39,766,288	-3,222,743	-1,653,329	-3,813,953	-5,720,930	-14,410,955	-21,268,378	-5,957,027	-64,515	-124,913	-399,720	-27,814,553	104,489	0	-6,130,908	-88,018,215	92,734,295	4,716,080	3,448,357
4	0	-2,848,005	-1,653,329	-3,813,953	-5,720,930	-14,036,218	-28,864,228	-8,084,537	-87,556	-124,913	-399,720	-37,560,953	141,807	0	-8,320,518	-59,775,882	125,853,686	66,077,804	43,527,496
5	0	-2,848,005	-1,653,329	-3,813,953	-5,720,930	-14,036,218	-28,864,228	-8,084,537	-87,556	-124,913	-399,720	-37,560,953	141,807	0	-8,320,518	-59,775,882	125,853,686	66,077,804	39,213,960
6	0	-2,848,005	-1,653,329	-3,813,953	-5,720,930	-14,036,218	-28,864,228	-8,084,537	-87,556	-124,913	-399,720	-37,560,953	141,807	0	-8,320,518	-59,775,882	125,853,686	66,077,804	35,327,892
7	0	-2,848,005	-1,653,329	-3,813,953	-5,720,930	-14,036,218	-28,864,228	-8,084,537	-87,556	-124,913	-399,720	-37,560,953	141,807	0	-8,320,518	-59,775,882	125,853,686	66,077,804	31,826,930
8	0	-2,848,005	-1,653,329	-3,813,953	-5,720,930	-14,036,218	-28,864,228	-8,084,537	-87,556	-124,913	-399,720	-37,560,953	141,807	0	-8,320,518	-59,775,882	125,853,686	66,077,804	28,672,910
9	0	-2,848,005	-1,653,329	-3,813,953	-5,720,930	-14,036,218	-28,864,228	-8,084,537	-87,556	-124,913	-399,720	-37,560,953	141,807	0	-8,320,518	-59,775,882	125,853,686	66,077,804	25,831,450
10	0	-2,848,005	-1,653,329	-3,813,953	-5,720,930	-14,036,218	-28,864,228	-8,084,537	-87,556	-124,913	-399,720	-37,560,953	141,807	0	-8,320,518	-59,775,882	125,853,686	66,077,804	23,271,577
11	0	-2,848,005	-1,653,329	-3,813,953	-5,720,930	-14,036,218	-28,864,228	-8,084,537	-87,556	-124,913	-399,720	-37,560,953	141,807	0	-8,320,518	-59,775,882	125,853,686	66,077,804	20,965,385
12	0	-2,848,005	-1,653,329	-3,813,953	-5,720,930	-14,036,218	-28,864,228	-8,084,537	-87,556	-124,913	-399,720	-37,560,953	141,807	0	-8,320,518	-59,775,882	125,853,686	66,077,804	18,887,734
13	0	-2,848,005	-1,653,329	-3,813,953	-5,720,930	-14,036,218	-28,864,228	-8,084,537	-87,556	-124,913	-399,720	-37,560,953	141,807	0	-8,320,518	-59,775,882	125,853,686	66,077,804	17,015,976
14	0	-2,848,005	-1,653,329	-3,813,953	-5,720,930	-14,036,218	-28,864,228	-8,084,537	-87,556	-124,913	-399,720	-37,560,953	141,807	0	-8,320,518	-59,775,882	125,853,686	66,077,804	15,329,709
15	0	-2,848,005	-1,653,329	-3,813,953	-5,720,930	-14,036,218	-28,864,228	-8,084,537	-87,556	-124,913	-399,720	-37,560,953	141,807	0	-8,320,518	-59,775,882	125,853,686	66,077,804	13,810,548
16	0	-2,848,005	-1,653,329	-3,813,953	-5,720,930	-14,036,218	-28,864,228	-8,084,537	-87,556	-124,913	-399,720	-37,560,953	141,807	0	-8,320,518	-59,775,882	125,853,686	66,077,804	12,441,935
17	0	-2,848,005	-1,653,329	-3,813,953	-5,720,930	-14,036,218	-28,864,228	-8,084,537	-87,556	-124,913	-399,720	-37,560,953	141,807	0	-8,320,518	-59,775,882	125,853,686	66,077,804	11,208,951
18	0	-2,848,005	-1,653,329	-3,813,953	-5,720,930	-14,036,218	-28,864,228	-8,084,537	-87,556	-124,913	-399,720	-37,560,953	141,807	0	-8,320,518	-59,775,882	125,853,686	66,077,804	10,098,154
19	0	-2,848,005	-1,653,329	-3,813,953	-5,720,930	-14,036,218	-28,864,228	-8,084,537	-87,556	-124,913	-399,720	-37,560,953	141,807	0	-8,320,518	-59,775,882	125,853,686	66,077,804	9,097,436
20	0	-2,848,005	-1,653,329	-3,813,953	-5,720,930	-14,036,218	-28,864,228	-8,084,537	-87,556	-124,913	-399,720	-37,560,953	141,807	0	-8,320,518	-59,775,882	125,853,686	66,077,804	8,195,888
21	0	-2,848,005	-1,653,329	-3,813,953	-5,720,930	-14,036,218	-28,864,228	-8,084,537	-87,556	-124,913	-399,720	-37,560,953	141,807	0	-8,320,518	-59,775,882	125,853,686	66,077,804	7,383,683
22	0	-2,848,005	-1,653,329	-3,813,953	-5,720,930	-14,036,218	-28,864,228	-8,084,537	-87,556	-124,913	-399,720	-37,560,953	141,807	0	-8,320,518	-59,775,882	125,853,686	66,077,804	6,651,967
23	0	-2,848,005	-1,653,329	-3,813,953	-5,720,930	-14,036,218	-28,864,228	-8,084,537	-87,556	-124,913	-399,720	-37,560,953	141,807	0	-8,320,518	-59,775,882	125,853,686	66,077,804	5,992,763
24	0	-2,848,005	-1,653,329	-3,813,953	-5,720,930	-14,036,218	-28,864,228	-8,084,537	-87,556	-124,913	-399,720	-37,560,953	141,807	0	-8,320,518	-59,775,882	125,853,686	66,077,804	5,398,885
25	0	-2,848,005	-1,653,329	-3,813,953	-5,720,930	-14,036,218	-28,864,228	-8,084,537	-87,556	-124,913	-399,720	-37,560,953	141,807	0	-8,320,518	-59,775,882	125,853,686	66,077,804	4,863,861
26	0	-2,848,005	-1,653,329	-3,813,953	-5,720,930	-14,036,218	-28,864,228	-8,084,537	-87,556	-124,913	-399,720	-37,560,953	141,807	0	-8,320,518	-59,775,882	125,853,686	66,077,804	4,381,857
27	0	-2,848,005	-1,653,329	-3,813,953	-5,720,930	-14,036,218	-28,864,228	-8,084,537	-87,556	-124,913	-399,720	-37,560,953	141,807	0	-8,320,518	-59,775,882	125,853,686	66,077,804	3,947,618
28	2,543,639	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2,543,639	0	2,543,639	136,903

Table 19. Summary of cash flows for the compact hydrogen generator without CO2 capture

End of Investment Year	Cost	Fixed Cost					Variable Cost					Electricity Export to the grid	CO2 Tax	CO2 T&S	Total Costs before hydrogen revenues	Revenue from Hydrogen Sale	Total non discounted cash flow		Cumulative Discounted Cash Flows	
		Direct Labor	Admin & General Overhead	Insurance and Local Taxes	Maintenance	Total Fixed O&M	Feedstock Cost	Fuel Cost	Make Up Water	Chemicals	Catalyst						Total	Revenue from Hydrogen Sale	Total non discounted Cash Flow	Discounted Cash Flow
0	-33,266,032	0	0	0	0	0	0	0	0	0	0	0	0	0	-33,266,032	0	-33,266,032	-33,266,032	-33,266,032	
1	-58,164,083	0	0	0	0	0	0	0	0	0	0	0	0	0	-58,164,083	0	-58,164,083	-52,400,074	-85,666,106	
2	-55,193,992	0	0	0	0	0	0	0	0	0	0	0	0	0	-55,193,992	0	-44,796,682	-130,462,788		
3	-12,338,031	-2,848,005	-1,238,775	-1,218,901	-1,828,351	-7,134,032	-24,335,555	0	-96,279	-279,619	-99,930	-24,811,383	-451,928	0	0	-44,735,374	46,050,709	1,315,335	961,762	-129,501,027
4	0	-2,848,005	-1,238,775	-1,218,901	-1,828,351	-7,134,032	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-613,331	0	0	-41,284,401	62,497,391	21,212,990	13,973,654	-115,527,373
5	0	-2,848,005	-1,238,775	-1,218,901	-1,828,351	-7,134,032	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-613,331	0	0	-41,284,401	62,497,391	21,212,990	12,588,877	-102,938,496
6	0	-2,848,005	-1,238,775	-1,218,901	-1,828,351	-7,134,032	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-613,331	0	0	-41,284,401	62,497,391	21,212,990	11,341,331	-91,597,165
7	0	-2,848,005	-1,238,775	-1,218,901	-1,828,351	-7,134,032	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-613,331	0	0	-41,284,401	62,497,391	21,212,990	10,217,415	-81,379,750
8	0	-2,848,005	-1,238,775	-1,218,901	-1,828,351	-7,134,032	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-613,331	0	0	-41,284,401	62,497,391	21,212,990	9,204,879	-72,174,871
9	0	-2,848,005	-1,238,775	-1,218,901	-1,828,351	-7,134,032	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-613,331	0	0	-41,284,401	62,497,391	21,212,990	8,292,683	-63,882,188
10	0	-2,848,005	-1,238,775	-1,218,901	-1,828,351	-7,134,032	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-613,331	0	0	-41,284,401	62,497,391	21,212,990	7,470,886	-56,411,302
11	0	-2,848,005	-1,238,775	-1,218,901	-1,828,351	-7,134,032	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-613,331	0	0	-41,284,401	62,497,391	21,212,990	6,730,528	-49,680,774
12	0	-2,848,005	-1,238,775	-1,218,901	-1,828,351	-7,134,032	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-613,331	0	0	-41,284,401	62,497,391	21,212,990	6,063,539	-43,617,236
13	0	-2,848,005	-1,238,775	-1,218,901	-1,828,351	-7,134,032	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-613,331	0	0	-41,284,401	62,497,391	21,212,990	5,462,647	-38,154,588
14	0	-2,848,005	-1,238,775	-1,218,901	-1,828,351	-7,134,032	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-613,331	0	0	-41,284,401	62,497,391	21,212,990	4,921,304	-33,233,284
15	0	-2,848,005	-1,238,775	-1,218,901	-1,828,351	-7,134,032	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-613,331	0	0	-41,284,401	62,497,391	21,212,990	4,433,607	-28,799,677
16	0	-2,848,005	-1,238,775	-1,218,901	-1,828,351	-7,134,032	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-613,331	0	0	-41,284,401	62,497,391	21,212,990	3,994,241	-24,805,436
17	0	-2,848,005	-1,238,775	-1,218,901	-1,828,351	-7,134,032	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-613,331	0	0	-41,284,401	62,497,391	21,212,990	3,598,415	-21,207,021
18	0	-2,848,005	-1,238,775	-1,218,901	-1,828,351	-7,134,032	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-613,331	0	0	-41,284,401	62,497,391	21,212,990	3,241,815	-17,965,206
19	0	-2,848,005	-1,238,775	-1,218,901	-1,828,351	-7,134,032	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-613,331	0	0	-41,284,401	62,497,391	21,212,990	2,920,554	-15,044,652
20	0	-2,848,005	-1,238,775	-1,218,901	-1,828,351	-7,134,032	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-613,331	0	0	-41,284,401	62,497,391	21,212,990	2,631,130	-12,413,522
21	0	-2,848,005	-1,238,775	-1,218,901	-1,828,351	-7,134,032	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-613,331	0	0	-41,284,401	62,497,391	21,212,990	2,370,387	-10,043,134
22	0	-2,848,005	-1,238,775	-1,218,901	-1,828,351	-7,134,032	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-613,331	0	0	-41,284,401	62,497,391	21,212,990	2,135,484	-7,907,650
23	0	-2,848,005	-1,238,775	-1,218,901	-1,828,351	-7,134,032	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-613,331	0	0	-41,284,401	62,497,391	21,212,990	1,923,860	-5,983,790
24	0	-2,848,005	-1,238,775	-1,218,901	-1,828,351	-7,134,032	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-613,331	0	0	-41,284,401	62,497,391	21,212,990	1,733,207	-4,250,584
25	0	-2,848,005	-1,238,775	-1,218,901	-1,828,351	-7,134,032	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-613,331	0	0	-41,284,401	62,497,391	21,212,990	1,561,448	-2,689,136
26	0	-2,848,005	-1,238,775	-1,218,901	-1,828,351	-7,134,032	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-613,331	0	0	-41,284,401	62,497,391	21,212,990	1,406,710	-1,282,426
27	0	-2,848,005	-1,238,775	-1,218,901	-1,828,351	-7,134,032	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-613,331	0	0	-41,284,401	62,497,391	21,212,990	1,267,306	-15,120
28	280,935	0	0	0	0	0	0	0	0	0	0	0	0	0	0	280,935	0	280,935	15,120	0

Table 20. Summary of cash flows for the compact hydrogen generator with 90% CO2 capture

End of Year	Investment Cost	Fixed Cost					Variable Cost					Electricity Export to the grid	CO2 Tax	CO2 T&S	Total Costs before hydrogen revenues	Revenue from Hydrogen Sale	Total non discounted cash flow	Discounted Cash Flow	Cumulative Discounted Cash Flows	
		Direct Labor	Admin & General Overhead	Insurance and Local Taxes	Maintenance	Total Fixed O&M	Feedstock Cost	Fuel Cost	Make Up Water	Chemicals	Catalyst									
0	-51,085,369	0	0	0	0	0	0	0	0	0	0	0	0	0	-51,085,369	0	-51,085,369	-51,085,369		
1	-89,281,929	0	0	0	0	0	0	0	0	0	0	0	0	0	-89,281,929	0	-89,281,929	-80,434,170	-131,519,540	
2	-84,672,992	0	0	0	0	0	0	0	0	0	0	0	0	0	-84,672,992	0	-84,672,992	-68,722,499	-200,242,039	
3	-18,886,238	-2,848,005	-1,238,775	-1,874,626	-2,811,939	-8,773,345	-24,335,555	0	-96,279	-279,619	-99,930	-24,811,383	-6,847,631	0	-4,940,452	-64,259,050	66,900,950	2,641,900	1,931,735	-198,310,305
4	0	-2,848,005	-1,238,775	-1,874,626	-2,811,939	-8,773,345	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-9,293,214	0	-6,704,899	-58,308,496	90,794,146	32,485,650	21,399,304	-176,911,001
5	0	-2,848,005	-1,238,775	-1,874,626	-2,811,939	-8,773,345	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-9,293,214	0	-6,704,899	-58,308,496	90,794,146	32,485,650	19,278,652	-157,632,349
6	0	-2,848,005	-1,238,775	-1,874,626	-2,811,939	-8,773,345	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-9,293,214	0	-6,704,899	-58,308,496	90,794,146	32,485,650	17,368,155	-140,264,194
7	0	-2,848,005	-1,238,775	-1,874,626	-2,811,939	-8,773,345	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-9,293,214	0	-6,704,899	-58,308,496	90,794,146	32,485,650	15,646,986	-124,617,208
8	0	-2,848,005	-1,238,775	-1,874,626	-2,811,939	-8,773,345	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-9,293,214	0	-6,704,899	-58,308,496	90,794,146	32,485,650	14,096,384	-110,520,823
9	0	-2,848,005	-1,238,775	-1,874,626	-2,811,939	-8,773,345	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-9,293,214	0	-6,704,899	-58,308,496	90,794,146	32,485,650	12,699,445	-97,821,378
10	0	-2,848,005	-1,238,775	-1,874,626	-2,811,939	-8,773,345	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-9,293,214	0	-6,704,899	-58,308,496	90,794,146	32,485,650	11,440,942	-86,380,437
11	0	-2,848,005	-1,238,775	-1,874,626	-2,811,939	-8,773,345	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-9,293,214	0	-6,704,899	-58,308,496	90,794,146	32,485,650	10,307,155	-76,073,282
12	0	-2,848,005	-1,238,775	-1,874,626	-2,811,939	-8,773,345	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-9,293,214	0	-6,704,899	-58,308,496	90,794,146	32,485,650	9,285,725	-66,787,557
13	0	-2,848,005	-1,238,775	-1,874,626	-2,811,939	-8,773,345	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-9,293,214	0	-6,704,899	-58,308,496	90,794,146	32,485,650	8,365,518	-58,422,039
14	0	-2,848,005	-1,238,775	-1,874,626	-2,811,939	-8,773,345	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-9,293,214	0	-6,704,899	-58,308,496	90,794,146	32,485,650	7,536,503	-50,885,536
15	0	-2,848,005	-1,238,775	-1,874,626	-2,811,939	-8,773,345	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-9,293,214	0	-6,704,899	-58,308,496	90,794,146	32,485,650	6,789,642	-44,095,894
16	0	-2,848,005	-1,238,775	-1,874,626	-2,811,939	-8,773,345	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-9,293,214	0	-6,704,899	-58,308,496	90,794,146	32,485,650	6,116,795	-37,979,100
17	0	-2,848,005	-1,238,775	-1,874,626	-2,811,939	-8,773,345	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-9,293,214	0	-6,704,899	-58,308,496	90,794,146	32,485,650	5,510,626	-32,468,474
18	0	-2,848,005	-1,238,775	-1,874,626	-2,811,939	-8,773,345	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-9,293,214	0	-6,704,899	-58,308,496	90,794,146	32,485,650	4,964,528	-27,503,946
19	0	-2,848,005	-1,238,775	-1,874,626	-2,811,939	-8,773,345	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-9,293,214	0	-6,704,899	-58,308,496	90,794,146	32,485,650	4,472,547	-23,031,399
20	0	-2,848,005	-1,238,775	-1,874,626	-2,811,939	-8,773,345	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-9,293,214	0	-6,704,899	-58,308,496	90,794,146	32,485,650	4,029,322	-19,002,077
21	0	-2,848,005	-1,238,775	-1,874,626	-2,811,939	-8,773,345	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-9,293,214	0	-6,704,899	-58,308,496	90,794,146	32,485,650	3,630,020	-15,372,057
22	0	-2,848,005	-1,238,775	-1,874,626	-2,811,939	-8,773,345	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-9,293,214	0	-6,704,899	-58,308,496	90,794,146	32,485,650	3,270,288	-12,101,769
23	0	-2,848,005	-1,238,775	-1,874,626	-2,811,939	-8,773,345	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-9,293,214	0	-6,704,899	-58,308,496	90,794,146	32,485,650	2,946,206	-9,155,563
24	0	-2,848,005	-1,238,775	-1,874,626	-2,811,939	-8,773,345	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-9,293,214	0	-6,704,899	-58,308,496	90,794,146	32,485,650	2,654,239	-6,501,324
25	0	-2,848,005	-1,238,775	-1,874,626	-2,811,939	-8,773,345	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-9,293,214	0	-6,704,899	-58,308,496	90,794,146	32,485,650	2,391,207	-4,110,117
26	0	-2,848,005	-1,238,775	-1,874,626	-2,811,939	-8,773,345	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-9,293,214	0	-6,704,899	-58,308,496	90,794,146	32,485,650	2,154,240	-1,955,877
27	0	-2,848,005	-1,238,775	-1,874,626	-2,811,939	-8,773,345	-33,026,824	0	-130,664	-279,619	-99,930	-33,537,037	-9,293,214	0	-6,704,899	-58,308,496	90,794,146	32,485,650	1,940,757	-15,120
28	280,935	0	0	0	0	0	0	0	0	0	0	0	0	0	0	280,935	0	280,935	15,120	

The final results of the TEA are displayed in Table 21. In this table it can be seen that the total capital cost of the compact hydrogen generator is about 43% less than the capital cost for a baseline SMR without carbon capture. With 90% carbon capture the compact hydrogen generator has about 51% lower capital requirements than the baseline steam methane reformer with capture. In fact, it can be seen that the compact hydrogen generator with 90% capture has lower capital costs than a baseline steam methane reformer without carbon capture. This cost advantage results in a 19.2% lower cost of hydrogen without carbon capture and 27.9% lower cost of hydrogen with carbon capture.

Table 21. Summary of Total installed cost, Total capital requirements, and leveled cost of hydrogen for the four hydrogen plants evaluated

	Total Installed Cost	% lower than baseline	Total Capital Requirements	% lower than baseline	LCOH \$/kg	% lower than baseline
SMR	\$177,950,348		\$277,438,032		\$1.03	
CHG w/o CO ₂ Capture	\$101,575,074	42.9%	\$159,243,073	42.6%	\$0.84	19.2%
SMR with 90% CO ₂ Capture	\$317,827,365		\$497,102,148		\$1.68	
CHG with 90% CO ₂ Capture	\$156,218,857	50.8%	\$243,926,528	50.9%	\$1.21	27.9%

A sensitivity analysis was performed to demonstrate the effect of user inputs on the capital costs of the plant and the cost of hydrogen. The discount rate was the only factor that had any effect on the total capital requirements. The effect of these user inputs on the cost of hydrogen is presented in Table 22 and displayed graphically in Figure 6. Within this figure it can be seen that large changes in the cost of process water, electricity, CO₂ transport and storage, and the capacity factor did not have large influences over the cost of hydrogen. The electricity purchase price did have a small effect on the price of hydrogen for the CHG with capture. The two factors that have the largest effect on the leveled cost of hydrogen are the natural gas price and the discount rate.

Table 22. Sensitivity analysis for dependence of total capital requirements and levelized cost of hydrogen on several variables.

Variable			Total Capital Requirement MM\$				Levelized Cost of Hydrogen \$/kg				
			Steam Methane Reforming	Compact Hydrogen Generator	Steam Methane Reforming	Compact Hydrogen Generator	Steam Methane Reforming	Compact Hydrogen Generator	Steam Methane Reforming	Compact Hydrogen Generator	
Units		Capture		Capture		Capture		Capture		Capture	
Natural Gas Price	Low	1.5 \$/MMBTU (LHV)	\$277	\$159	\$497	\$244	\$0.81	\$0.61	\$1.44	\$0.99	
	Standard	3 \$/MMBTU (LHV)	\$277	\$159	\$497	\$244	\$1.03	\$0.84	\$1.68	\$1.21	
	High	10 \$/MMBTU (LHV)	\$279	\$161	\$499	\$246	\$2.09	\$1.87	\$2.84	\$2.25	
Process Water	Low	0 \$/gallon	\$277	\$159	\$497	\$244	\$1.03	\$0.83	\$1.68	\$1.21	
	Standard	0.000946 \$/gallon	\$277	\$159	\$497	\$244	\$1.03	\$0.84	\$1.68	\$1.21	
	High	0.01 \$/gallon	\$277	\$159	\$497	\$244	\$1.05	\$0.85	\$1.69	\$1.23	
Electricity Sales Price	Low	30 \$/MWh	\$277	\$159	\$497	\$244	\$1.05	\$0.84	\$1.68	\$1.21	
	Standard	40 \$/MWh	\$277	\$159	\$497	\$244	\$1.03	\$0.84	\$1.68	\$1.21	
	High	60 \$/MWh	\$277	\$159	\$497	\$244	\$1.01	\$0.84	\$1.68	\$1.21	
Electricity Purchase Price	Low	40 \$/MWh	\$277	\$159	\$497	\$244	\$1.03	\$0.83	\$1.68	\$1.16	
	Standard	67 \$/MWh	\$277	\$159	\$497	\$244	\$1.03	\$0.84	\$1.68	\$1.21	
	High	80 \$/MWh	\$277	\$159	\$497	\$244	\$1.03	\$0.84	\$1.68	\$1.24	
CO ₂ Transport and Storage	Low	-20 \$/tonne	\$277	\$159	\$497	\$244	\$1.03	\$0.84	\$1.68	\$1.21	
	Standard	12.49 \$/tonne	\$277	\$159	\$497	\$244	\$1.03	\$0.84	\$1.68	\$1.21	
	High	50 \$/tonne	\$277	\$159	\$497	\$244	\$1.03	\$0.84	\$1.68	\$1.21	
Discount Rate	Low	10%	\$274	\$157	\$490	\$241	\$0.99	\$0.81	\$1.60	\$1.17	
	Standard	11%	\$277	\$159	\$497	\$244	\$1.03	\$0.84	\$1.68	\$1.21	
	High	20%	\$311	\$178	\$557	\$273	\$1.54	\$1.13	\$2.59	\$1.66	
1st Year Capacity Factor	Low	35%	\$277	\$159	\$497	\$244	\$1.06	\$0.85	\$1.73	\$1.24	
	Standard	70%	\$277	\$159	\$497	\$244	\$1.03	\$0.84	\$1.68	\$1.21	
	High	95%	\$277	\$159	\$497	\$244	\$1.02	\$0.83	\$1.65	\$1.20	

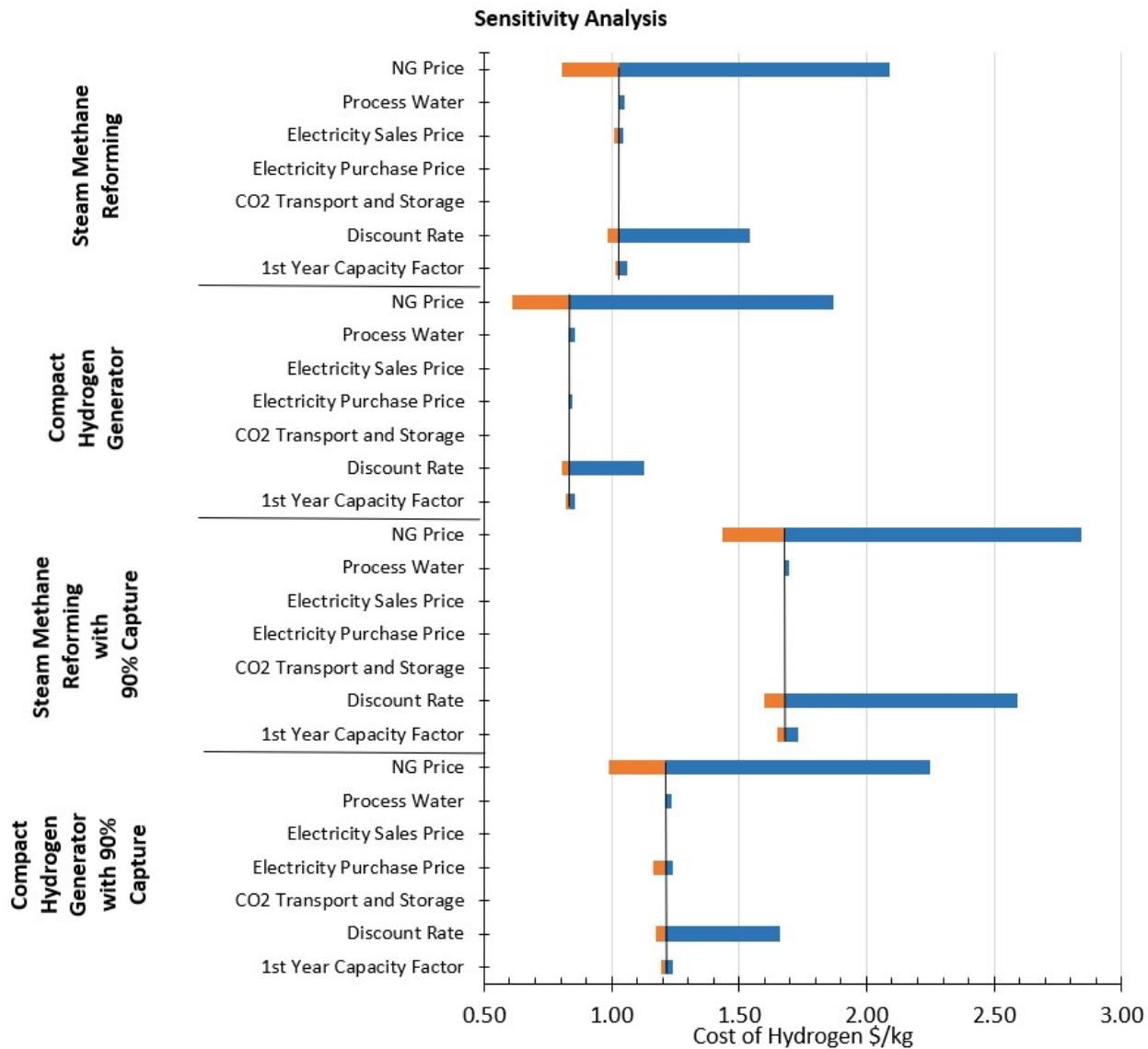


Figure 6. Sensitivity of cost of hydrogen on several variables whose values are listed in Table 22

Conclusions

The detailed techno-economic assessment that began with reliable direct material cost information for the CHG (from CB&I Howe-Baker) and used methodology from a reputable EPC and designer of commercial SMRs (Foster-Wheeler) has demonstrated the CHG can deliver hydrogen at a lower price than SMR with and without carbon capture. The lower costs of 19% without capture and 28% with capture exceed our target of minimum 15% lower cost of hydrogen. The lower cost is primarily due to lower material costs that translated into a 43% lower CAPEX without capture and 51% lower CAPEX with capture. The savings are greater with carbon capture because the compact hydrogen generator does not need additional CO₂ from flue gas separation equipment, it does however have the added capital cost of CO₂ compression, transportation and storage, just as SMR does. These findings demonstrate that the CHG has significant costs advantages and that further development of the technology is warranted.