
Exceptional Service in the National Interest

Operated for the U.S. Department of Energy’s
National Nuclear Security Administration

by Sandia Corporation

Albuquerque, New Mexico 87185-0747

date: March 25, 2014

 to: File

from: Ernest Hardin, MS 0747 (06224)

subject: FISH program file for the Munson-Dawson multi-mechanism model of salt creep

FISH is a scripting language built into the FLAC code (Fast Langrangian Analysis of Continua),
available from Itasca Consulting Group, Minneapolis, MN. Sandia holds a licensed copy of FLAC
7.0.411 (S/N 213-001-0683-16559). The FISH program file described here implements the Munson-
Dawson (MD) constitutive model for creep of intact salt (Munson et al. 1989). A similar implementation
was described by Jove-Colon et al. (2012). This program file was written entirely by E. Hardin, and
submitted for Sandia Review & Approval as a step toward releasing it to members of the U.S.-German
collaboration on repositories in salt (Hansen et al. 2013).

The script is shown in Table 1. Lines 1 to 208 comprise the MD constitutive model, and can be used
with any FLAC process that invokes the CONFIG CREEP command. It follows the instructions for
constitutive models described in the FLAC documentation. It is a non-recursive model except for the
internal variable mdiv that is recursive over all time steps, and tracks a total strain measure used to
control transition from transient to steady-state creep, on both loading and unloading.

The remainder of the script (lines 209 to 297) is a demonstration problem. It starts by declaring values
for a set of parameters, all of which have names beginning with “md.” It then creates a 2-D grid with a
semi-circular opening representing an underground drift (Figure 1), using a gridding method developed
in Example 2.18 of the FLAC 7.0 Theory and Background manual. It assigns the constitutive model, sets
the displacement boundary conditions, and loads the model domain from the top boundary. A number of
histories are established to output displacement of the top, bottom and side of the drift opening. Finally,
it sets the parameters for automatic time step adjustment, then executes the time stepping, and outputs a
final history. An example output (x-displacement) is also shown in Figure 1.

Pursuant to review and approval of this memo, it will be available for unclassified, unlimited release.

SAND2014-2551P

Memo to File - 2 - March 25, 2014

Figure 1. Demonstration problem results showing deformed model grid (left) and contoured x-
displacement output (right) after approximately 30,000 time steps corresponding to 1.6109 seconds
(~50 years).

Table 1. FISH script for Munson-Dawson multi-mechanisn constitutive model for intact salt (lines 1 to
208), and demonstration program.

1 ;
2 ; FISH user-defined constitutive model:
3 ; multi-mechanism intact salt model, steady-state part only
4 ;
5 def mdtransint
6 constitutive_model 198
7 ;
8 f_prop mdevs mdtvs mddevs
9 f_prop mddens mdiv sum_mdiv
10 f_prop mdepstar
11 ;
12 case_of mode
13 ;
14 ; --- initialization ---
15 ;
16 case 1
17 ;
18 ; intact salt model initialization
19 ;
20 mdepstar = 0.
21 mdiv = 0.
22 sum_mdiv = 0.
23 ;
24 ; --- running section --- intact salt model
25 ;
26 case 2
27 ;
28 ; trap an initial elastic (crtdel <= 0.) calculation

Memo to File - 3 - March 25, 2014

29 ;
30 if crtdel <= 0. then
31 ;
32 mdetvol = zde11 + zde22 + zde33
33 mdetd11 = zde11 - mdetvol/3.
34 mdetd12 = zde12
35 mdetd22 = zde22 - mdetvol/3.
36 mdetd33 = zde33 - mdetvol/3.
37 ;
38 zs11 = zs11 + 2.*mdshear*mdetd11 + mdbulk*mdetvol
39 zs12 = zs12 + 2.*mdshear*mdetd12
40 zs22 = zs22 + 2.*mdshear*mdetd22 + mdbulk*mdetvol
41 zs33 = zs33 + 2.*mdshear*mdetd33 + mdbulk*mdetvol
42 ;
43 else
44 ;
45 ; stress invariants (plane strain)
46 ;
47 mdii1 = zs11 + zs22 + zs33
48 mdmean = mdii1/3.
49 mdii2 = zs11*zs22 + zs22*zs33 + zs11*zs33
50 mdii2 = mdii2 - zs12^2
51 mdii3 = zs11*zs22*zs33 - zs33*zs12^2
52 mdjj2 = mdii1*mdii1/3. - mdii2
53 mdjj3 = (2./27.)*mdii1^3 - mdii1*mdii2/3. + mdii3
54 ;
55 ; Lode angle (if J2 = 0 then J3 = Lode angle = 0)
56 ;
57 if mdjj2 = 0 then
58 mdlode = 0.
59 mdseff = 0.
60 ;
61 mds11 = zs11 - mdmean
62 mds12 = zs12
63 mds22 = zs22 - mdmean
64 mds33 = zs33 - mdmean
65 ;
66 mdt11 = 0.
67 mdt12 = 0.
68 mdt22 = 0.
69 mdt33 = 0.
70 ;
71 mdecx1 = 0.
72 mdecx2 = 0.
73 mdseff = 0.
74 mdff = 1.
75 else
76 mdarg = -3.*1.73205081*mdjj3/(2.*mdjj2*sqrt(mdjj2))
77 if abs(mdarg) < (1.-mdepsilon) then
78 mdlode = asin(mdarg)/3.
79 mdseff = 2*sqrt(mdjj2)*mdcosp
80 else
81 mdlode = sgn(mdarg)*3.14159265358979/3.
82 mdseff = sqrt(3*mdjj2)
83 endif
84 ;
85 ; update current stresses zs11, zs22, zs33, zs12
86 ; first calculate term coefficients for flow function
87 ;
88 mdcosp = cos(mdlode)

Memo to File - 4 - March 25, 2014

89 mdcos3p = cos(3.*mdlode)
90 mdecx1 = cos(2.*mdlode)/(mdcos3p*sqrt(mdjj2))
91 mdecx2 = 1.73205081*sin(mdlode)/(mdcos3p*mdjj2)
92 ;
93 ; then deviator tensor and t-tensor
94 ;
95 mds11 = zs11 - mdmean
96 mds12 = zs12
97 mds22 = zs22 - mdmean
98 mds33 = zs33 - mdmean
99 ;
100 mdt11 = mds11^2 + mds12^2 - 2.*mdjj2/3.
101 mdt12 = mds11*mds12 + mds12*mds22
102 mdt22 = mds12^2 + mds22^2 - 2*mdjj2/3.
103 mdt33 = mds33^2 - 2.*mdjj2/3.
104 ;
105 ; find transient strain limit and scaling function F
106 ;
107 mdepstar = mdkk0*exp(mdc*mdtemp)*((mdseff/mdshear)^mdm)
108 if mdiv < mdepstar then
109 mdworkhard = mdalphaw+mdbetaw*log(mdseff/mdshear)
110 mdff = exp(mdworkhard*(1.-(mdiv/mdepstar))^2)
111 endif
112 if mdiv = mdepstar then
113 mdff = 1.
114 endif
115 if mdiv > mdepstar then
116 mdff = exp(-mdrecovery*(1.-(mdiv/mdepstar))^2)
117 endif
118 ;
119 endif
120 ;
121 ; calculate multi-mechanism creep rates
122 ;
123 mdeps1dot = mdaa1*((mdseff/mdshear)^mdn1)*exp(-mdqq1rr/mdtemp)
124 mdeps2dot = mdaa2*((mdseff/mdshear)^mdn2)*exp(-mdqq2rr/mdtemp)
125 if mdseff >= mdsig0 then
126 mdeps3dot = mdbb1*exp(-mdqq1rr/mdtemp)+mdbb2*exp(-mdqq2rr/mdtemp)
127 mdeps3dot = mdeps3dot*sinh(mdq*(mdseff-mdsig0)/mdshear)
128 else
129 mdeps3dot = 0.
130 endif
131 mdepsdot = mdeps1dot + mdeps2dot + mdeps3dot
132 ;
133 ; total creep strain rates
134 ;
135 mdecr11 = mdff*mdepsdot*(mdecx1*mds11 + mdecx2*mdt11)
136 mdecr12 = mdff*mdepsdot*(mdecx1*mds12 + mdecx2*mdt12)
137 mdecr22 = mdff*mdepsdot*(mdecx1*mds22 + mdecx2*mdt22)
138 mdecr33 = mdff*mdepsdot*(mdecx1*mds33 + mdscx2*mdt33)
139 ;
140 ; decompose creep strain rate into vol. and dev. parts
141 ;
142 mdecrmean = (mdecr11 + mdecr22 + mdecr33)/3.
143 mdecrd11 = mdecr11 - mdecrmean
144 mdecrd12 = mdecr12
145 mdecrd22 = mdecr22 - mdecrmean
146 mdecrd33 = mdecr33 - mdecrmean
147 ;
148 ; decompose total strain increments into vol. and dev. parts

Memo to File - 5 - March 25, 2014

149 ;
150 mdetmean = (zde11 + zde22 + zde33)/3.
151 mdetd11 = zde11 - mdetmean
152 mdetd12 = zde12
153 mdetd22 = zde22 - mdetmean
154 mdetd33 = zde33 - mdetmean
155 ;
156 ; new total strain rates corrected for creep strain rates
157 ;
158 mderv = mdetmean/crtdel - mdecrmean
159 mderd11 = mdetd11/crtdel - mdecrd11
160 mderd12 = mdetd12/crtdel - mdecrd12
161 mderd22 = mdetd22/crtdel - mdecrd22
162 mderd33 = mdetd33/crtdel - mdecrd33
163 ;
164 ; then Cauchy stress rates
165 ;
166 mdsr11 = 2.*mdshear*mderd11 + mdbulk*mderv*3
167 mdsr12 = 2.*mdshear*mderd12
168 mdsr22 = 2.*mdshear*mderd22 + mdbulk*mderv*3
169 mdsr33 = 2.*mdshear*mderd33 + mdbulk*mderv*3
170 ;
171 ; and new stresses
172 ;
173 zs11 = zs11 + crtdel*mdsr11
174 zs12 = zs12 + crtdel*mdsr12
175 zs22 = zs22 + crtdel*mdsr22
176 zs33 = zs33 + crtdel*mdsr33
177 ;
178 ; update internal variable
179 ;
180 mdivrate = (mdff-1.)*mdepsdot
181 sum_mdiv = sum_mdiv + crtdel*mdivrate
182 ;
183 ; subzone accumulation logic for accumulated quantities
184 ; update internal variable
185 ;
186 if zsub > 0. then
187 mdiv = mdiv + sum_mdiv/zsub
188 sum_mdiv = 0.
189 endif
190 endif
191 ;
192 ; --- max modulus ---
193 ;
194 case 3
195 dummy = out('case 3')
196 cm_max = mdbulk + 4.*mdshear/3.
197 sm_max = mdshear
198 ;
199 ; --- thermal stresses ---
200 ;
201 case 4
202 dummy = out('case 4')
203 ; ztsa = ztea*mdbulk
204 ; ztsb = zteb*mdbulk
205 ; ztsc = ztec*mdbulk
206 ; ztsd = zted*mdbulk
207 end_case
208 end ; end of mdtransint fish model

Memo to File - 6 - March 25, 2014

209 ;
210 ; demonstration problem for mdtransint model (ventilation drift)
211 ; initialize properties for creep model
212 ; don't use property statements for these--
213 ; unless they are to be set interactively in FLAC
214 ;
215 set mdshear 1.24e10
216 set mdbulk 2.07e10
217 set mdepsilon 0.000001
218 ;
219 set mdtemp 313.15 ; uniform rock temperature
220 set mdaa1 8.386e22
221 set mdn1 5.5
222 set mdqq1rr 12580
223 set mdaa2 9.672e12
224 set mdn2 5.
225 set mdqq2rr 5032
226 set mdbb1 6.086e6
227 set mdbb2 3.034e-2
228 set mdq 5335
229 set mdsig0 20.57e6
230 set mdkk0 6.275e5
231 set mdc 9.198e-3
232 set mdm 3.
233 set mdalphaw -17.37
234 set mdbetaw -7.738
235 set mdrecovery 0.58
236 ;
237 ; set up demonstration grid, models and BCs
238 ; see FLAC 7.0 manuals for theory and syntax
239 ; grid comes from Example 2.18 of the Theory and Background manual
240 ;
241 config creep
242 grid 33 40
243 mod elas ; to see the grid
244 prop density 2140 shear 1.24e10 bulk 2.07e10
245 set gravity = 9.81
246 set large
247 ;
248 ; make holes in big grid for inserts
249 ;
250 mod null i=17
251 mod null i=17,33 j=33,40
252 mod null i=9,16 j=13,28
253 ;
254 ; now insert separated blocks with squeezing,
255 ; using grid points
256 ;
257 gen 8.0,12.0 8.0,28.0 16.0,28.0 16.0,12.0 i=18,34 j=1,33
258 ;
259 ; now attach blocks, also using grid points
260 ; start with the "long" way around, then do the direct
261 ; mapping comes from previous block position, bounded by null
262 ;
263 attach as from 9,13 to 17,13 bs from 18,1 to 34,1
264 attach as from 9,13 to 9,29 bs from 18,1 to 18,33
265 attach as from 9,29 to 17,29 bs from 18,33 to 34,33
266 ;
267 gen circ 16.0 20.0 1.88
268 mod null reg 33,16

Memo to File - 7 - March 25, 2014

269 ;
270 fix x i=1
271 fix x i=17
272 fix x i=34 j=1,33
273 fix y j=1 i=1,17
274 ;
275 apply syy -14e6 from 1,41 to 17,41
276 ;
277 solve
278 ;
279 mod mdtransint reg i=2 j=2
280 mod mdtransint reg i=19 j=2
281 set creeptime 0.0
282 history 1 crtime
283 history 2 unbalanced
284 history 3 ydisp i=34, j=21
285 history 4 ydisp i=34, j=13
286 history 5 xdisp i=30, j=17
287 ;
288 set mindt=1.0E-6
289 set maxdt=2.0E5
290 set fobl=5000.
291 set fobu=50000.
292 set lmul=2.
293 set umul=0.5
294 set crdt=auto
295 ;
296 step 28000
297 history write 3 4 5 vs 1 begin 3000 end 28000 skip 100

References

Hansen, F.D., K. Kulmann, W. Steininger and E. Biurrun 2013.Proceedings of 3rd US/German
Workshop on Salt Repository Research, Design and Operation. Sandia National Laboratories,
Albuquerque, NM. SAND2013-1231P.

Jove-Colon, C.F., J.A. Greathouse, S. Teich-McGoldrick, R.T. Cygan, T. Hadgu, J.E. Bean, M.J.
Martinez, P.L. Hopkins, J.G. Argüello, F.D. Hansen, F.A. Caporuscio, M. Cheshire, S.S. Levy, M.K.
McCarney, H.R. Greenberg, T.J. Wolery, M. Sutton, J. Rutqvist, C.I. Steefel, J. Birkholzer, H.-H. Liu,
J.A. Davis, R. Tinnacher, I. Bourg, M. Holmboe and J. Galindez 2012. Evaluation of Generic EBS
Design Concepts and Process Models: Implications to EBS Design Optimization. U.S. Department of
Energy, Office of Used Nuclear Fuel Disposition. FCRD-USED-2012-000140.

Munson, D.E., Fossum, A.F., and Senseny, P.E. 1989. Advances in Resolution of Discrepancies between
Predicted and Measured WIPP In-situ Room Closures. Sandia National Laboratories, Albuquerque,
NM. SAND88-2948.

