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‘ High-Efficiency Monolithically
Grown Triple-Junction Photovoltaics
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Multijunction solar cells efficiencies are just over 40%.
e Challenges exist for further advances with this technology.

Lattice matching limits bandgaps to non-ideal values.
e Adding cells/gaps to increase efficiency is difficult.

Current matching requirements limit efficiency by
designing to a specific spectrum.
e On earth the spectrum changes with time weather, seasons.

System level requirements further limit efficiency.
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V
e ' Mechanically Stacked
Multijunction Photovoltaic Structure

solar radiation

InGaN 2.25 eV

GaAs 1.34eV
GalnAsP 0.95eV

Silicon Substrate
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* Notanewidea! This structure removes or reduces many of the constraints on current
multijunction cells.

e Stack of solar cells are grown independently, out of ideal materials, and proper thickness
for efficient energy absorption and transmission.

* Apply Sandia’s advanced microsystem technologies to create and assemble the cell.

 Developing new technology for individual control of PV junctions, efficient optical
collection and utilization.

 Small dimensions allow high-quality, molded refractive optics and over-all cheaper
module. :



* Reduced thickness significantly reduces the
use and cost of ¢c-Si/GaAs material

Backside contacts allows improved efficiency
(no shading) and makes contacting the cells
simpler

Small scale and backside contacts provides for
low cost automated assembly (self-assembly
or pick-and-place)

Small scale cells better utilize wafer area

(hexagons vs. squares and edge exclusion
area)

Small cells can use any size wafer while one
cell/wafer manufacturing model has a wafer
size limitation. (Increased wafer size decreases
processing costs.)

The high-quality processing provided with IC
fabrication tools should allow near-ideal cell
performance (>20%).

Small PV cells tend to be more efficient (until
surface recombination around edge becomes
significant).

o Carrier collection improves with reduced size.

Cell Level Scale Benefits
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C. Algora, Concentrator Photovoltaics (ed.
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Ideal Multijunction Cell Structure

# Junctions | Junction #1 Junction #2 Junction #3 Junction #4 Junction #5

3 0.6eV (InGaAs) | 1.14eV (Si) 1.81eV (InGaP)
1.1eV (GalnAsP)

0.6eV. (In6§ 0.97eV (GalnAsP) | 1.42eV (GaAs) | 2.00eV (InGaP)
0.6eV (InGaAs) | 1.12eV/(Si) 1.64eu 2.22eV (InGaN)
1.1eV (GalnAsP) (AlGaAs)
5 0.6eV (InGaAs) | 0.95eV (GalnAsP) | 1.34 (GaAs) 1.73eV (InGaP) | 2.28eV (InGaN)

Leveraging Sandia’s semiconductor growth expertise to cover all the materials.

Most of the llI-V compound systems are well developed and present a low risk for
achieving solar cells with good PV performance.

Higher number of cells requires a wide-gap cell, and theoretically InGaN can be use

e We need to overcome the difficulties of growing quality high indium
composition (x~0.3-0.35 )In,Ga, N layers (bulk).

Sandia
National
Laboratories



Experimental Results:Si
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Silicon (1.1eV) Solar Cells

35 1 14.85% efficient silicon solar cell
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SOl wafer (HF Release)

Create micro-PV cell then e
anisotropically etch between cells o e We can produce thin (~20 mm), back-contacted

buried oxide layer. crystalline silicon PV cells with various lateral
I e dimensions and contact designs.

_ e Sicells will need to be further optimized and
Release from handle wafer using an dified I lich h h (i
HF based release etch. modified to allow light to pass through (i.e. move
Tt T metallization to the edges). We have achieved
| | 15% efficient cells with a 14 micron thick c-Si cell.

After release, the handle wafer can be
Sandia
National
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reused to create a new SOI wafer.




current density (mA/icm#2)
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Experimental Results:GaAs
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We have demonstrated fully back-contacted,
11% efficient, 5 micron thick GaAs PV cells.

Epitaxial lift-off with AlAs as the sacrificial
material is used to create the thin cell.
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Best GaAs back contact solar cell {1sun) EMelency 10.03% +-04%

Experimental Results

Efficiency calculated using
0.00002 full gell area (includes active
0.000018 and inactive area).

0.000018
0.000014

g 0.000012
o

*Cell tested without an AR
coating

0.00001
0.000008
0.000006

0.000004
0.000002

*One-sun illumination
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ficient IR cells are needed to
achieve high efficiency

ASTM G173-03 Reference Spectra
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' InGaAs (0.6eV) Solar (TPV) Cell Epitaxy
. Epltaxy performed by MOCVD Top Contact 0.05 pm n-InGaAs (101°cm?)

at 620°C and 70 Torr ~ Emitter 0.3 um N-INGaAs (5x10% cm?)|
o USing methyl SUbStitUteq Base 2.5 um p-InGaAs (sx10%cm?)
metal-organics and hydride _
sources BSF__ 005pm  piInPAs (w%mn?) |

. ) ] ~Tunnel Junction ~ 0.03 um p-INGaAs (10 cm=)
» Utilized x-ray diffraction “Tunnel Junction  0.03 um n-INGaAs (10 crm?) |

reciprocal space mapping to
determine buffer lattice
constant.

— Experimentally lattice-match
InGaAs cell to strain-relaxed

InPASs buffer. S i
- a
“The development of (InGa)As - i
TPV cells on InP using | |B
Strain-relaxed In(PAs) buffers” % .| [©
J.G. Cederberg, et al., o
J. Crystal Growth,
310, (2008), 3453 3
v [ (004)]
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TPV cell performance
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Bandgap versus Lattice Constant

Energy Gap (eV)

for AlGalnN Alloys
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1. theoretical
AM1.5G, 1sun
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InGaN Photovoltaic Performance

e Theoretical short circuit current
density (J..) increases rapidly
with decreased band edge.

e Clear performance difference
when collection efficiency is
enhanced (AR and back
reflector).

e So far reducing the bandgap of
the InGaN absorption region by
increasing the indium
concentration has not resulted
in increased performance.

e Clearly, the difficulties of
growing high indium
concentration InGaN layers is

the cause.
Sandia
National
Laboratories



InGaN strained on GaN
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Data from Wu et al., APL 80 (2000).

*In,Ga, N is typically grown on GaN (no In,Ga, ,N
substrates).

e Strain limits In, Ga,; ,N composition and thickness Ponce et al., phys. stat. sol. (b) 240, No. 2 (2003).
(x~0.1-0.12 for ~200nm).

* Exceeding these limits leads to defect formation and poor material quality.
* Bandgap of ~2.25eV requires In,Ga,; ,N (x~32 %) layers 2 200 nm thick.
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J. J. Wierer, Jr., A. ). Fischer, and D. D. Koleske, APL, 96, 051107 (2010).

e PIN structure consisting of

p-GaN/i-InGaN on an (0001)-
face n-GaN template layer.

Performed a simple device
fabrication process with
square ~1mm? device with a
surrounding n-contact and a
Ni/Au p-contact/spreading
layer. No anti-reflection
coating or back-reflector.

The device performs poorly
with a low short-circuit
current density (J..).
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PIN Solar Cells with i-In; ,Ga, ;N layers

e When reverse biasing the device under
illumination we can see an appreciable

increase in the current beyond at -2 to -
4V,

e Modeling of the band diagram shows
the piezoelectric polarization creates a
detrimental field within the intrinsic
region forcing carriers the wrong way.

e Note: Doping can screen these
fields to some degree.

e The reverse bias most likely overcomes
this field and allows the carriers to drift
in the proper direction and be collected.
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Engineered PIN InGaN Solar Cells
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e Removing/displacing polarization fields at the i-InGaN interfaces allows i
naia

carriers to drift in the proper direction improving performance. National
Laboratories



‘ High Indium Incorporation in
GaN/InGaN Core/Shell Nanowires

366 nm (GaN BEL) 428 nm (GaN BL)

15000

10000+

-

S000 4

%DD 460 560 560 ?$D 860
Growth conditions: GaN core — 900 °C, 10 min.
InGaN shell — 760 °C, 60 min.

700 nm (InGaN)

e Strain limits practical In incorporation in InGaN thin films
* InGaN shell layers on GaN core nanowires an overcome those limitations.
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InGaN shell growth highly facet-dependent -- no growth on (000-1) c-plane facet
In concentration increases away from GaN/InGaN interface, highest at corners

Low amont dislocations observed despite very high In concentration
Strain in InGaN NW shell much lower than for InGaN thin film
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e 4 ‘ Strain-dependent In

Incorporation in GaN/InGaN core-shell NWs

tensile l compressive
5 4 3 2 1 o 1 -2 3 4 i -6E7 J/m?
B i i :

150 nm GaN NW core

150nm
A\
/A\ / \
10 nm 30 nm 60 nm 150 nm < Ing,Gag gN shell

¢ Finite element models show compressive/tensile strain in GaN core and InGaN shell

e Compressive strain dominates in thinner shells, decreases away from interface and
becoming tensile for thicker shells

e Higher In incorporation correlated with lower (compressive) strain regions
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* ' Roll-to-Roll Assembled
} High-Efficiency PV Modules

Sandia’s silicon and I11-V
Concentrated PV Thin-film PV c-Si PV fabrication facility

High-Efficiency Thin ; IC Manufacturing Approaches

Single-Junction (c-Si) or
Multi-Junction (111-V) Cells

Low-Cost Module
Materials

tegrated
Electronics

Micro to mm-scale Tracking and
Micro-optics for Low-Profile Santia
Concentrator System @ \ahoraore

Massive Parallel Self-Assembly



Module Level Scale Benefits

Modules can be assembled with low-cost
automated tools such as pick-and-place tools used
for electronics assembly.

Modules can be assembled at very low costs by
using self-assembly concepts in a manner that
mirrors roll-to-roll printing.

Since all high-temp processing is performed on the
wafer, the materials for the module can be low-
temp, low-cost materials.

Because of the small cell size, modules can be
highly flexible.

Modules that conform to a variety of shapes can be
manufactured.

Building Integrated PV (BIPV) panels of a variety of
sorts are possible, reducing material costs and
installation costs.

Concentration can be performed with low-cost and
optically efficient refractive microlens arrays.

Small cell size allows short focal lengths for
concentrating optics, providing for direct
lamination of optics to PV cells without a cavity
between.

Small cell size provides significant temperature
reductions as compared to larger scale .
concentrating systems at the same concentration [@ National
ratios.
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High-voltage output directly from modules is
possible due to the large number of cells
comprising the module, eliminating the need for
DC to DC converters and reducing the cost of
system wiring.

High-efficiency panels reduce racking and
installation costs

BIPV modules reduces installation labor

Integration of health monitoring and power
conditioning ICs can be performed using same
low-cost module assembly techniques already
proposed.

Small in-plane motion can provide
high-accuracy, high-bandwidth tracking;
reducing tracking cost and complexity.

High-bandwidth tracking can account for wind
and other environmental vibrations.

System designs are possible that provide
improved shading performance of
modules/systems as compared to conventional
systems.

System Level Scale Benefits

UNI-SOLAR building integrated a-Si
PV metal roof panels being installed.
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e Sandia is working on a high—efficiency mechanically
stacked multijunction solar cell with InGaN as the highest
energy cell.

e We have demonstrated Si, GaAs, InGaAs, and InGaN
photovoltaic cells as part of this project

Conclusion

e Both Si and GaAs cells have been prepared that are less
than 0.1 mm? (Solar Glitter)

 InGaN nanowires are being explored for use in solar cells
e Refractive optics have been developed for small size cells

e Si manufacturing techniques are being used to
demonstrate concept
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