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Objectives

* Use dynamic models of infrastructure systems
to analyze the impacts of widespread
deployment of hydrogen technologies

* |dentify potential system-wide deficiencies that
would otherwise hinder infrastructure evolution,
as well as mitigation strategies to avoid
collateral effects on supporting systems

* Analyze the feedback effects of competing
alternative transportation options
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We model the dynamics of
emergent fuel-vehicle systems

* Our focus is on the feedback and dynamics of
future transportation system options.

— Primary energy source, fueling infrastructure, and
vehicles need to be considered together

— Feedback and competition between transportation
and energy alternatives will effect the evolution of
transportation systems

— The differing time scales for change need to be
considered
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blimination of carbon from the fuel-
vehicle system is required to meet US CO,

target
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Alternative fuel pathways will interact
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Alternative fuel pathways will interact
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We model the dynamics of emergent
fuel-vehicle systems

* Our focus is on the feedback and dynamics of
future transportation system options.

— Primary energy source, fueling infrastructure, and
vehicles need to be considered together

— Feedback and competition between transportation
and energy alternatives will effect the evolution of
transportation systems

— The differing time scales for change need to be
considered
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The type of fuel-vehicle system is more
important than the speed of implementation
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The turnover rate for the installed
vehicle fleet is slow
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* 50% of sales in 2020

g are of “new” type

& — Note: The Prius

3 was introduced in
& the US in 2001. In
3 2010 the market

© share of all hybrids
5 is only 2.2%

(+) Fueling infrastructure capacity only needs to grow with fleet
(-) Difficult to have serial technology transitions
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Approach

« System dynamics: Methodology
— Choose a region to define the system

— Pose detailed questions

« What are the impacts of large-scale H,-fueled vehicle market
penetration?

« What is the impact of a carbon tax on alternative vehicle penetration?

 Can stationary FC systems provide distributed H, production?
« System dynamics: Analysis
— Formulate SD models of infrastructure components and

interrelations to a sufficient level of detail to see interactions

and dependencies

— Powersim software allows quick generation of code and
interfaces and can solve system of ODEs. It allows insight
into the dynamic behavior of complex systems.
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System dynamic models are built on
the concept of “stock and flows”
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* From simple differential equations and time delays,
the model can reproduce complex behavior
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Model provides a tool for exploring a
range of conditions

« Key model input parameters

— Vehicles:
* HFV mileage
 HFV and PHEV learning curves
* battery vs plug-in
« daily charging profile
« gasoline mileage improvements (CAFE or advanced ICE)
* H, production alternatives (low-carbon)
* sales/discard rates
— NG:
* Import capacity
» domestic production
« demand growth (other than vehicles or electric)
* elasticity
— Other:

e carbon tax :’I") ﬁgggiﬁal
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Model provides a tool for exploring a
range of conditions

« Key model input parameters

- SFC:
» electric efficiency
« combined heat/cooling factors
« matching of heat, cooling, & electric loads with demand
* H, co-production
» fixed & variable costs of electricity & H,
» penetration rate in new & retrofit buildings by type
— Grid electricity:
« Baseload, marginal, & new generation
 growth in demand
» changes in nuclear, coal, NG, & renewable generation
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Model Demo- Introduction
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Model Demo- HFV mileage
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Model demo- Carbon tax
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Higher price of zero-carbon H; requires
a carbon tax to spur HFV sales

100%
HFV on road

by 2050

24 M
2M
20M

» Contours of HFV quantity
on road by 2050 based
on 1000 simulations 80%

» Hydrogen supply: =~ om
— Zero-carbon H, at $6/kg  § 6% o
— SMR H, at ~$4/kg before g 2
C-tax R 0w -
« At low penetration of g
zero-carbon H,, carbon o
tax has little impact on o
HFV sales
* Higher carbon tax % $100 | S200  $300  $400  $300 600 $700
stimulates increase in Carbon Tax ($/tonne)

zero-carbon hydrogen
fueled vehicles
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Carbon tax does not effect emissions
without a zero-carbon option

» Contours of LDV
emissions in 2050

* 80% reduction from
1990 goal is 0.019
GTlyr

* H, Supply:
— Zero-carbon H, at
$6/kg

— SMR H, at ~$4/kg
before C-tax
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Adding other sources of zero-carbon
fuels gives lower emissions

» Add 3-fold higher zero-
carbon electricity than
CA RPS default case
(33GW by 2020)

* Emissions are lower
than the default case

* Emissions at large
carbon taxes and no
zero-carbon H, rise
slightly due to
increasing dependence
on natural gas for
electricity
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Adding other sources of zero-carbon
fuels gives lower emissions

HFV in
2050

« Add 3-fold higher
zero-carbon
electricity than CA
RPS default case
(33GW by 2020)
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40%

« Hydrogen vehicle
sales are higher
due to cost of zero-
carbon electricity.

Percent zero carbon H2

20%

$100  $200  $300  $400  $500  $600  $700
Carbon Tax ($/tonne)
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Summary

* H, Fueled Venhicles can significantly reduce CO, emissions
— Requires large HFV penetration ~50% of CA fleet by 2050

— Zero-carbon fuels are needed to meet emissions targets in 2050 and
beyond

* H, produced from SFC could potentially supply 11% of HFV fleet
demand in 2050

— Approximately 2 Million vehicles

 Stationary FC systems have a small effect on CA’s CO, emissions

— Effect of SFC systems with a maximum of 35% relative fuel savings is
limited by the potential for CHP systems in CA buildings

— An optimistic penetration for SFC is 16% of total electricity generation
— Overall reduction in CO, is ~2%

* Preliminary simulations show that the reduction of CO, emissions
by SFC can be significant when displacing coal generation
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Supplemental Slides
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Very high carbon tax is required to
offset coal-fired power

 Using coal in place
of natural gas
Increases emissions so%

2050
LDV emissions
GTlyr

0.040

« High carbon tax is T e
required to achieve % .
the emissions of I
default case 5

* Achieving a low 20%
emissions target is
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Regions with coal electricity and zero-carbon
hydrogen are sensitive to carbon pricing

* Hydrogen vehicle

25

HFV in
2050

penetration is o0'%
sensitive to
carbon tax,
especially at high
levels of zero-
carbon hydrogen
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Penetration of SFC systems can provide

significant H, for vehicles

H2 from SFC

* H, available:

— Fraction of NG input = 15%
« Assume 85% H, utilization in FC

— Reduced electricity efficiency of
FC from 47% to 40%

* SFC provide 11% of H, demand
— Supply 2 Million H, vehicles

SFC dedicated to EV charging

Hydrogen (B-kg/yr)

4

0
2010

Total for HFV

2030

Year

2040

2050

» Cost effectiveness is dependent on SFC capital and maintenance costs
 Effect on CO, emissions is minimal in regions with NG as marginal supply
« Caveat: utility distribution concerns are not addressed by model
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