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• The catalytic nanodiode is a simple Schottky diode that converts 
chemical energy directly into electrical energy, via electronic 
excitation, i.e. hot electrons
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• Somorjai et al. reported (2005) a reaction quantum yield 
(electrons/CO2) up to ~75% for the CO oxidation reaction on Pt/TiO2, 
coined the term “catalytic nanodiode”

What is a “Catalytic Nanodiode”?
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Best analogy to catalytic nanodiode is a 
Schottky diode solar cell or photodiode with 

sub-bandgap illumination
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Kinetic phase transition during CO oxidation on Pt 
is observable using the nanodiode current

we use this lineshape as a fingerprint
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ref: e.g. Creighton JPC 1981

* using solar cell convention for chemicurrent
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Is the electronic signal due to “chemicurrent” 

or is it derived from a voltage source?

GaN

ΔTlateral

VTE
TPtTohmic

VTE ~ (SGaN - SCu)ΔTlat + much smaller terms

VTE is mostly determined by:

1) GaN Seebeck coefficient; SGaN [ typically ~ -400 μV/deg]

2) the lateral temperature difference,  ΔTlat

Cu
Cu

only need ΔTlat ~1C

ΔT is small, 
irrelevant
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Reaction is exothermic; 68 kcal/mole, ~2.9eV/CO2

For reaction TOF = 400, power density is 300 mW/cm2

For reference: heater is dissipating 700 mW/cm2 at 270C

The heat liberated only needs to increase ΔTlat by ~1C in 
order to generate the measured signals

What is the magnitude of the Pt temperature rise, 

ΔTPt, during reaction?

How much is the lateral temperature gradient, 

ΔTlat, affected by the reaction?

The 2 Burning Questions



We use both theoretical and experimental 
methods to address these 2 questions

Theoretical:

“Simple” 1D and quasi-2D calculations 

Full 3D simulations of entire reactor

Experimental: 

mid-IR optical pyrometry of Pt surface: ΔTPt

Thermocouple measurements of electrical contacts: ΔTlat



1D calculation with isothermal heater
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Full 3D simulation

ΔT -chemical 
reaction



Full 3D simulation
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Nanodiode mounted with thermocouples on contacts

Pt

Experimental methods of 
temperature measurement

pyrometer spot
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Observed current can be quantitatively explained 
using ΔTlat , the Seebeck Coef, and the diode 

resistance, it is entirely due to thermoelectric voltage
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In contrast, Park et al. (Top Cat 2007) concluded that 
the temperature increase during reaction was negligible 
(< 10-3 C), and therefore dismissed the thermoelectric 
effect

They are confusing vertical temperature gradients within 
the thin Pt and TiO2 layers (ΔT) with surface 
temperature changes, and lateral temperature gradients

Our calculations and measurements conclusively 
demonstrate surface temperature rises of a 1-5 C, 
and lateral temperature gradients of 0.2-1.0 C



Summary

• We have fabricated Pt/GaN and Pt/TiO2 nanodiodes 
that exhibit unmistakable kinetic signatures of the CO 
+ O2 reaction, the electronic signal is derived from the 
chemical reaction

• However, the signal dependence on diode shunt 
resistance indicates that it is derived from a voltage 
source

• With appropriate temperature calculations & 
measurements, all attributes of the chemical signal 
can be qualitatively and quantitatively explained by 
reaction exothermicity and the thermoelectric 
properties of the diode

• measured current is thermoelectric in origin it is not 
true chemicurrent
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Our yield measurements are in reasonable 
agreement with more recent Somorjai results 
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Earlier work regarding ballistic (hot) electrons 
and surface chemical reactions

1999-2007:  Several papers by Nienhaus (U. Duisburg-Essen) and 
McFarland (UCSB) reported transient hot electron formation 
(chemicurrents) by reactions of a variety of chemical species on an 
assortment of Schottky diodes.

Gases
O2, NO, NO2, H2O 
C2H4, C2H6, C6H6, 
CO2, Xe, H, O,

Diodes
Au/Ge, Pd/SiO2, 
Cu/Si, Ag/Si, Fe/Si

•Generation efficiency 
correlated with binding 
energy, but always ≤ 1%

2005: Four papers by Somorjai (Berkeley) on “Catalytic nanodiodes”, 
used the steady-state CO oxidation reaction to achieve up to ~75%
quantum yield (electrons/CO2)

We became interested for possible micropower 
applications; results could be extrapolated to 
power conversion efficiencies of 20-30%
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How can you differentiate a current 
source from a voltage source 

when shunt (Rsh) and series (Rs) 
resistance are present?
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Other indications we have simply made a 
sensitive thermal detector
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Signal from VTE has 2 terms (may be of opposite sign)

this term is responsible for 
most of the chemical signal 
under normal conditions

we can amplify this term
with external bias voltage

temperature dependence 
of diode impedance

Seebeck coef

• Response depends on Schottky diode temperature (T) 
and the lateral temperature difference (ΔTlat)
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In order to measure the electron generation yield of the 
process we also measure the production rate of CO2

Use a pressure drop method to measure reaction rates; 
CO + ½ O2 → CO2 (net loss of ½ mole)
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Review of Somorjai’s results

2005 At least 4 papers and several popular press articles; Initial results 
for Pt/TiO2 , ε as high as 0.75!, currents as high as 40 A (area ~1 mm2) 
at only 80C. Reported strong dependence on metal thickness.  Pt/GaN 
devices were less efficient, but had currents of >200 nA/mm2 at 150 C

2006 3 papers, some repetition but results are generally less 
impressive than 2005 papers in terms of currents and 
temperatures.  Some discussion of “thermoelectric” current.  
Efficiency not discussed

2007 October JPhysChem.  ε = 2e-4 to 4e-3, now GaN better than TiO2.  
Temp range higher than earlier work, currents mostly in 50-500 nA. More 
discussion of “thermoelectric current

2008 July, Nanolett.  ε = .001-.003, Pt/Au/TiO2.  Currents 50-150 nA. 
Some discussion of Seebeck coef.

2008 Aug, ACS Meeting, when asked (by Creighton) why they could not 
reproduce the 75% result (2005), Somorjai replied that it was a device 
“fabrication” problem.


