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FISH is a scripting language built into the FLAC code (Fast Langrangian Analysis of Continua), 
available from Itasca Consulting Group, Minneapolis, MN. Sandia holds a licensed copy of FLAC 
7.0.411 (S/N 213-001-0683-16559). The FISH program file described here implements the Munson-
Dawson (MD) constitutive model for creep of intact salt (Munson et al. 1989). A similar implementation 
was described by Jove-Colon et al. (2012). This program file was written entirely by E. Hardin, and 
submitted for Sandia Review & Approval as a step toward releasing it to members of the U.S.-German
collaboration on repositories in salt (Hansen et al. 2013).

The script is shown in Table 1. Lines 1 to 208 comprise the MD constitutive model, and can be used 
with any FLAC process that invokes the CONFIG CREEP command. It follows the instructions for 
constitutive models described in the FLAC documentation. It is a non-recursive model except for the 
internal variable mdiv that is recursive over all time steps, and tracks a total strain measure used to 
control transition from transient to steady-state creep, on both loading and unloading.

The remainder of the script (lines 209 to 297) is a demonstration problem. It starts by declaring values 
for a set of parameters, all of which have names beginning with “md.” It then creates a 2-D grid with a 
semi-circular opening representing an underground drift (Figure 1), using a gridding method developed 
in Example 2.18 of the FLAC 7.0 Theory and Background manual. It assigns the constitutive model, sets 
the displacement boundary conditions, and loads the model domain from the top boundary. A number of 
histories are established to output displacement of the top, bottom and side of the drift opening. Finally, 
it sets the parameters for automatic time step adjustment, then executes the time stepping, and outputs a 
final history. An example output (x-displacement) is also shown in Figure 1.

Pursuant to review and approval of this memo, it will be available for unclassified, unlimited release.
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Figure 1. Demonstration problem results showing deformed model grid (left) and contoured x-
displacement output (right) after approximately 30,000 time steps corresponding to 1.6109 seconds 
(~50 years).

Table 1.  FISH script for Munson-Dawson multi-mechanisn constitutive model for intact salt (lines 1 to 
208), and demonstration program.

1 ;
2 ; FISH user-defined constitutive model:
3 ; multi-mechanism intact salt model, steady-state part only
4 ;
5 def mdtransint
6 constitutive_model 198
7 ;
8 f_prop mdevs mdtvs mddevs
9 f_prop mddens mdiv sum_mdiv
10 f_prop mdepstar
11 ;
12 case_of mode
13 ;
14 ; --- initialization ---
15 ;
16   case 1
17 ;
18 ; intact salt model initialization
19 ;
20    mdepstar = 0.
21    mdiv = 0.
22    sum_mdiv = 0.
23 ;
24 ; --- running section --- intact salt model
25 ;
26   case 2
27 ;
28 ;  trap an initial elastic (crtdel <= 0.) calculation



Memo to File - 3 - March 25, 2014

29 ;
30    if crtdel <= 0. then
31 ;
32     mdetvol = zde11 + zde22 + zde33
33     mdetd11 = zde11 - mdetvol/3.
34     mdetd12 = zde12
35     mdetd22 = zde22 - mdetvol/3.
36     mdetd33 = zde33 - mdetvol/3.
37 ;
38     zs11 = zs11 + 2.*mdshear*mdetd11 + mdbulk*mdetvol
39     zs12 = zs12 + 2.*mdshear*mdetd12
40     zs22 = zs22 + 2.*mdshear*mdetd22 + mdbulk*mdetvol
41     zs33 = zs33 + 2.*mdshear*mdetd33 + mdbulk*mdetvol
42 ;
43    else
44 ;
45 ; stress invariants (plane strain)
46 ;
47     mdii1 = zs11 + zs22 + zs33
48     mdmean = mdii1/3.
49     mdii2 = zs11*zs22 + zs22*zs33 + zs11*zs33
50     mdii2 = mdii2 - zs12^2
51     mdii3 = zs11*zs22*zs33 - zs33*zs12^2
52     mdjj2 = mdii1*mdii1/3. - mdii2
53     mdjj3 = (2./27.)*mdii1^3 - mdii1*mdii2/3. + mdii3
54 ;
55 ; Lode angle (if J2 = 0 then J3 = Lode angle = 0)
56 ;
57     if mdjj2 = 0 then
58      mdlode = 0.
59      mdseff = 0.
60 ;
61      mds11 = zs11 - mdmean
62      mds12 = zs12
63      mds22 = zs22 - mdmean
64      mds33 = zs33 - mdmean
65 ;
66      mdt11 = 0.
67      mdt12 = 0.
68      mdt22 = 0.
69      mdt33 = 0.
70 ;
71      mdecx1 = 0.
72      mdecx2 = 0.
73      mdseff = 0.
74      mdff = 1.
75     else
76      mdarg = -3.*1.73205081*mdjj3/(2.*mdjj2*sqrt(mdjj2))
77      if abs(mdarg) < (1.-mdepsilon) then
78       mdlode = asin(mdarg)/3.
79       mdseff = 2*sqrt(mdjj2)*mdcosp
80      else
81       mdlode = sgn(mdarg)*3.14159265358979/3.
82       mdseff = sqrt(3*mdjj2)
83      endif
84 ;
85 ; update current stresses zs11, zs22, zs33, zs12
86 ; first calculate term coefficients for flow function
87 ;
88      mdcosp = cos(mdlode)
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89      mdcos3p = cos(3.*mdlode)
90      mdecx1 = cos(2.*mdlode)/(mdcos3p*sqrt(mdjj2))
91      mdecx2 = 1.73205081*sin(mdlode)/(mdcos3p*mdjj2)
92 ;
93 ; then deviator tensor and t-tensor
94 ;
95      mds11 = zs11 - mdmean
96      mds12 = zs12
97      mds22 = zs22 - mdmean
98      mds33 = zs33 - mdmean
99 ;
100      mdt11 = mds11^2 + mds12^2 - 2.*mdjj2/3.
101      mdt12 = mds11*mds12 + mds12*mds22
102      mdt22 = mds12^2 + mds22^2 - 2*mdjj2/3.
103      mdt33 = mds33^2 - 2.*mdjj2/3.
104 ;
105 ; find transient strain limit and scaling function F
106 ;
107      mdepstar = mdkk0*exp(mdc*mdtemp)*((mdseff/mdshear)^mdm)
108      if mdiv < mdepstar then
109       mdworkhard = mdalphaw+mdbetaw*log(mdseff/mdshear)
110       mdff = exp(mdworkhard*(1.-(mdiv/mdepstar))^2)
111      endif
112      if mdiv = mdepstar then
113       mdff = 1.
114      endif
115      if mdiv > mdepstar then
116       mdff = exp(-mdrecovery*(1.-(mdiv/mdepstar))^2)
117      endif
118 ;
119     endif
120 ;
121 ; calculate multi-mechanism creep rates
122 ;
123     mdeps1dot = mdaa1*((mdseff/mdshear)^mdn1)*exp(-mdqq1rr/mdtemp)
124     mdeps2dot = mdaa2*((mdseff/mdshear)^mdn2)*exp(-mdqq2rr/mdtemp)
125     if mdseff >= mdsig0 then
126      mdeps3dot = mdbb1*exp(-mdqq1rr/mdtemp)+mdbb2*exp(-mdqq2rr/mdtemp)
127      mdeps3dot = mdeps3dot*sinh(mdq*(mdseff-mdsig0)/mdshear)
128     else
129      mdeps3dot = 0.
130     endif
131     mdepsdot = mdeps1dot + mdeps2dot + mdeps3dot
132 ;
133 ; total creep strain rates
134 ;
135     mdecr11 = mdff*mdepsdot*(mdecx1*mds11 + mdecx2*mdt11)
136     mdecr12 = mdff*mdepsdot*(mdecx1*mds12 + mdecx2*mdt12)
137     mdecr22 = mdff*mdepsdot*(mdecx1*mds22 + mdecx2*mdt22)
138     mdecr33 = mdff*mdepsdot*(mdecx1*mds33 + mdscx2*mdt33)
139 ;
140 ; decompose creep strain rate into vol. and dev. parts
141 ;
142     mdecrmean = (mdecr11 + mdecr22 + mdecr33)/3.
143     mdecrd11 = mdecr11 - mdecrmean
144     mdecrd12 = mdecr12
145     mdecrd22 = mdecr22 - mdecrmean
146     mdecrd33 = mdecr33 - mdecrmean
147 ;
148 ; decompose total strain increments into vol. and dev. parts
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149 ;
150     mdetmean = (zde11 + zde22 + zde33)/3.
151     mdetd11 = zde11 - mdetmean
152     mdetd12 = zde12
153     mdetd22 = zde22 - mdetmean
154     mdetd33 = zde33 - mdetmean
155 ;
156 ; new total strain rates corrected for creep strain rates
157 ;
158     mderv = mdetmean/crtdel - mdecrmean
159     mderd11 = mdetd11/crtdel - mdecrd11
160     mderd12 = mdetd12/crtdel - mdecrd12
161     mderd22 = mdetd22/crtdel - mdecrd22
162     mderd33 = mdetd33/crtdel - mdecrd33
163 ;
164 ; then Cauchy stress rates
165 ;
166     mdsr11 = 2.*mdshear*mderd11 + mdbulk*mderv*3
167     mdsr12 = 2.*mdshear*mderd12
168     mdsr22 = 2.*mdshear*mderd22 + mdbulk*mderv*3
169     mdsr33 = 2.*mdshear*mderd33 + mdbulk*mderv*3
170 ;
171 ; and new stresses
172 ;
173     zs11 = zs11 + crtdel*mdsr11
174     zs12 = zs12 + crtdel*mdsr12
175     zs22 = zs22 + crtdel*mdsr22
176     zs33 = zs33 + crtdel*mdsr33
177 ;
178 ; update internal variable
179 ;
180     mdivrate = (mdff-1.)*mdepsdot
181     sum_mdiv = sum_mdiv + crtdel*mdivrate
182 ;
183 ; subzone accumulation logic for accumulated quantities
184 ; update internal variable
185 ;
186     if zsub > 0. then
187      mdiv = mdiv + sum_mdiv/zsub
188      sum_mdiv = 0.
189     endif
190    endif
191 ;
192 ; --- max modulus ---
193 ;
194   case 3
195    dummy = out('case 3')
196    cm_max = mdbulk + 4.*mdshear/3.
197    sm_max = mdshear
198 ;
199 ; --- thermal stresses ---
200 ;
201   case 4
202    dummy = out('case 4')
203 ;  ztsa = ztea*mdbulk
204 ;  ztsb = zteb*mdbulk
205 ;  ztsc = ztec*mdbulk
206 ;  ztsd = zted*mdbulk
207   end_case
208 end ; end of mdtransint fish model
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209 ;
210 ; demonstration problem for mdtransint model (ventilation drift)
211 ; initialize properties for creep model
212 ; don't use property statements for these--
213 ; unless they are to be set interactively in FLAC
214 ;
215 set mdshear 1.24e10
216 set mdbulk 2.07e10
217 set mdepsilon 0.000001
218 ;
219 set mdtemp 313.15 ; uniform rock temperature
220 set mdaa1 8.386e22
221 set mdn1 5.5
222 set mdqq1rr 12580
223 set mdaa2 9.672e12
224 set mdn2 5.
225 set mdqq2rr 5032
226 set mdbb1 6.086e6
227 set mdbb2 3.034e-2
228 set mdq 5335
229 set mdsig0 20.57e6
230 set mdkk0 6.275e5
231 set mdc 9.198e-3
232 set mdm 3.
233 set mdalphaw -17.37
234 set mdbetaw -7.738
235 set mdrecovery 0.58
236 ;
237 ; set up demonstration grid, models and BCs
238 ; see FLAC 7.0 manuals for theory and syntax
239 ; grid comes from Example 2.18 of the Theory and Background manual
240 ;
241 config creep
242 grid 33 40
243 mod elas  ; to see the grid
244 prop density 2140 shear 1.24e10 bulk 2.07e10
245 set gravity = 9.81
246 set large
247 ;
248 ; make holes in big grid for inserts
249 ;
250 mod null i=17
251 mod null i=17,33 j=33,40
252 mod null i=9,16 j=13,28
253 ;
254 ; now insert separated blocks with squeezing,
255 ; using grid points
256 ;
257 gen 8.0,12.0 8.0,28.0 16.0,28.0 16.0,12.0 i=18,34 j=1,33
258 ;
259 ; now attach blocks, also using grid points
260 ; start with the "long" way around, then do the direct
261 ; mapping comes from previous block position, bounded by null
262 ;
263 attach as      from 9,13 to 17,13 bs      from 18,1 to 34,1
264 attach as      from 9,13 to 9,29 bs      from 18,1 to 18,33
265 attach as      from 9,29 to 17,29 bs      from 18,33 to 34,33
266 ;
267 gen circ 16.0 20.0 1.88
268 mod null reg 33,16
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269 ;
270 fix x i=1
271 fix x i=17
272 fix x i=34 j=1,33
273 fix y j=1 i=1,17
274 ;
275 apply syy -14e6 from 1,41 to 17,41
276 ;
277 solve
278 ;
279 mod mdtransint reg i=2 j=2
280 mod mdtransint reg i=19 j=2
281 set creeptime 0.0
282 history 1 crtime
283 history 2 unbalanced
284 history 3 ydisp i=34, j=21
285 history 4 ydisp i=34, j=13
286 history 5 xdisp i=30, j=17
287 ;
288 set mindt=1.0E-6
289 set maxdt=2.0E5
290 set fobl=5000.
291 set fobu=50000.
292 set lmul=2.
293 set umul=0.5
294 set crdt=auto
295 ;
296 step 28000
297 history write 3 4 5 vs 1 begin 3000 end 28000 skip 100
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