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Introduction to Solid-State Lighting LED Chip
A. Projected benefits of solid-state lighting ,
B. Comparison of white lighting technologies

C. Three “Grand Challenges” for ultra-efficient SSL

(focus on the LED chip level)

LED efficiency droop at high currents
A. Potential nonradiative mechanisms
B. Approaches for efficiency droop mitigation

The search for an efficient, narrow-band red emitter

A. Limitations of present technology Lummalres
B. Direct-emitter challenges and potential solutions | Vi
C. Novel down-conversion materials

Bridging the “green-yellow gap” in LED efficiency

A. The potential for “smart lighting”
B. New directions for long wavelength InGaN emitters

Conclusions rckl
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Motivation for a lighting revolution

« ~22% of electricity consumption is for general
illumination

« Lighting is one of the most inefficient energy
technologies in buildings = opportunity!

« Achieving 50% efficient lighting would have
tremendous global impact:

»>decrease electricity consumed by lighting by > 50%
»>decrease total electricity consumption by 10%

Efficiencies of energy Projected Year 2025 us World
technologies in buildings: Savings
Heating: 70 - 80% Electricity used (TW-hr) 620lyear | ~2,000lyear
Elect. motors: 85 -95%
Fluorescent: 20-25% $ spent on Electricity 42Blyear ~150B/year
Incandescent: ~3-5%
Electricity generating _
o capacity (GW) 75 250
US DOE target: 50% p— —
“ . ” . 0 aroon emissions -
Ultra-efficient” SSL: > 50% (Mtons/year) 100 350

i ssis )
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Architectures for LED-based White Lighting

Domin% Phosphor-converted Multi-chip ( all LED)

Commercial )

Approach Warm white RpGpB RGYR 614
— \ w —
Srsrrmreasl) | 615 “

1 7 538 536
1 440 456
‘ ‘ L
400 500 600 700 nm RYGB 200550700 nm

Advantages/limitations:

® Requires high performance LED only B Direct light emission from LEDs
in blue region - highest efficiencies
B Simpler operation 4 | gp B Greater automation and color
B Inherent losses 3 /\E/\/Y’ PHOSPHORS control possibilities (“smart lighting”)
) x ner
(pump absorption,  w Deficit W B Requires high performance from
phosphor efficiency 1 | | Lostas WY LEDs across the spectrum
Stokes’loss) Heat peclri
B Requires high performance green H M.ore.complex operation (drive |
and red phosphors (suitable for blue pump) circuitry, disparate LED degradation)
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Comparison of Lighting Technologies
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Efficiency breakdown for Warm White LEDs

Performance Characteristics of
Early-2010 Commercial State-of-art htip:/lbobbymercartiooks.com

Efficiency

Luminous

Eye

Rendering
response

Correlated
Color
Temperature

omecumen |1 aa

Efficiency and luminous efficacy
can be increased by relaxing
some performance characteristics

Internal quantum eff. 90%
Stokes deficit 76%
Scattering/absorption  80%

Joule 90%
IQE at low power 75%
Droop at high power 70%
Light extraction 80% Thin-Film Flip Chip (TFFC)

e.g., Philips-Lumileds Luxeon

schematic courtesy of Jon Wierer

J. Y. Tsao 17 mm

EERE Laboratories
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Technology “Grand Challenges”
for ultra-efficient SSL

(D Eliminate blue ' @ Narrow-linewidth
LED efficiency
droop at high
currents

(3 Fill in the green-
yellow gap in LED
efficiency

shallow-red emitter

Ideal wavelengths

T T Courtesy of M. Krames, Philips-Lumileds
Shockley-Read-Hall

Spontaneous Emission
Auger-like
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Rate constants for 510nm LED, after UT Schwarz, “Emission
of biased green quantum wells in time and wavelength
domain,” SPIE Proc 7216, 7216U-1 (2009).
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Blue LED

e First Grand Challenge:

IQE at low power i L.
[ Overcoming Efficiency Droop
InCaM-GaMN MOW Helerostructure Thin-Film DiStiI‘lQUiShinq factors:
Flip=Chip (TFFC) LED Lamps .
0 — 1400 * Present under pulsed conditions (non-thermal)
= i@, | cep e 4,425 | A L * Onset at rather low current densities (~10-30 A/cm?)
1 P Do - * More dramatic at longer wavelengths (higher indium InGaN QWs)
- B r o0
2 40 . w0 = Recombination model: ) N\
T ol 0, . 4, 520 : g g B
E 0 P & ‘1’.:':1."1 _ = 5}k nm fu) E — .
= - . = I0OF INJ 2 3
3 ; S 2 € An+Bn +Cn” + Dn" +...
S, — . t
Fid o o L1 xVmmd 200 Carrle_r I_njectlon Shockley-Read-Hall Radiative Auger and higher
®. 0" .- 15% efficiency (nonrad at defects) order processes
“_‘_.,5‘;. ; , , o P /
(] il ik TalH} HiMy FOIHR

Forward current, £ (mA, dc)
Krames et al., J. Displ. Technol. (2007)

Carrier capture / leakage Carrier delocalization/

defect recombination

Auger recombination

direct Auger process
Injected electrons

en‘e\rgy defects, zone boundaries )
nonradiative
potential 222000 9. .. \“
non-radiative . 09
mechanisms xy /ekmwho_le

Injected holes

n-type GaN MQW active region EBL p-type GaN

\u@- sS LFmge E. F. Schubert
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The Role of Auger Recombination

Piprek, PSSA, 2010

direct Auger process 1x10™ 4

‘ F

“ABC model” B> I EQE data j

(2) P n ; &.. ABC model

IQE — 2 3 @ X074 e A i

nonradiative Q Al’l + B n + CI’l ‘°E 20 1 i .. '. “u flttlng nitride data ._:[

Auger loss f T S 1x10™ 5 g *"° L 1

- . . ‘\ F

Shockley-Read-Hall L © 1x10%4 Y e s i

(3] (4] (nonrad at defects) Radiative  Auger & . - ]

S 1x10*' 4 .. ; r

electron-hole = o ;
recombination 3 1x10™

2 ! InGaN R : '!

(1] Major discrepancy between g 1x10” = Ve F

theoretical and experimental 2 1x10%; 7 d?e?%% o !\C\\ r

predictions of Auger coefficient! 1510 Jrmrrmrmymrmrmrmrrerrerry B N

0.0 0.5 1.0 1.5 2.0 25 3.0 35

Energy Band Gap (eV)

Microscopic theory: @@ AT T T T T
» Lack of consideration of higher order bands (interband)? = £ 59 T=300K '”ter\_bf‘f
» Consideration of phonon-assisted Auger? go 31 Intraband A\QO// -
EQE data with ABC model fitting: S e N Ed
« ABC model oversimplified! % 2| ;? A =
« Lack of consideration of alternative n3 processes = v )
+ Carrier injection ignored S 1 % Bulk InGaN -
* No non-equilibrium effects (hot carrier injection, plasma heating) % QQ )

S o .

<0 oY T .

- Need direct measurement of Auger coefficient! 1.0 1.5 2.0 2.5 3.0

Fundamental Gap (eV)
- Delaney et al, APL 2009
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Bn® .
€ 10¢ @An+ sm*+c | The Role of Carrier Transport

Non-polar MQW LED

Injected electrons

n-type GaN MQW active region EBL p-type GaN

|

Injected holes

Polar InGaN MQW LED

Injected electrons

Injected holes

n-type GaN MQW active region EBL p-type GaN

Figure: E. F. Schubert

fg? SSLS

RPI/Sandia: D. Zhu et al, APL 2010
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Reduced e-
capture for
all QWs

Energy (eV)
i

-4
T

m’olarization effects contribute to: \

» Dominant recombination from last (p-side) QW
- high carrier densities at low currents! (Auger, etc)

» Reduction of EBL energies, enhanced e leakage

Outstanding issues:
» Droop still reported for some non-polar InGaN LEDs

» Injection /leakage not included in many models, /

~n3 dependence is unclear
Sandia
National _
Laboratories




Still...

promising approaches are being discovered!

* Double heterostructure
(reduced carrier densities)

* Active region designs for

improved carrier distribution
(InGaN barriers, Si-doped barriers,
polarization-matched AlinGaN barriers)

* AlInN electron block layers
* AlInN barrier designs

* P-doped barrier designs

» Staircase electron injector

» m-plane (non-polar) LEDs

Efficiency

Gardner (Lumileds), APL 2007

= 30 = a‘;‘
g 8
: s 2
g s 8
w20 A .E (5]
3 ® E
S| E d
© 10 4 = e
2 =
: 23
0 T T T
0 100 200 300 400
Current Density {Ncmz)
Zhao (Lehigh), SSE 2010
1 L e T]In_mr.tiun
0.9 _E T azcigtive - .LK
0.8 “"'"""""'-'*'{—'_'_«L-,___"
0.7 ¥ B
0.6 1 5'{‘- Aly !:1”{1.“ MNiae
0.5 ¢ *
0.4_! GaN ,_;i,ge] .
0.3 4 ol 24-A Ing z9Gag oM
; 24-A g 29Ty 2N 115-A Alyging N
02+ —--- i ; i
0.1 - iLarge A= 1107 5-1
: C=3.5x010* cms-!
u - i” IIIIiIIIIIIIIIiIIIIIIIIIiIIIIIIIIIiIIIIIIIIIiIIIIIIIII
0 100 200 300 400 500 600 YOO
Current Density (A/cm?2)

8

80

60

Uup-ud un-:Ju;.K.f.!

Zhu (RPI/Sandia), APL 2010

40
- f‘_,, k 4-0B
20 —ﬁ r'r-“ J
tva p-iype (b)
0 - : —
0 E{Jﬂ 400 G00 a0d 1000
Forward current /; (mA)
Ni (VC Univ), APL 2010
m-i:ulanﬂ'DI-l-L'EDs ' '- w; EEr-LI
e [ with a 3-layer SEI O i EBL
= 440nm peak emission 1
& [ mmw—ﬂ&f}ﬁ—ﬂﬂ—ﬂrﬂ %
b i il WA
% :5.«;-‘-1'.?:.1“—3_—-_{‘.‘63‘ AN
L ? pAEa N —s 2 HnEaN barser: 3 mm ]
- [Ackovn ragar *—p InGab- fimm
g - | i Gl GBI | —reimza N SEl
= THASMiAL it oy 15 ag gghc 12 om
£ - — i N MY =
& i mpkine GaNS undarkinsor
i-GA N
| i | i | i |
"] &00 1200 1800 2400

Curmrent density (A/c mzj

* Need more advanced modeling, incorporating multiple mechanisms, non-equilibrium effects
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Second Grand Challenge:
Narrow-band Red Emitter

Key Requirements for SSL Phosphors: RgGgB Warm White Spectrum

- Good absorption in the blue (~460 nm) -

| Eye
response

High QE (> 80%) maintenance at high temperatures,
high pump powers and upon integration with LED chip

High luminous efficacy of radiation
(Red: shorter red (~615nm), narrow-band)

minimal green-yellow absorption y s
High chemical stability 400 500 600 700 nm
Ease of manufacture

Largely met by Eu?*-doped nitride phosphors: Sr;SisNg:Eu?*, CaSiAIN;:Eu?*

CaSiAIN3:Eu?* White LED with Sr,SisNg:Eu?* . . ;
m— Y 4000 1 -1 | Remaining Deficiencies

;:“ <~ (b) CaAISiN3:Eu ! : Q
z A 3500 v " | Spectral Content  78% |
:E) ;’ \‘ I
S % = Phosphor: QE > 90% up to 200°C T 94
g : b 2000 &
= 5 Qtn-,ﬂ__._h_ . T Phosphor/Package 54%
= 1000 i*"!”"_""_" s — " Y Internal quantum eff. 90%
: | v
z ) ? 5 1 " 4 "1 . " Scattering/absorption 80%

300 400 500 600 700 i

Wavelength (nm) Current [ A (pulsed)

?SSLS Lin, ECS, 2010 o CCT_38C —a—COT_128C <= Ma_280 - Ma_126C @ Sandia

EEREC Mueller-Mach PSSA, 2005 National _
L Laboratories
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Red LED Candidate Materials

Energy (eV)

Fundamental problem: Indirect

AlGalnP

Krames, J. Displ. Technol. 2007

29 1 Ga
27 o= 5
25

InP,X
2.3 1 ez,
21 .

Y
1.9 - —nD
1.7 | (Al Gay ) 52lNg 1P '
15 ks nP,1
13 , , l

54 55 56 57 58
Lattice Constant (A)

band cross-over at ~553 nm
( ~55% AlInP)

Recent Advance: Osram prototype red LED

0% |

S0%

40%7

30%

20%-

10%-

External Quantum Efficiency

0% | . . \ —
380 600 620 640 660 680
Philips Lumileds

Peak Wavelength (nm)

Reduced carrier confinement,
bandgap shift with temperature
- low EQE at shorter A

(07-2010, LED magazine)

* claims reduced temperature dependence

* 615 nm (typical FWHM~18 nm)
\44% efficiency @ 350 mA (1x1 mm?)

SSLS
EERC

(In)GaNP

ﬁO.S% N enables direct
b

andgap, yellow to red emisQ

* Potential advantages
- larger band offsets

- weaker temp. dep. of bandgap
- transparent (GaP) substrates

0.05+ RT-PL

GaNP
LED
Reference
InGaP
epilayer

0.04 -

o
o
@

Intensity (a. u.)
o
o
N

o
o
=

LY
0.00} bl M

5000 6000 7000 8000 9000
Wavelength (A)

* Qutstanding issues:

- efficiency
kbroad linewidths

Xin (UCSD)
APL 2000

/

- Direct red emitter solution not clear

Sandia
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Novel Red Down-conversion Materials

Eu3*-doped tantalate phosphors

‘\%?r

SANDIA: M. Nyman et al. J. Am. Chem Soc. 2009
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L. E. Shea Rohwer, Sandia

* narrow-band
4f-> Af transition

*K(Re)Ta,0,
(Re=Gd, Y. Lu) host,
Blue absorption

* QE ~ 80%
610 nm peak

*~3% thermal
quenching @ 130°C

*Challenge:
broadening blue
absorption band

SSLS
EERC

Quantum Conversion Efficiency (%)

Band gap or Photen Energy {eV)
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3M: M. A. Haase et al. APL 96, 231116 (2010)
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6.z

4
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* [I-VI QWs pumped
by blue LEDs

* Avoids p-type
doping challenges
in direct 1I-VI LEDs

* Green-to-red
emission, tunable
by alloy composition

Blue LED
A

| | Yellow
|
1

0.2

[ A

400 450

500 550 600 650
Wavelangth (nm}

« Quantum Efficiency
60-70%

 Linewidths ~15 nm
* Reliability issues?
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Third Grand Challenge:
Filling the “green-yellow gap”

Figure: M. Krames, Philips Lumileds

>I 1 1 1
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c 1 1
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c 1 Q!
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2 7 1 ? 1
x | |
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Peak Wavelength (nm)
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. RGgB (green phosphor)

i vS.

RYGB (all LED)
approach

L

1
400 550 700 ' 400 550 700 nm

“9“3 SSLS

EERC

v

How critical is an LED solution?

» Broad sources (e.g., phosphors) are
better tolerated in green-yellow region

» Stokes loss not as large as for red,
but still limiting overall efficiency

536nm (15%) 614 nm (25%)

« Could enable all-LED white sources and
“smart lighting” opportunities...

Productivity

RPI “Smart Lighting”

Comfort - Engineering Research Center | Health
Therapeutic
The Right Light Lighting
where you want it, &

automatically Biosensing

1
Energy Efficient | !.lghtlng FyAsens |
Sy k . interfaced to external
Lighting Systems = & iy I
grid & building systems /)
e
v

~ Adaptive Lighting Lighting and Data at
Systems the same time

/ Information

Industrial Applications

Sandia
National _
Figure: R. Karlicek, Green Photonics Forum, 2010 Laboratories



Materials Challenges of Green-Yellow InGaN LEDs

The green-yellow efficiency loss is inextricably linked with the evolution of
InGaN materials properties with increasing indium composition of the alloy

-, Major materials issues related to high indium alloys:
S M

InGaN « Thermal instability=> require lower growth temperatures
QWs -\EI}G—%N - potential for increased impurities,defects, 3D growth
A « Lattice-mismatch strain when grown on GaN epilayers

—> reduced indium incorporation efficiency
n-GaN - compositional instabilities nGaN
: - enhanced defect formation
Sapphire - piezoelectric polarization GaN

Impurities and point defects 3D growth modes Compositional instabilities “V- defects”

&

Spatial map of
InGaN QW —

composition & Growth

direction

Wright et al., JAP 2002 Oliver et al., JAP 2005 Gerthsen, et al., Phys. Stat. Sol. A (2000) Scholz et al. Mat Sci & Eng B (1997)

s SSLS Sandia
B EERE @ LNaal}g]rg?t!ries
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Non-Polar/Semi-polar LEDs

Piezoelectric polarization vs.

crystal orientation

0-03( Semi-polar

0.02

0.01 ¢

Piezoelectric polarization (C/m?)

0 30 60
Tilt angle (degree)

Figure: U. T. Schwarz PSS RRL (2007)

s

i

v

- Breakthrough:

60% 1
By UCSB s

o
o
ES

40%

30%

External Quantum Efficiency

0%

_ NO6
UCsSB j "o---m _ & By'Nichia
350 450 550 650
Peak Wavelength (nm)

Non-polar/semi-polar LEDs (UCSB)

20%

10% -

SSLDC 2006 (Al Ga, ) ;,In P

- /l In Ga, N /\\ o
Nonpolar
UCSB

If.l 'I
Semipolar4ff£] IEI"‘J |

Figure and LED photos: S. Nakamura, Raleigh Workshop, 2010

- Semipolar: (11-22),

high quality, thick ( ~1 cm) HVPE c-plane

GaN substrates; cut into alternative
orientations (e.g., Mitsubishi)

SSLS

radllEEREC

indium incorporation
efficiency may be

comparable to, or greater than, c-plane

Northrup, APL, 2009

()
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Nanostructured InGaN Materials

GaN nanowires No threading defects Strain Accomodation Broad range of emission |

(nanorods)

- S0nm

980nm

Li et al., Appl. Phys. Lett. (2008)
(Sandia)

* highly aligned “ 1D” structures v
(0001) A1,O, substrate

i InGaN
E
- -
GaN

*Self-assembly or directed-
assembly approaches Kishino et al., Proc. SPIE 2007

» Compatible with a wide range of substrates (including Si)

» Can be grown with no threading defects
« Lateral structure allows strain accommodation
» 1D geometry may provide light extraction benefits

Normalized Photoluminescence

~1.7X
drop in
PL from
UV to red

Intensity (a.u.)

400 500 600 700 800
Wavelength (nm)

Growth by Halide Chemical Vapor Deposition
Kuykendall et al., Nat Mat. 2007

“g“ SSLS
I® ===C

v

Potential for solving
red problem also?

()

Sandia
National _
Laboratories




Nanostructured InGaN LEDs

Axial LED Geometries

@f-assembled Nanorods, p-GaN Planarization

Kishino et al., Proc. SPIE 2007
SEM view
a—p 300-400 nm

Light
p-transparent contact

er— n-GaN : Si

Cu heat sink

leads to broad spectra
Also, Spin-on-glass planarization Kim etal., Nanolett

—Indium composition variations between nanorods;

2004

Outstanding Issues:

* NW uniformity for InGaN
composition and color control
- Selective area growth l
* Practical device architectures

‘“ﬁ* SSLS ——
I® =520

v

Radial (Core-Shell) LED Geometries

n-GaN/InGaN/p-GaN core/shell Nanov@
Qian et al., Nat Mat. 2005

P-GaN

\

[=2]
o (=]
i Ik 1

o] E [=1]
o
1

(=]
1

o
1

300 400 500 600 700
Wavelength (nm)

Normalized intensity (a.u.)

Single NW:
EQE= 3.9%
@ 540 nm

/

Current (uA)

10

1 1 1
-10 -5 0 5
Voltage (V)

Selective-area GaN/InGaN nanorod growth through patterned Ti mask (PA-MBE)

PL
Images

i Sekiguchi,
APL 2010

()

Ly L alt o i
(b) D=159nm
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Conclusions

SSL has the potential to move significantly beyond traditional ~ LED Chip
lighting, providing greater efficiencies and functionality

Breakdown of white LED component efficiencies allows an
assessment of the most critical technical roadblocks to 50%
and higher efficiency SSL.: Packaged LED

LED Efficiency droop:
- Designs to reduce carrier density, improve carrier injection
efficiency showing promise
- More accurate models needed to elucidate nonradiative
mechanisms

Narrow band red emitter
- Major breakthrough needed in direct red emitters
- Novel down conversion materials ( Eu3+ tantalate
phoshors, II-VI converters) show promise

Bridging the green-yellow gap in LED efficiency
- Enabler for “smart lighting” concepts
- Examples of emerging approaches: semipolar
and nanostructured InGaN

Track light

Figures from DOE EERE SSL MYPP March 2010
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