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Hall-magnetohydrodynamic (Hall-MHD) theory, two-fluid simulations, and kinetic

simulations are used to investigate the cross-field transport properties of Kelvin-

Helmholtz instabilities in nonuniform low-beta collisionless plasmas. Hall-MHD anal-

ysis shows how the linear properties of the instability are modified by density gra-

dients and magnetization. High-order accurate two-fluid and kinetic simulations,

with complete dynamics of finite-mass electrons and ions, are applied to a suite of

parameter cases to systematically assess the effects of diamagnetic drift, magneti-

zation, charge separation, and finite Larmor motion. Initialization of exact two-

species kinetic equilibria facilitates the study of isolated physical effects and enables

detailed cross-comparisons between two-fluid and kinetic simulations, including for

cases where ion gyroradii are comparable to gradient scale lengths. For nonuniform

plasmas with significant space charge, the results of two-fluid and kinetic simula-

tions are found to disagree with Hall-MHD predictions. Kelvin-Helmholtz instability

growth rates, per unit shear, are shown to be smaller when ion diamagnetic drift and

E × B drift are parallel and larger when the two drifts are antiparallel. The effect

is attributed to polarization drift in the shear layer, which leads to redistribution

of charge, alters the electric field that drives plasma advection, and consequently

modifies growth rates. Instability-induced mass transport for different parameters

is characterized in terms of the flux across the shear layer and a simplified diffusion

model. Distribution functions from kinetic simulations are shown to deviate substan-

tially from Maxwellian reconstructions, indicating the importance of kinetic physics

during the nonlinear phase of the instability.

a)Corresponding author vogman1@llnl.gov
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I. INTRODUCTION

Transport of plasma perpendicular to a background magnetic field is a widely-observed

phenomenon. Magnetic confinement fusion concepts fundamentally rely on understanding

and controlling cross-field transport, as do technologies like Hall thrusters, high-power mag-

netrons, and magnetically insulated transmission lines. In plasmas where the ratio of thermal

pressure to magnetic pressure is much less than unity (i.e. low-beta plasmas) and where the

mean free path is long compared to other scale lengths, cross-field transport properties can

be governed by density gradients, finite Larmor motion, drifts, sheared flows, charge sep-

aration, and microturbulence. In such plasmas, gradient-driven instabilities are candidate

mechanisms of cross-field transport. The Kelvin-Helmholtz (KH) instability, which is driven

by velocity shear, is a well-known example.

Collisionless low-beta plasmas that are subject to anomalous cross-field transport and

that have properties conducive to KH instabilities are characteristic of those found in pulsed

power inertial confinement fusion experiments. Pulsed power technology relies on magneti-

cally insulated transmission lines (MITLs) to deliver megaamps of current to a load – without

high-voltage arcs. Despite magnetic insulation, plasmas produced at electrode surfaces in

MITLs undergo as yet unexplained cross-field transport that results in parasitic currents1–6

and leads to contaminant plasma impinging on the load7,8, thereby undercutting the perfor-

mance of pulsed power experiments1,9. The surface-produced plasmas feature large density

and electric field gradients that result in sheared flows, which can drive KH instabilities and

transport. The near-anode and near-cathode plasmas, as well as their associated electric

field profiles, are shown schematically in Fig. 1.

Plasma conditions in the MITL vary considerably depending on the current pulse, the

distance from the load, and distance from a given electrode surface. The hydrogen plasmas

can have densities as high as 1018 cm−3 at the electrode surface,1 whereas away from the

electrodes densities as low as 1011 cm−3 have been inferred10. The potential drop across

the centimeter-scale anode-cathode gap is typically several megavolts and magnetic fields

can range from zero to more than 200 tesla over the course of a 100 ns current pulse1.

While direct measurements of plasma conditions are limited,1 characteristic conditions at

a fixed distance from the load can be estimated. For a 200 tesla magnetic field, assuming

a density of 2 × 1014 cm−3 and a temperature of 10 keV, the Knudsen number – defined

3



(a) (b)

FIG. 1: Schematic representation of (a) near-anode and (b) near-cathode plasmas that are

produced at electrode surfaces in magnetically insulated transmission lines. Field

orientation and profiles for the species number density, electric field, and ion velocity are

shown separately for the two configurations. The direction of diamagnetic drift for ions

and electrons (assuming uniform temperature) is indicated by red and blue arrows,

respectively. In the anode configuration, the ion diamagnetic drift is in the same direction

as the E ×B drift.

here as the ratio of mean free path to the width of the anode-cathode gap – is on the

order of 105 and the proton-proton collision frequency is seven orders of magnitude smaller

than the proton cyclotron frequency. This means that collisions are expected to have a

negligible effect on transport phenomena in this intermediate MITL environment. As shown

in Fig. 1, the nonuniform plasmas are subject to E×B and diamagnetic drift, have non-zero

space charge, and can feature ion gyroradii that are comparable to gradient scale lengths,

such that their dynamics are governed by multi-fluid and kinetic physics. Significant space

charge is expected since the configuration supports Brillouin-type flows.11 Comprehensive

investigation of KH-instability-driven cross-field transport in this complex setting requires

high-fidelity modeling tools that can isolate the different physical effects.

In classical fluid theory and in plasmas, the energy source for the KH instability is the ki-

netic energy of relative motion of different fluid layers, such that for y-directed velocity with

profile uy(x), larger velocity shear (duy/dx) results in a greater tendency toward mixing and
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instability. A necessary condition for the instability is that the velocity profile must have

an inflection point where d2uy/dx
2 = 0.12 In order to fully capture growth rate dependence

on perturbation wavenumber, the shear layer must have a finite gradient scale length12,13.

For the magnetized plasmas of interest, where flow velocity is perpendicular to the mag-

netic field, the KH instability has been studied using ideal magnetohydrodynamic (MHD)

models14–19, more generalized single-fluid MHD models20–22, quasineutral kinetic-fluid hybrid

models19,23,24, and kinetic models18,19,25–31.

MHD models applied to uniform-density plasmas have shed light on the stabilizing role of

in-plane magnetic fields and compressibility14 and have been used to explore nonlinear prop-

erties like momentum transport, energy transport, and vortex coalescence15,16,19,32. Imposing

infinitesimal gradient scale lengths for density and/or velocity, MHD models that incorporate

finite Larmor radius (FLR) effects have shown that ion gyromotion in nonuniform-density

plasmas can modify KH instability growth rates20,21. For uniform26,27 or nearly-uniform25

density profiles, kinetic theory analysis of KH instabilities has shown how FLR effects lead

to reduced growth rates25,27. Kinetic simulations of nonuniform plasmas have shed light

on mix18 and on the properties of secondary instabilities in the presence of FLR effects29.

Kinetic simulation studies have also explored how vorticity orientation relative to the mag-

netic field affects the development of the KH instability19,29–31,33. The degree to which KH

instabilities – even those modeled using kinetic simulations – are influenced by two-fluid

physics (e.g. charge separation, diamagnetic drift) as opposed to kinetic physics (e.g. FLR

effects, non-Maxwellian distribution functions) remains unclear. Furthermore, in the pres-

ence of FLR effects, the use of fluid equilibria to initialize kinetic simulations18,19,28–31,33

complicates the interpretation of kinetic simulation results19,33,34 and makes it difficult to

isolate single-fluid, multi-fluid, and kinetic physics.

To facilitate a more complete understanding of KH instabilities and associated cross-field

transport in nonuniform collisionless low-beta plasmas, we conduct a systematic investiga-

tion based on Hall-MHD linear theory, two-fluid simulations, and kinetic simulations. By

admitting finite gradient scale lengths for both velocity and density profiles, the Hall-MHD

analysis shows how the linear properties of the instability are modified by density gradi-

ents, magnetization, and perturbation wavenumber. Detailed cross-comparisons between

two-fluid and kinetic simulations are enabled by modeling complete dynamics of finite-mass

electrons and ions and by initialization of self-consistent two-species kinetic equilibria, in-
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cluding for cases where ion gyroradii are comparable to gradient scale lengths35. These

techniques, combined with the use of noise-free high-order accurate numerical methods, al-

low for systematic assessment of two-fluid and kinetic effects both in the linear and nonlinear

phase of the KH instability. The findings demonstrate that diamagnetic drift and charge

separation play an important role in the evolution of the instability, and further show how

FLR effects and non-Maxwellian distribution functions modify the nonlinear dynamics.

This paper is organized as follows. Section II presents the Hall-MHD linear theory anal-

ysis for the KH instability in the presence of density gradients. Growth rates, oscillation

frequencies, and associated eigenfunctions are presented and their dependence on magneti-

zation, perturbation wavelength, and density profiles is characterized. Section III describes

the governing equations and solvers used for two-fluid simulations and kinetic simulations,

and presents the boundary conditions and the shear-layer equilibrium initial conditions for

the nonuniform low-beta plasmas of interest. The procedure for setting up consistent ini-

tializations for two-fluid and kinetic simulations is described. Section IV presents results

of two-fluid and kinetic simulations of KH instabilities in nonuniform plasmas. The linear

phase of the evolution is compared to Hall-MHD theory and the role of diamagnetic drift,

space charge, and finite Larmor radius effects are quantitatively assessed. The nonlinear

phase of the KH instability is investigated for its non-adiabatic dynamics, its mass trans-

port properties, and the degree to which velocity distribution functions deviate away from

a Maxwellian. Section V presents concluding remarks.

II. HALL-MHD LINEAR THEORY ANALYSIS

To capture the properties of KH instabilities in low-beta plasmas with finite density gradi-

ents, we apply Hall-MHD theory, wherein the plasma is treated as isothermal, quasineutral,

and electron inertia is assumed to be negligible. The magnetic field is assumed to be uniform

and time-independent, such that magnetic fields generated by plasma currents are neglected.

Since the magnetic moment is in effect constant, these assumptions are consistent with adi-

abatic theory for a 2D strongly-magnetized collisionless plasma. As is often justified for

low-beta plasmas in a uniform magnetic field,36,37 the electric field is treated as electro-

static, such that it can be expressed as the gradient of an electrostatic potential: E = −∇φ.

Collisions and associated resistivity terms are neglected. The governing equations for a
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hydrogen plasma are thus

∂n

∂t
+∇ · (nui) = 0 (1)

min
∂ui
∂t

+minui · ∇ui +∇Pi − qin (−∇φ+ ui ×B) = 0 (2)

∇Pe − qen (−∇φ+ ue ×B) = 0 (3)

∇ ·
∑
s=e,i

qsnsus = 0 (4)

where B is the magnetic field, qi = −qe = e is the particle charge, n = ni = ne is the number

density, mi is the ion mass, us is the flow velocity, and Ps is the pressure for particle species s.

The ideal gas law is used as the equation of state, such that Pi = Pe = nT , where T = Ti = Te

is the temperature, which is assumed to be uniform. Equation (4) is a direct consequence

of the quasineutrality approximation. Often in MHD analysis the ion momentum equation

(Eq. (2)) and electron momentum equation (Eq. (3)) are combined, whereas here these

equations are kept separate to facilitate the analysis of velocity profiles without having to

specify currents. Because the ∇Pe term is retained, this model is sometimes referred to as

“extended MHD”.

A. Linear theory dispersion relation

The system of equations is linearized about an equilibrium in which the magnetic field

B0 = Bz0ẑ is uniform and the flow velocity for ions and electrons is along the y direction.

The equilibrium species flow velocity us0y(x), electrostatic potential φ0(x), and number

density n0(x) vary as a function of x and are independent of y. The equilibrium state is

assumed to be independent of the z coordinate, such that dynamics are treated as being

in the (x, y) plane. The equilibrium is perturbed with a wave vector k = kyŷ. Expressing

each variable in terms of an equilibrium quantity φ0(x) plus a perturbation of the form
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φ1(x, y) = φ̂1(x)ei(kyy−ωt) and dropping nonlinear terms yields the linearized equations:

in̂1(kyui0y − ω) +
∂

∂x
(n0ûi1x) + ikyn0ûi1y = 0 (5)

imin0ûi1x(kyui0y − ω)− qi

[
−n̂1

∂φ0

∂x
− n0

∂φ̂1

∂x
+ n0ûi1yBz0 + n̂1ui0yBz0

]
+ T

∂n̂1

∂x
= 0 (6)

min0

[
iûi1y(kyui0y − ω) + ûi1x

∂ui0y
∂x

]
+ qin0

[
ikyφ̂1 + ûi1xBz0

]
+ ikyn̂1T = 0 (7)

qi

[
−n0

∂φ̂1

∂x
+ n0ûe1yBz0 + n̂1

(
ue0yBz0 −

∂φ0

∂x

)]
+ T

∂n̂1

∂x
= 0 (8)

−qin0

[
(iky)φ̂1 + ûe1xBz0

]
+ ikyn̂1T = 0 (9)

∂

∂x

[
n0(ûi1x − ûe1x)

]
+ ikyn0(ûi1y − ûe1y) + ikyn̂1(ui0y − ue0y) = 0 (10)

In the low-beta limit that is considered here, the plasma drift speed is much less than the

Alfvén speed. Equations (5) to (10) combined with velocity from equilibrium force balance,

ui0y =

(
1

Bz0

∂φ0

∂x
+

T

qiBz0

1

n0

∂n0

∂x

)
, (11)

yield a second-order differential equation that encapsulates the eigenmode properties:

n0ûi1xk
2
y(kyui0y − ω) +

∂

∂x

[
−(kyui0y − ω)n0

∂ûi1x
∂x

+ kyûi1xn0
∂ui0y
∂x

1− 1
kyΩi

1
n0

∂n0

∂x
(kyui0y − ω)

]
=0, (12)

where Ωi = qiBz0/mi is the ion cyclotron frequency, which has a positive sign, as is consistent

with the assumed magnetic field orientation. Equation (12) indicates that magnetization,

which is encapsulated in the ion cyclotron frequency, plays a role only if the equilibrium

density gradient ∂n0/∂x is non-zero. Equation (12) also relates the eigenfunction ûi1x to the

equilibrium variables and to the perturbation wavenumber and frequency. In the limit of

large magnetization (Ωi →∞) or zero density gradient, Eq. (12) reduces to the eigenmode

equation obtained by Chandrasekhar from classical hydrodynamics theory12. Hydrodynamic

analysis often includes a gravity (or gravity-like acceleration) term12, which is not included

in the present analysis, and which is not necessary to drive KH instabilities.

Consider a shear layer of half-width d in the center of a plasma bounded by impermeable

walls at x = ±L. As is standard practice in linear theory KH instability analysis12, let the

equilibrium velocity profile be piecewise linear with no variation outside of the shear layer,
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such that

ui0y(x) =


V x ∈ [−L,−d]

−V
d
x x ∈ [−d, d]

−V x ∈ [d, L]

. (13)

Let the equilibrium number density profile be piecewise exponential with no variation inside

the shear layer, such that

n0(x) =


ea(x+d) x ∈ [−L,−d]

1 x ∈ [−d, d]

eb(x−d) x ∈ [d, L]

. (14)

Note that Eq. (14) can be rescaled by a constant and the following analysis would remain

unchanged. The density profile is chosen to have a constant value of ∇n0/n0 on either side

of the shear layer, such that

1

n0

∂n0

∂x
=


a x ∈ [−L,−d]

0 x ∈ [−d, d]

b x ∈ [d, L]

. (15)

Figure 2 shows the velocity profile of Eq. (13) and the density profile of Eq. (14) for a = 0

and b < 0. While in Eq. (14) we have chosen density to be continuous, discontinuous density

profiles are also admissible. Density profiles that satisfy Eq. (15) admit analytic solutions

for Eq. (12) and, unlike piecewise constant density profiles used in Refs. 17, 20, and 21,

admit analysis of configurations with finite diamagnetic drift. Note that for this choice of

density profile the velocity shear in the x ∈ [−d, d] region is entirely due to E ×B drift.

For the velocity and density profiles given by Eqs. (13) and (14), the eigenmode equation

given by Eq. (12) can be solved for ûi1x and the associated dispersion relation that relates

ω and ky can be obtained – see Appendix A. Here we consider the special case where a = 0,

such that the density profile is in effect

n0(x) =

1 x ∈ [−L, d]

eb(x−d) x ∈ [d, L]
(16)
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FIG. 2: Equilibrium profiles for a piecewise linear shear layer: ion velocity (top) and an

example of a number density profile with a = 0 and b < 0 that satisfies Eq. (15) (bottom).

These profiles admit analytic solutions for the eigenmode equation given in Eq. (12). For

analytic solutions to exist, the value of ∇n/n should be constant outside of the shear layer

and zero inside the shear layer.

and the solution to the eigenmode equation is

ûi1x =


R0e

kyx + S0e
−kyx x ∈ [−L, d]

Rb exp
({
− b

2 −
1
2

√
b2 + 4k2

yB
}
x
)

+ Sb exp
({
− b

2 + 1
2

√
b2 + 4k2

yB
}
x
)

x ∈ [d, L]

(17)

B =

(
1 +

b

Ωiky
(kyV + ω)

)
. (18)

where {R0, S0, Rb, Sb} are constant coefficients, which can be reduced to a single coefficient

by applying ûi1x = 0 boundary conditions at x = ±L and a continuity condition at x = d.

The associated dispersion relation, the dimensional form of which is derived in Appendix A,

is nondimensionalized such that spatial scales are normalized to the shear layer half-width

d and temporal scales are normalized to the shear ωs = V/d, which is taken to be positive.

The resulting closed-form nonlocal dispersion relation is

e−4κ

coth
(

(L̃− 1)κ
)
− 1− 1

(κ−ω̃)

coth
(

(L̃− 1)κ
)

+ 1− 1
(κ−ω̃)

 =

(
b̃
2 + 1

2

√
b̃2 + 4κ2B̃ coth

(
(L̃−1)

2

√
b̃2 + 4κ2B̃

)
+ κ

(
1− 1

(κ+ω̃)

)
B̃
)

(
b̃
2 + 1

2

√
b̃2 + 4κ2B̃ coth

(
(L̃−1)

2

√
b̃2 + 4κ2B̃

)
− κ

(
1 + 1

(κ+ω̃)

)
B̃
) ,

(19)
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where we have introduced the nondimensional parameters

κ = kyd

L̃ = L/d

ω̃ = ω/ωs

b̃ = bd

B̃ = 1 +
b̃

Ω̃iκ
(κ+ ω̃)

Ω̃i = Ωi/ωs.

In addition to the classical features of the KH instability, Eq. (19) encapsulates the effects of

diamagnetic drift and wall proximity. Diamagnetic drift is related to the term b̃/Ω̃i, which

accounts for finite density gradients and magnetization – features that were not considered in

previous MHD theoretical analyses14,17,20,21. This term drops out entirely if b̃ = 0, such that

the effect of magnetization only appears in the dispersion relation if the number density has a

finite gradient. This feature of the dispersion relation is consistent with incompressible MHD

linear theory analysis of the KH instability for a piecewise-uniform density configuration,

wherein magnetic field terms drop out of the dispersion relation, independent of the choice

of Ohm’s law17. For fixed values of {κ, L̃, b̃, Ω̃i} the dispersion relation in Eq. (19) can be

solved numerically for ω̃.

B. Growth rates and eigenfunctions

Some effects of density variation on growth rate can be examined in the classical fluid

limit. In the absence of diamagnetic effects, various incompressible hydrodynamic limits of

the dispersion relation can be obtained by taking the limit Ωi →∞ and explicitly solving for

ω̃. See Appendix B for details. For an infinite domain and b̃ = 0, instability growth occurs

for κ ∈ [0, 0.639] with maximum growth rate 0.201 at κ = 0.398. Finite L̃ has a stabilizing

effect. For an infinite domain and steep fall-off of density outside the shear layer, i.e. for

L̃ → ∞, b̃ → −∞, instability occurs for κ ∈ [0, 0.916] with maximum growth rate 0.247 at

κ = 0.613. For b̃ → ∞, the configuration is stable. Thus a density profile that decreases

away from the shear layer results in a more unstable configuration as compared to the case

of a uniform density profile. This is because the KH instability, which is driven by inertia, is
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easier to excite when the shear layer has a “free boundary”. Analogously, a density profile

that increases away from the shear layer has a stabilizing effect, due to the larger inertia of

the fluid outside of the shear layer.

To illustrate how plasma magnetization and finite density gradients affect the KH in-

stability, the dispersion relation in Eq. (19) is solved for ω̃ using the Newton method. For

simplicity we set L̃ = 10, which ensures that wall boundaries are sufficiently far from the

shear layer so as to have a negligible effect. In general, ω̃ has both a real and imaginary

component, such that ω̃ = ω̃R + iω̃I . The resulting growth rates, ω̃I , are plotted in Fig. 3

as a function of κ and b̃ for different levels of magnetization, which is set by the value of

nondimensional ion cyclotron frequency Ω̃i.

For Ω̃i . 1, the dispersion relation exhibits high-wavenumber unstable modes, which

appear as banded structures in the growth rate contour plot in Fig. 3(a). These banded

structures can be explained by the coupling between the KH instability and drift waves.

Coupling occurs when the Doppler-shifted frequency is equal to the drift wave frequency

ω̃D, such that

ω̃R − κũiy0(x) = ω̃D, (20)

where ũiy0(x) =
uiy0(x)

V
is the spatially-dependent nondimensional equilibrium ion velocity

profile with range [−1, 1]. In the limit where
∣∣∣ ω̃

Ω̃i

b̃
κ

∣∣∣ � 1, the drift wave frequency is ω̃D =(
κ
b̃
− 1
)

Ω̃i ≈ −Ω̃i, which is obtained by solving Eq. (12) and the associated dispersion

relation for the case where n0 is given by Eq. (16) and ui0y = 0. Electrostatic drift waves

with similar dispersion relations are described in Refs. 38–42. While high-wavenumber

modes are not explored in detail here, it is worth noting that similar high-wavenumber

unstable modes have been found in previous studies of magnetized shear layers, including

in cold-fluid theoretical analysis of the diocotron instability in electron beams43, nonlocal

electrostatic kinetic theory analysis accounting for first order finite Larmor radius effects

in plasma shear layers25, and local electrostatic kinetic theory analysis of ion velocity shear

instabilities26. MHD analysis that incorporates large effective Larmor radius physics has

also demonstrated the existence of short-wavelength branches of the KH instability20 for the

case of discontinuous-step density profiles. In each of these studies, the high-wavenumber

mode exhibits significantly smaller growth rates when compared to the classical KH mode

– as is consistent with the trends in Fig. 3(a).
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For sufficiently large magnetization, i.e. for Ω̃i & 1: as b̃ decreases, the growth rate of the

KH instability increases, the wavenumber associated with the peak growth rate increases,

and the largest wavenumber that admits instability increases. This general trend is consis-

tent with the hydrodynamic limits of the dispersion relation. In fact, in the limit Ω̃i →∞,

the variation of growth rate with b̃ is largely a result of fluid inertia, such that the local aver-

age density matters more than the gradient of the density. This can be verified by deriving a

dispersion relation for a piecewise-uniform equilibrium density profile with number density

n1 for x < d and number density n2 for x ≥ d (in this case Ω̃i drops out of the dispersion

relation), in which case the growth rate dependence on the ratio n2/n1 ∈ [0,∞) exhibits

similar features to the growth rate dependence on b̃ ∈ (−∞,∞). Increasing magnetization

tends to increase the range of unstable wavenumbers for b̃ < 0 and decrease the range of

unstable wavenumbers for b̃ > 0. Overall, however, for Ω̃i & 1 the effect of magnetization

on growth rate is generally weak, as evidenced by the similarity of growth rates for the case

where Ω̃i = 2 and the case where Ω̃i →∞, shown in Fig. 3(b) and Fig. 3(c), respectively.

The spatial structure of the eigenmode for the linear phase of instability development

further elucidates the role of finite density gradients near the shear layer. The perturbed

velocity eigenfunction ui1x(x, y) = Re
(
ûi1x(x)eikyy

)
with ûi1x given in Eq. (17) and with

L̃ = 10 and κ = 0.4, is plotted in Fig. 4 for two density configurations. Figure 4 also shows

the perturbed velocity vector field (ui1x, ui1y) and identifies the mixed-complex frequency

for each configuration. For the uniform density configuration with b̃ = 0 and Ω̃i 6= 0,

which corresponds to the classical incompressible hydrodynamic limit, the largest amplitude

features in ui1x are at the edges of the shear layer. The features have a skew, such that

extrema on the left side of the shear layer are offset in y from the extrema on the right

side of the shear layer. See Fig. 4(a). The eigenmode structure is also characterized by

circulation features in the velocity field at the edges of the shear layer – these ultimately

lead to the formation of an eddy in the nonlinear phase of the KH instability. Introduction

of density variation to right of the shear layer modifies the eigenmode structure, as shown in

Fig. 4(b). In the nonuniform density configuration with b̃ = −1 and Ω̃i = 2, the magnitude

of the perturbed velocity ui1x is largest at the right edge of the shear layer. In this case

the extrema at the left and right edge of the shear layer exhibit a slightly larger offset in

y and a larger region of the domain – primarily the low density region – is affected by the

instability. It is worth noting that density variation outside of the shear layer introduces a
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FIG. 3: Instability growth rate ω̃I obtained by solving the dispersion relation in Eq. (19)

for different levels of magnetization: (a) Ω̃i = 0.5, (b) Ω̃i = 2.0, and (c) Ω̃i →∞. For all

cases, L̃ = 10. The growth rate is plotted as a function of nondimensional wavenumber

κ = kyd and nondimensional parameter b̃ = bd, which encapsulates the density gradient

scale length to the right of the shear layer. For b̃ = 0, denoted by the white horizontal

lines, the plasma density is uniform, the instability is essentially hydrodynamic, and the

growth rate is independent of Ω̃i. As the nondimensional ion cyclotron frequency Ω̃i

decreases, the parameter space over which an instability is admissible is modified. In

addition to low wavenumber modes that are characteristic of the classical KH instability,

high wavenumber unstable modes exist for Ω̃i . 1.

non-zero oscillation frequency, such that ω̃R 6= 0.

Taken together, the Hall-MHD-based eigenfunction and eigenvalue analysis shows how

density gradients and magnetization affect the linear phase of the KH instability. For suffi-

ciently low levels of magnetization, density variation can introduce high-wavenumber unsta-

ble modes. At high magnetization, where ion cyclotron frequency exceeds the velocity shear,

plasma configurations where the density profile decreases away from the shear layer tend to

be more unstable with the low density region more strongly affected by the KH instability.

III. SIMULATION SOLVERS AND EQUILIBRIUM SETUP

The linear theory analysis in Sec. II provides a basis for the study of more generalized

physics and transport properties of KH instabilities in nonuniform low-beta collisionless plas-

mas. To investigate KH instability physics beyond the scope of the Hall-MHD description
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(a) Ω̃i 6= 0, b̃ = 0, ω̃ = i0.201
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(b) Ω̃i = 2, b̃ = −1, ω̃ = 0.091 + i0.222

FIG. 4: The linear perturbed velocity uix1(x, y) plotted in arbitrary units for two different

configurations: (a) Ω̃i 6= 0, b̃ = 0 for which ω̃ = i0.201; and (b) Ω̃i = 2, b̃ = −1 for which

ω̃ = 0.091 + i0.222. The perturbed velocity is obtained from the real part of the

eigenfunction ûix1(x)eikyy with ûix1 given in Eq. (17) and with L̃ = 10, κ = 0.4. Black

arrows indicate the perturbed velocity magnitude and direction and vertical black lines

denotes the edges of the shear layer. For the uniform density configuration with b̃ = 0,

corresponding to the incompressible uniform-density hydrodynamic KH instability, the

perturbed velocity exhibits features of equal magnitude at both edges of the shear layer.

Introducing finite density variation with b̃ = −1 modifies the eigenmode structure such

that the largest x-directed perturbed velocity is at the right edge of the shear layer and a

larger region of the domain is affected by the instability.

we apply electromagnetic two-fluid simulations and two-species electrostatic kinetic simu-

lations. Two-fluid simulations facilitate the self-consistent study of charge separation and

diamagnetic drift in the shear layer, and kinetic simulations further enable the study of

finite Larmor radius effects and associated non-Maxwellian distribution functions. Initial

conditions for simulations are informed by the MITL application – the plasma configuration

is shown schematically in Fig. 1. As before, we consider low-beta two-species – electron and

ion – plasmas in the (x, y) plane with an out-of-plane magnetic field in the z direction and

equilibrium flow velocity with contributions from E ×B and diamagnetic drift.
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A. Electromagnetic two-fluid simulations

1. Governing equations and solver

Two-fluid simulations use the nondimensional multi-fluid plasma model44 as a basis. The

multi-fluid model is described by the following governing equations for each species s:

∂ns
∂t

+∇ · (nsus) = 0 (21)

∂ (nsus)

∂t
+∇ · (nsusus) +

1

Ms

∇Ps =
Zs
Ms

ns

(
E +

(
Ωp

ωpp

)
us ×B

)
(22)

∂εs
∂t

+∇ · ((εs + Ps)us) = Zsnsus ·E (23)

where

εs =
1

γ − 1
Ps +

1

2
Msnsu

2
s (24)

is the total energy of species s and γ = (Df + 2)/Df is the adiabatic index, where Df is

the number of degrees of freedom. Unless otherwise noted, Df = 3 such that γ = 5/3.

Maxwell’s equations, which describe the evolution of the electromagnetic fields are

−
(

Ωp

ωpp

)
∂E

∂t
+∇×B =

(
Ωp

ωpp

)∑
s

Zsnsus (25)

(
Ωp

ωpp

)
∂B

∂t
+∇×E = 0 (26)

∇ ·E =
∑
s

Zsns (27)

∇ ·B = 0 (28)

Here ns is the number density and us is the velocity of the fluid of species s, B is the

magnetic field, E is the electric field, Ms is the ratio of particle mass to the proton mass,

Zs is the ratio of particle charge to the magnitude of the electron charge e, and Ωp is the

proton cyclotron frequency. In Eqs. (21) to (28) time is normalized to the proton plasma

frequency ωpp , velocity is normalized to the proton Alfvén speed vA – defined in terms of a

characteristic magnetic field B0, and the electric field is normalized to the product vAB0. In

effect, the characteristic length scale is L0 = vA/ωpp = δpΩp/ωpp, where δp is the proton skin

depth. The normalization is described in Ref. 45. The equation of state, i.e. the closure

model, is chosen to be the ideal gas law such that Ps = nsTs.
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Assuming the plasma consists of protons and electrons, such that Zi = −Ze = 1, the

multi-fluid model reduces to a two-fluid model. The two-fluid model retains electron inertia

terms, does not invoke the quasineutrality approximation, and thereby fully captures the

physics of charge separation. Note that in this model the ion and electron fluids are coupled

exclusively through electromagnetic fields, such that collisional effects are neglected. For

the computational results presented here, Mi/Me = 25 unless otherwise noted. The mass

ratio is chosen to ensure consistency with kinetic simulations, in which computational cost

prohibits the use of larger mass ratios. Because the KH instability is driven by inertia of

the heavier fluid, the exact value of the mass ratio is not expected to play a significant role

– this is verified to be the case in simulation results presented in Sec. IV A.

To study the linear and nonlinear behavior of KH instabilities in nonuniform magne-

tized plasmas, the governing equation system of the two-fluid plasma model is solved using

a discontinuous Galerkin finite element method46–48 within the WARPXM (Washington

Approximate Riemann Plasma) code framework. The simulations use third-order polyno-

mials for the spatial representation within each triangular element and a third-order strong

stability-preserving Runge-Kutta method49 for the temporal advance.

2. Initial conditions, boundary conditions, and parameters

Simulations are initialized with a shear layer equilibrium, with velocity shear in x ∈

[−d, d]. The equilibrium number density profiles, magnetic field, x-directed electric field,

and y-directed flow velocity profiles vary only along the x coordinate. In equilibrium, y-

directed electric field and the x-directed flow are both zero, and ions and electrons have

equal and uniform temperatures with T = Te = Ti. The equilibrium ion number density

profile is chosen to be a smooth analog of the density profile considered in the linear theory

analysis – given by Eq. (16), such that

ni(x)
∣∣
t=0

=

(
1 + exp

(
2x

d

)) bd
2

(29)

and hence

1

ni

∂ni
∂x

=
b

2

(
1 + tanh

(x
d

))
. (30)

Like the density profile in the Hall-MHD analysis – see Eq. (16), the density profile given

in Eq. (29) has the property that ∇ni/ni ≈ 0 for x ≤ −d and ∇ni/ni ≈ b for x ≥ d. Unlike
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the density profile of Eq. (16), however, the density profile of Eq. (29) varies inside the shear

layer – see Fig. 5. Thus there is diamagnetic drift inside the shear layer. The equilibrium

electric field is chosen to have the form

Ex(x)
∣∣
t=0

=
E0

2

(
1 + tanh

(x
d

))
+ cE, (31)

where E0 and cE are constants. The value of cE depends on the desired frame of reference,

which can be informed by the plasma application of interest. For a uniform density profile

where b = 0, the constant cE is chosen to have a value of −E0/2, which results in an odd-

symmetry E×B velocity profile and hence an average flow velocity of zero. For nonuniform

ion density profiles where b 6= 0, cE is set to zero, which results in a non-zero average E×B

flow velocity, as is characteristic of near-electrode plasmas in MITLs – see Fig. 1.

The equilibrium electron number density ne is obtained by substituting Eq. (29) and

Eq. (31) into Gauss’s law in Eq. (27). Summing the electron and ion force balance equations,

substituting in Gauss’s law and steady-state Ampere’s law (Eq. (25)), and integrating over

the interval [x0, x] yields an expression for the equilibrium magnetic field,

Bz(x)
∣∣
t=0

=
Bz(x0)

|Bz(x0)|

(
−2T

[
ne + ni

]x
x0

+
[
E2
x

]x
x0

+ [Bz(x0)]2
)1/2

. (32)

The factor Bz(x0)/|Bz(x0)| accounts for the direction of the magnetic field. For convenience

we choose x0 = 0 and, consistent with the nondimensionalization, we set Bz(x0) = 1 for

near-anode plasmas and Bz(x0) = −1 for near-cathode plasmas. Equilibrium y-directed drift

velocities for ions and electrons are obtained from one-dimensional force balance for each

species. The profiles given in Eq. (29), Eq. (31), and Eq. (32) and the choice of constants

T,E0, b, and d along with magnetization, which is set by Ωp/ωpp , fully determine the initial

equilibrium state.

The electromagnetic two-fluid plasma equilibrium is perturbed by introducing a trans-

verse velocity,

usx(x, y)
∣∣
t=0

= 10−6 exp

(
−x

6

d6

)
cos (kyy) . (33)

The exponential term in Eq. (33) ensures that the perturbation is localized around the

shear layer so as to isolate the physics of interest and avoid exciting additional dynamics.

The perturbation wavenumber ky is chosen to satisfy kyd = 0.4, which, according to the

analysis in Sec. II, is close to the fastest growing mode for the density profiles of interest.

The simulation domain is defined in nondimensional units, such that x, y ∈ [−Lx/2, Lx/2]×
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[−Ly/2, Ly/2], with Lx = 1 and Ly = 2π/ky. The simulation domain is periodic in the

y direction and has impermeable conducting wall boundaries at x = ±Lx/2, where usx =

Ey = Ez = Bx = 0. Dirichlet boundary conditions are set for Ex, By, and Bz at x = ±Lx/2,

such that these field components retain initial condition values at these boundaries for all

time. The rectangular domain is discretized into 256×256 elements.

For our computational study, we perform two-fluid simulations for five parameter cases

given in Table I, denoted by A0, A1, A2, A3, and A4. Case A0 is a uniform ion density

configuration with bd = 0, while the other cases involve nonuniform density profiles with

bd = {−0.5,−1.0} at different levels of magnetization Ωp/ωpp = {1.0, 2.0}. Nondimensional

simulation parameters are chosen to be consistent with the broad range of characteristic

experimental parameters described in Sec. I. All cases in Table I correspond to near-anode

plasmas, shown schematically in Fig. 1(a), where the ion diamagnetic drift is in the same

direction as the E×B drift and vorticity is antiparallel to the magnetic field. Near-cathode

plasmas are discussed in Sec. IV A. In all cases, the wall boundaries are situated sufficiently

far away from the shear layer, such that they have a negligible effect on the evolution of

the single-mode KH instability – as indicated by the linear theory analysis in Sec. II and

verified by performing two-fluid simulations on a larger domain. Electric field magnitude,

set by E0, is chosen to ensure sufficient shear velocity to observe instability over the time

scales we can simulate while also facilitating moderate charge separation and the study

thereof. Case A0 involves the smallest value of E0 and is thereby the most quasineutral

configuration. Equilibrium number density and velocity profiles used to initialize two-fluid

simulations for parameter cases A1 – A4 are shown in Fig. 5. The magnetic field, which is

not shown, is nearly uniform such that its variation across the domain is less than 0.15%

for all parameter cases. Plasma β = 2(ni + ne)T/B
2
z is the ratio of nondimensional thermal

pressure to nondimensional magnetic pressure and is evaluated in the high density region.

For all parameter cases β ≤ 2.5× 10−3.
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TABLE I: Parameters for five different cases, denoted by A0, A1, A2, A3, and A4, which are

used to initialize simulations. The cases cover uniform density (A0), small (A1,A2) and large

(A3,A4) density gradients, low (A0,A1,A3) and high (A2,A4) magnetization. Derived quantities

in the lower portion of the table include: the ion Larmor radius rLi; Debye length λD; the shear

ωs = |∆uiy|/(2d); the jump ∆uiy in the ion drift velocity across the shear layer; the jump in

E ×B velocity ∆uE×B across the shear layer; plasma β, which is the ratio of thermal pressure to

magnetic pressure; and the effective shear layer half-width deff in kinetic simulations.

Parameter Simulation Cases

A0 A1 A2 A3 A4

Lx 1.0 1.0 1.0 1.0 1.0

Ly 0.449 0.785 0.785 0.785 0.785

d 1/35 1/20 1/20 1/20 1/20

b 0.0 -10.0 -10.0 -20.0 -20.0

T 1.63e-4 6.25e-4 6.25e-4 6.25e-4 6.25e-4

E0 5.60e-3 2.00e-2 2.00e-2 2.00e-2 2.00e-2

Ωp/ωpp 1.00 1.00 2.00 1.00 2.00

Bz|x=0 1.00 1.00 1.00 1.00 1.00

kyd 0.4 0.4 0.4 0.4 0.4

bd 0 -0.50 -0.50 -1.00 -1.00

rLi/d 0.448 0.500 0.250 0.500 0.250

λD/d 0.45 0.50 0.50 0.50 0.50

ωs/ωpp 0.1960 0.2625 0.1312 0.3250 0.1625

Ωp/ωs 5.10 3.81 15.24 3.08 12.31

∆uiy -0.0112 -0.0263 -0.0131 -0.0325 -0.0163

(∆uE×B)/(∆uiy) 1.000 0.760 0.762 0.615 0.615

β|x=−Lx/2
6.52e-4 2.50e-3 2.50e-3 2.50e-3 2.50e-3

deff (kinetic only) - 0.068 0.055 0.070 0.055
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B. Electrostatic kinetic simulations

1. Governing equations and solver

Kinetic simulations provide a further generalization of the treatments described in Secs. II

and III A. By representing each species as a distribution function fs(x,v, t) in phase space,

a kinetic treatment fully captures finite Larmor radius (FLR) effects, including pressure

anisotropies and non-Maxwellian distribution functions. For the low-beta collisionless two-

species plasmas under consideration, the evolution of each distribution function is described

by the nondimensionalized Vlasov equation

∂fs
∂t

+ v · ∂fs
∂x

+
Zs
Ms

(
E +

Ωp

ωpp

v × ẑ

)
· ∂fs
∂v

= 0 (34)

and the nondimensionalized Poisson equation,

−∇2φ =
∑
s

Zsns (35)

where ẑ is the unit vector along the uniform and fixed magnetic field, φ is the electrostatic

potential, and E = −∇φ is the electric field. The Vlasov-Poisson system given by Eqs. (34)

and (35) uses the same nondimensionalization as the multi-fluid model in Eqs. (21) to (28).

The electrostatic potential is in effect normalized to mpω
2
ppL

2
0/e. The species number density

ns is obtained from the zeroth velocity moment of the associated distribution function,

ns =

∫
fsdv. (36)

For x-directed motion, the species momentum Msnsusx, kinetic energy Wsx, and thermal

energy Usx are obtained from the first and second velocity moments, such that

Msnsusx = Ms

∫
vxfsdv, (37)

Wsx =
1

2
Msnsu

2
sx, (38)

Usx =
1

2
Ms

∫
v2
xfsdv −Wsx. (39)

Analogously, the momentum and kinetic energy terms associated with y-directed motion can

also be evaluated. Species temperature associated with x-directed motion is Tsx = Usx/ns,

and the total species temperature for a two-dimensional plasma is Ts = Tsx + Tsy.
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As in two-fluid simulation, the level of magnetization is set by the ratio Ωp/ωpp . The as-

sumption of electrostatic and magnetostatic fields implies that magnetic fields from plasma

currents are negligible compared to the background magnetic field. This treatment of fields

is distinct from the electromagnetic treatment used in the two-fluid description of Sec. III A.

For our computational study, the Vlasov-Poisson equation system given by Eq. (34) and

Eq. (35) is solved on a structured grid in (x, y, vx, vy) phase space using an unsplit con-

servative fourth-order finite-volume discretization50–52. The discretization uses a fifth-order

upwind reconstruction of the primary variable and a fourth-order quadrature rule for com-

puting fluxes. The solver has been applied to magnetized plasmas with significant FLR

effects35,50 and has been benchmarked in Cartesian50 and cylindrical geometries52. The

solver is also able to preserve complex equilibria35, which makes it suitable for the study of

isolated KH instability physics.

2. Initial conditions, boundary conditions, and parameters

When Larmor radii and gradient scale lengths are comparable, two-fluid equilibria can

be poor approximations to kinetic equilibria19,30,34,35 and oft-used Maxwellian distribution

functions18,19,28–30, which do not satisfy the steady-state Vlasov-Poisson or Vlasov-Maxwell

equation system, can introduce spurious dynamics19,30,33,34. For example, in the presence of

FLR effects, the use of two-fluid equilibria to initialize electrostatic kinetic simulations leads

to: significant departure from the initialized state; the excitation of lower-hybrid and upper-

hybrid waves; and the formation of sheaths near boundaries. Approximate kinetic equilibria

can also result in generation and propagation of waves in time-dependent simulations35.

The lack of kinetic equilibria is often identified as an impediment to the detailed study

of kinetic physics in KH instabilities19,30,33,34. To address this issue and to construct self-

consistent two-species kinetic equilibria that satisfy the steady-state governing equations,

encapsulate finite Larmor radius effects, and can be customized to have density and elec-

tric field profiles that are consistent with the two-fluid equilibria described in Sec. III A, we

employ the ordinary differential equation method described in Ref. 35. The method relies

on using constants of motion to construct auxiliary distribution functions that are close to

equilibrium and numerically solving a nonlinear Poisson equation to obtain exact equilib-

rium distribution functions. The initialization of exact kinetic equilibria, wherein there are
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no propagating waves and no boundary dynamics, is advantageous because it facilitates the

study of isolated physics in experimentally-relevant conditions, such that the driving mech-

anism(s) for a targeted phenomenon – here the KH instability – can be readily identified.

The kinetic equilibria employed here thereby enable detailed quantitative comparisons with

fluid simulations and likewise with linear theory.

Kinetic equilibria are constructed as follows. Let the desired ion density profile gi(x) be

the analytic function given in Eq. (29), such that

gi(x) =

(
1 + exp

(
2x

d

)) bd
2

(40)

and let the desired electrostatic potential profile φ∗ be consistent with the electric field profile

given in Eq. (31), such that

φ∗(x) = −E0d

2
log

(
1 + exp

(
2x

d

))
. (41)

The auxiliary ion and electron distribution functions are constructed from gi and φ∗, such

that

faux
i =

[
gi (X) exp

(
Ziφ

∗ (X)

T

)]
X=pi

× Mi

2πT
exp

(
−
Mi(v

2
x + v2

y)

2T
− Ziφ

∗(x)

T

)
(42)

faux
e =

[(
Zin

aux ,fit
i (X) +

∂2φ∗(X)

∂X2

)
exp

(
Zeφ

∗ (X)

T

)]
X=pe

× Me

2πT
exp

(
−
Me(v

2
x + v2

y)

2T
− Zeφ

∗(x)

T

)
,

(43)

where naux ,fit
i is an analytic fit to the discretely-computed zeroth velocity moment of faux

i ,

ps = x + vy/(Ωs/ωpp) is the scaled canonical momentum for species s, and the nondimen-

sionalized species cyclotron frequency Ωs/ωpp can be positive or negative depending on the

species charge Zs. The exact equilibrium distribution functions can be expressed in terms

of the auxiliary distribution functions and the equilibrium potential φ, which is obtained by

numerically solving the nonlinear Poisson equation

−∂
2φ

∂x2
= Zin

aux
i exp

(
Zi(φ

∗ − φ)

T

)
+ Zen

aux
e exp

(
Ze(φ

∗ − φ)

T

)
, (44)

where naux
s is the numerically-computed zeroth velocity moment of faux

s . The Newton

method, with φ = φ∗ as the initial guess, is used to solve for φ and Dirichlet boundary

conditions are assumed for the equilibrium potential, such that φ(±Lx/2) = φ∗(±Lx/2).
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Thus the equilibrium distribution function for each species is given by

fs = faux
s exp

(
Zs(φ

∗ − φ)

T

)
. (45)

Reference 35 presents further details regarding equilibrium construction for density and

potential profiles given by Eq. (40) and Eq. (41), respectively. For the parameter cases

considered here, the relative difference between φ and φ∗ is less than 1%. Notably even

small differences between φ and φ∗ can strongly affect ion number density profiles, which is

why solving for the equilibrium potential is important35.

Unlike two-fluid simulations, where the x-directed velocity of both species is perturbed,

the kinetic equilibrium is perturbed by multiplying the equilibrium electron distribution

function fe by a factor (1 + ε), where

ε = 2.0× 10−4 sin

(
2πy

Ly

)
exp

(
−x

6

d6

)
. (46)

As in two-fluid simulations, the perturbation is localized around the shear layer so as to

avoid introducing waves and sheaths near the boundaries. The perturbation wavenumber ky

is chosen to satisfy kyd = 0.4 to excite the fastest growing mode. The phase space simulation

domain is [−Lx/2, Lx/2] × [−Ly/2, Ly/2] × [−vmax,s, vmax,s] × [−vmax,s, vmax,s], where Lx =

1, Ly = 2π/ky, vmax,e = 1.0, vmax,i = 0.2. The domain is periodic in the ŷ direction and

reflecting wall boundary conditions are applied at x = ±Lx/2 – see Ref. 51 for details.

Dirichlet boundary conditions are used for the potential, such that φ(±Lx/2) = φ∗(±Lx/2)

for all time. The velocity domain is set to have zero-flux boundary conditions, which has no

effect on the physics of the simulation provided that the value of the distribution function

is sufficiently close to zero at these boundaries50,52, as is the case here. A resolution of

Nx ×Ny ×Nvx ×Nvy = 256× 64× 96× 96 cells is used in all cases.

For our computational study, we perform four kinetic simulations corresponding to the

A1, A2, A3, and A4 parameter cases given in Table I. Much like the two-fluid initialization,

the choice of constants T,E0, b, d and magnetization Ωp/ωpp , determine the initial equilib-

rium state. Finite Larmor motion, which is encapsulated in the construction of the kinetic

equilibrium initial condition, results in a shear layer that is not identical to the two-fluid

model shear layer. See Fig. 5 for a comparison of kinetic and two-fluid equilibrium profiles.

One difference is that the kinetic shear layer is more diffuse and its effective half-width deff ,

which is listed in Table I, does not match the half-width of the two-fluid shear layer. Like-

wise, kinetic equilibria exhibit an expected temperature anisotropy34,35 that is not present
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FIG. 5: Equilibrium shear layer profiles for ions (solid lines) and electrons (dashed lines) used as initial conditions for

two-fluid simulations (black) and kinetic simulations (magenta) for parameter cases (a) A1, (b) A2, (c) A3, and (d) A4, which

are outlined in Table I. Shown are number density and drift velocity profiles for two-fluid and kinetic equilibrium

initializations. Also shown are plots of temperature Tsy for kinetic simulations. In two-fluid simulations initial temperature

(not shown) is uniform and isotropic such that T = 2Tsx = 2Tsy = 6.25× 10−4, whereas in kinetic simulations

Tsx = 3.125× 10−4 is uniform, but temperature is anisotropic such that Tsx 6= Tsy in the shear layer. FLR effects

encapsulated in the kinetic equilibria cause the density and velocity profiles to be more diffuse when compared to the

two-fluid representation. As magnetization is increased from Ωp/ωpp = 1.0 to Ωp/ωpp = 2.0, the kinetic equilibrium converges

to the two-fluid equilibrium.
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in two-fluid equilibria, such that the temperature Tsx associated with x-directed thermal

motion is uniform with a value of 3.125×10−4, whereas the temperature Tsy associated with

y-directed thermal motion varies in the shear layer. Nevertheless, the kinetic and two-fluid

equilibria are consistent to within about one ion Larmor orbit. This means that as magne-

tization increases, the role of FLR effects diminish, and the kinetic equilibrium approaches

the two-fluid equilibrium35 – as shown in Fig. 5. Thus for kinetic simulations, the parame-

ters outlined in Table I should be treated as guiding center parameters. Kinetic equilibria

whose guiding center profiles match the two-fluid equilibria, as they do here, facilitate the

isolated study of KH instability physics in the presence of FLR effects and enable systematic

cross-comparisons between the two models.

IV. TWO-FLUID AND KINETIC SIMULATIONS OF THE

KELVIN-HELMHOLTZ INSTABILITY

The evolution of the KH instability in simulations can be roughly separated into a linear

phase, during which the instability grows exponentially, and a nonlinear phase, during which

the large scale dynamics – including the formation of the characteristic vortex feature – are

observed. We proceed to examine the linear and nonlinear phases separately and assess

growth rates, oscillation frequencies, and transport properties. We rescale simulation units

to match the units used in the Hall-MHD analysis in Sec. II. This choice of units allows us

to separate shear – on which the KH instability strongly depends – from other variables of

interest. Consequently, for the analysis presented in this section, time is measured in units

of shear ωs and distance is measured in units of shear-layer half-width d, which are given in

Table I for each parameter case.

A. Linear phase

The linear stage of the instability is characterized by the exponential growth in the

amplitude of the x-directed drift velocity for ions and electrons. In simulations this is

accompanied by the exponential growth in the amplitude of the y-directed electric field.

To determine the instability growth rate and oscillation frequency, the magnitude of the

x-directed ion velocity |uix| is evaluated locally at the center of the domain and is tracked
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as a function of time. Growth rates from simulations can also be evaluated by tracking the

spatial integral of E2
y or u2

ix as a function of time; however, these integrated quantities do

not retain oscillation frequency information and consequently are not used here. Temporal

evolution of |uix| for parameter cases A0, A1, and A2 is shown in Fig. 6. Note that the

A0 parameter case is simulated using only the two-fluid solver. For all the parameter cases

outlined in Table I, growth rates and oscillation frequencies from Hall-MHD theory of Sec. II,

two-fluid simulations, and kinetic simulations are presented in Table II.

Growth rates in Table II show that for a uniform ion density configuration with a small

amount of charge separation, i.e. parameter case A0 where max(ni−ne)/ni = 0.056, the two-

fluid simulation agrees with the Hall-MHD theoretical prediction. The simulation oscillation

frequency is zero, as expected for a configuration in which uiy(x)|t=0 has odd symmetry, and

the simulation growth rate is 6% smaller than the growth rate predicted by Hall-MHD linear

theory – see Fig. 6(a). The small discrepancy in growth rates between the two models can

be attributed to charge separation in the two-fluid equilibrium shear layer.

Table II also shows that for parameter cases that have nonuniform ion density profiles and

that are not charge-neutral, two-fluid and kinetic simulations do not agree with Hall-MHD

theory. For these cases, the growth rates predicted by Hall MHD are significantly larger

than the growth rates in two-fluid simulations, which are larger than the growth rates in

kinetic simulations. The relative difference between Hall-MHD and two-fluid growth rates

are 26%, 43%, 47%, and 72% for parameter cases A1, A2, A3, and A4, respectively. The

largest discrepancies are associated with cases A3 and A4, which have the largest density

gradients. Increasing magnetization results in more discrepancy between Hall-MHD theory

predictions and two-fluid simulation results. Interestingly, the trend observed in simulations

is that growth rate decreases as density variation at the edge of the shear layer increases

(i.e. as bd becomes more negative), which contradicts the trends predicted by Hall-MHD

theory. In particular, when changing the density profile from bd = −0.5 to a steeper density

profile with bd = −1.0 (i.e. when going from case A1 to A3 or case A2 to A4), Hall MHD

predicts about a 2% increase in the growth rate, whereas two-fluid and kinetic simulations

show about a 14-21% decrease in growth rate. This discrepancy suggests that in addition

to velocity shear and fluid inertia, charge distribution and density variation in the shear

layer (which are not accounted for in the Hall-MHD analysis) can also strongly affect KH

instability growth rates.
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FIG. 6: Evolution of the x-directed ion velocity |uix| evaluated in the middle of the

simulation domain at x = 0, y = 0. (a) For case A0 with b = 0 and Ωp/ωpp = 1, ion number

density is uniform, the plasma is quasineutral, and the KH instability exhibits pure growth

without oscillation. The growth rate obtained from two-fluid simulations is in close

agreement with the growth rate predicted by linear Hall-MHD theory. (b) For case A1

with bd = −0.5 and Ωp/ωpp = 1, the equilibrium ion number density is nonuniform and

magnetization is relatively small, and two-fluid simulations exhibit larger growth rates

than the kinetic simulations. Simulation growth rates do not agree with growth rates from

Hall-MHD analysis. Two-fluid simulations with mass ratios of Mi/Me = 25 and

Mi/Me = 500 produce virtually the same results. (c) For case A2 with bd = −0.5 and

Ωp/ωpp = 2, the equilibrium ion number density is nonuniform and magnetization is large.

Two-fluid and kinetic simulations exhibit similar growth rates, which are smaller than

those predicted by Hall-MHD analysis. Oscillation frequencies in two-fluid and kinetic

simulations are in close agreement. The different cases are outlined in Table I.

To further gauge the effects of density gradients and charge separation on growth rates,

a two-fluid simulation of a modified A1 configuration was performed, wherein the same

parameters and the same equilibrium construction were used, except the polarities of the

equilibrium electric and magnetic fields were reversed, such that E0 = −0.02 and Bz|x=0 =

−1. This modified configuration, which we will denoted by C1, has the same E × B drift

velocity as case A1, but the direction of the diamagnetic drift for each species is reversed.

In the context of anode-cathode gaps, case A1 represents a near-anode plasma and case

C1 represents a near-cathode plasma – see Fig. 1 for a schematic comparing these two

configurations. Unlike case A1, case C1 has a negative net charge, an ion diamagnetic drift
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TABLE II: Growth rates and oscillation frequencies obtained from Hall-MHD theory,

two-fluid simulations, and kinetic simulations for five different parameter cases. See Table I

for the complete set of parameters. The oscillation frequencies in simulations are negative

since the mode propagates in the −ŷ direction. For cases A1, A2, A3, and A4 oscillation

frequency from Hall-MHD theory has been Doppler shifted by ky∆uiy/2 to account for the

difference in frames of reference.

Frequency Model Description Simulation Cases

A0 A1 A2 A3 A4

Oscillation frequency ωR/ωs Hall-MHD theory 0 −0.254 −0.256 −0.293 −0.295

Two-fluid simulation 0 −0.306 −0.305 −0.232 −0.243

Kinetic simulation - −0.294 −0.299 −0.232 −0.239

Growth rate ωI/ωs Hall-MHD theory 0.201 0.219 0.221 0.223 0.225

Two-fluid simulation 0.189 0.174 0.155 0.152 0.131

Kinetic simulation - 0.145 0.146 0.119 0.121

that opposes the E×B drift, and vorticity that is aligned with the magnetic field. For case

C1 the two-fluid simulation growth rate is ωI/ωs = 0.271, which is 19% higher than that

predicted by Hall MHD. If the magnitude of the electric field is halved in case C1 then the

two-fluid growth rate is ωI/ωs = 0.502, which is 56% higher than that predicted by Hall

MHD. The fact that growth rate, normalized to shear, is much larger for case C1 than case

A1 suggests that the orientation and magnitude of the ion diamagnetic drift relative to the

E×B flow can have a strong effect on the evolution of the KH instability. In particular, when

ion diamagnetic drift opposes E×B drift, larger growth rates, per unit shear, are observed.

By contrast, when ion diamagnetic drift is aligned with E × B drift – as in cases A1, A2,

A3, and A4, smaller growth rates are observed. Near-anode and near-cathode plasmas thus

behave differently in the presence of velocity shear.

The observed trend in growth rates is consistent with the findings of FLR MHD21 and

kinetic simulation29 studies of nonuniform plasmas. This trend is often described in terms

of the relative orientation of vorticity w = ∇× u, i.e. when w ·B > 0 larger growth rates
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are observed than for the case where w ·B < 0. Kinetic simulations of KH instabilities in

uniform-density plasmas19,30 have also indicated a dependence on the sign of w ·B, however

this finding may be partially attributed to density gradients in the shear layer, which are

either inherently present in kinetic shear layer equilibria34,53 or which form due to finite

Larmor motion when a kinetic equilibrium is not initialized19,30. Notably, in the absence

of ion density gradients and FLR effects, the orientation of vorticity is inconsequential. To

verify this, a two-fluid simulation of a modified A0 configuration was performed, wherein the

same uniform ion density configuration was modeled, but with polarities of the equilibrium

electric and magnetic fields reversed. Unlike case A0, the modified configuration, denoted

by C0, has a small negative net charge and vorticity that is aligned with the magnetic field.

The resulting growth rate for case C0 is identical to the growth rate for case A0, indicating

that the orientation of vorticity relative to the magnetic field does not play a role for uniform

density plasmas. This result suggests that the sign of w ·B is not the most relevant indicator

of enhanced/diminished growth for KH instabilities, and that charge distribution and density

variation are more consequential.

Two-fluid and kinetic simulations indicate that the orientation of diamagnetic drift rela-

tive to E × B drift affects the distribution of charge density during the linear phase of the

instability and can modify the spatial structure of the fastest growing mode. In particular,

charge redistribution leads to different parts of the shear layer having a larger-amplitude

y-directed electric field Ey. Figure 7 shows the net change in charge density ∆ρ and the

y-directed electric field during the linear phase of the KH instability for cases A1 and C1.

In case A1 the redistribution of charge causes Ey to be slightly amplified at the left edge of

the shear layer, whereas in case C1 the redistribution of charge causes Ey to be amplified at

the right edge of the shear layer. Since the KH instability is driven by inertia, and since the

y-directed electric field is what ultimately leads to the advective motion of the high-density

plasma, having an enhanced Ey at the right edge of the shear layer – where there is a “free”

boundary – results in a more unstable configuration. From the continuity equation for each

species, the accumulation of charge ρ can be quantified in terms of the divergence of the

current j =
∑

s qsnsus. Assuming a uniform magnetic field and isotropic pressure, the time

derivative of the local charge density is

∂ρ

∂t
= −∇ · j = −∇ ·

[
ρ
E ×B

B2
− mini

B2

∂ui
∂t
×B

]
, (47)
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where the first term in the square brackets is the contribution from E × B drift and the

second term is the contribution from polarization drift, which is associated with the inertia of

the particles. Since me � mi, we have dropped the electron contribution to the polarization

drift. Note that in the case of isotropic pressure, diamagnetic drift does not contribute to

charge accumulations since the associated current is always divergence free. Equation (47)

can be reexpressed as

∂ρ

∂t
= −∇ ·

[
ρ
E ×B

B2

]
+
mi

B2

[
niB ·

(
∇× ∂ui

∂t

)
− (∇ni ×B) · ∂ui

∂t

]
. (48)

Equation (48) shows that charge density in the presence of E×B drift and ion density gradi-

ents can contribute to local charge accumulation, and hence to the local amplification of Ey.

Two-fluid simulations indicate that changing the polarity of the electric and magnetic fields

has a noticeable effect only for the case of nonuniform ion density, which indicates that it is

the last term in Eq. (48) that results in asymmetry of Ey shown in Fig. 7. Equation (48) also

confirms the finding that the orientation of ∇ni ×B, which is correlated with diamagnetic

drift, is consequential. Notably the ∇ni ×B term will lead to charge accumulation even in

the absence of diamagnetic drift, e.g. even when temperature is zero.

Kinetic simulations, which in addition to capturing two-fluid physics also capture FLR

effects, exhibit smaller growth rates than two-fluid simulations. The relative difference

between two-fluid and kinetic growth rates are 20%, 6%, 28%, and 8% for parameter cases

A1, A2, A3, and A4, respectively. Two-fluid and kinetic simulation results have better

agreement for cases with higher magnetization – A2 and A4, where the ion Larmor radius

is a small fraction of the shear layer half-width, i.e. rLi/d = 0.25. For cases A1 and A3,

where rLi/d = 0.5, FLR effects are more significant and lead to larger disagreement between

two-fluid and kinetic simulations. The stabilization of KH instabilities due to FLR effects,

particularly as rLi/d increases, is consistent with previous studies19,21,30.

It is found that the difference in the treatment of electromagnetic fields in two-fluid

simulations, as compared to kinetic simulations, does not play a significant role. In two-

fluid simulations, which encapsulate electromagnetic physics, the magnetic field components

(Bx, By) are self-consistently evolved and retain a value of zero for all time. The Bz compo-

nent of the magnetic field changes by less than 0.3% from the initialized profile – even well

into the nonlinear stage of the instability. This suggests that the electrostatic and magneto-

static treatment of fields in kinetic simulations is justified for the low-beta (β ≤ 2.5× 10−3)
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(b) Case C1 with Bz|x=0 = −1, E0 = −0.02

FIG. 7: The net change in the charge density relative to initial time (left) and the Ey component

of the electric field (right) from two-fluid simulations of of (a) parameter case A1 with Bz|x=0 = 1,

E0 = 0.02 and (b) parameter case C1 with Bz|x=0 = −1, E0 = −0.02. In case A1 ion diamagnetic

drift is aligned with E ×B drift and the initial configuration has a net positive charge and in case

C1 ion diamagnetic drift opposes E ×B drift and the initial configuration has a net negative

charge – see Fig. 1 for a schematic. During the linear phase of the instability, the charge density

is redistributed, resulting in localized amplification of Ey. For case A1 Ey is amplified near the

left edge of the shear layer, and for case C1 Ey is amplified near the right edge of the shear layer.

Amplification of the electric field near the right edge of the shear layer, where ion density

transitions from high to low and where the shear layer is more susceptible to attenuation, leads to

a more unstable configuration and an enhanced growth rate. In two-fluid simulations the growth

rate for case A1 is ωI/ωs = 0.174 and growth rate for case C1 is ωI/ωs = 0.271. Thus the

redistribution of charge can strongly affect the development of the KH instability.
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configurations considered. While the present computational investigation is restricted to

the case of k ·B = 0, electromagnetic effects can become non-negligible if the perturbation

wavenumber along the magnetic field is non-zero.37,54 A non-zero electric field (or current)

parallel to the magnetic field can also introduce electromagnetic physics.37,55,56

In addition to growth rates, other features of the linear evolution of the KH instability are

consistent between the kinetic and two-fluid simulations. As shown in Table II, the oscillation

frequency for kinetic simulations is within two percent of the oscillation frequency obtained

from two-fluid simulations for parameter cases A1, A2, A3, and A4. Oscillation frequencies

predicted by Hall-MHD theory agree with two-fluid simulations for the A0 parameter case,

but otherwise have significantly different values. This discrepancy is expected given that

two-fluid and kinetic descriptions encapsulate more physics and more waves than Hall MHD.

In simulations the nondimensional oscillation frequency is ωR/ωs = π/(∆tmin), where ∆tmin

is the average time between local minima in the linear evolution of |uix| versus time. See

Fig. 6(a) for case with zero oscillation frequency and Figs. 6(b) and 6(c) for cases with

finite oscillation frequencies. The linear stage of the KH instability evolution ends when

the instability stops growing exponentially, which occurs when |ux|/(ωsd) reaches a value

of ≈ 0.1. As shown in Fig. 6, the time at which this happens in simulations depends on

the perturbation and on the details of how the most unstable mode evolves. Notably the

form and magnitude of the perturbation is different in two-fluid simulations as compared to

kinetic simulations, the unstable eigenmode tends to develop faster in kinetic simulations

than in two-fluid simulations, and the growth rate tends to be larger in two-fluid simulations.

The eigenmode structures in kinetic and two-fluid simulations are in close agreement and the

spatial structure of Ey(x, y), which is shown in Fig. 7, follows closely the spatial structure

of ux(x, y). For nonuniform-density anode configurations shown schematically in Fig. 1(a),

the eigenmode structure in simulations (see Fig. 7(a)) closely resembles the Hall-MHD-

derived eigenmode structure for a uniform-density plasma (see Fig. 4(a)), except amplitudes

tend to be slightly larger on the high-density side of the shear layer. In nonuniform-density

cathode configurations (see Fig. 1(b)), the eigenmode structure in simulations (see Fig. 7(b))

resembles the Hall-MHD-derived eigenmode structure for a nonuniform-density plasma (see

Fig. 4(b)), with significantly larger amplitudes and wider extent on the low-density side of

the shear layer.

On account of computational cost considerations for kinetic simulations and in the interest
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of consistency, a mass ratio of Mi/Me = 25 was used for all simulation parameter cases

outlined in Table I and results presented in Table II. To evaluate the effect of different mass

ratios, a two-fluid simulation of the A1 parameter case was also performed for Mi/Me = 500.

The evolution of |uix| is shown in Fig. 6(b) and the associated growth rate and real frequency

is found to be virtually the same as the Mi/Me = 25 mass ratio simulation. Figure 6(b) also

shows that Mi/Me = 25 and Mi/Me = 500 simulations result in the same dynamics well into

the nonlinear phase of the instability, which suggests that electron inertia does not affect

the evolution of the KH instability and using Me = 1/25 is sufficient for practical purposes.

This finding is consistent with previous studies that considered mass ratio effects in kinetic

simulations of KH instabilities18,30. In principle, mass ratio can affect the development of

secondary instabilities, which can form during the nonlinear stage and which are not explored

here. The end time for simulations is chosen to be before secondary instabilities develop.

While kinetic simulations had two velocity coordinates and hence two degrees of freedom,

two-fluid simulations used an adiabatic index of γ = 5/3, which corresponds to three degrees

of freedom. Two-fluid simulations with γ = 2 and with γ = 5/3 were compared and the

resulting KH instability growth rates were found to be indistinguishable, which is consistent

with the findings of previous MHD simulation studies16.

B. Nonlinear phase and mass transport

In addition to modifying growth rates and oscillation frequencies, two-fluid and kinetic

physics also affects the nonlinear phase of the KH instability. The characteristic eddy feature

is modified on account of FLR physics, diamagnetic drift, and charge separation, which affect

the velocity flow field. The ion number density and the velocity field for ions and electrons

from kinetic simulations are shown in Fig. 8 for low- and high-magnetization configurations

with large density gradients, i.e. cases A3 and A4. While the eddy structure is similar,

density features at low magnetization are more diffuse on account of more significant FLR

effects. Ion and electron velocities are aligned in regions where the pressure gradient is

low and diamagnetic drift is negligible, e.g. in regions near wall boundaries and in the

middle of the eddy. The combined effect of E × B and polarization drift leads to localized

accumulation of charge. For these parameter cases, the initial charge density is positive, and

during the onset of the nonlinear phase more positive charge accumulates in the vortex as the
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FIG. 8: Ion number density from kinetic simulations of (a) parameter case A3 with

Ωp/ωpp = 1 at time tωs = 85.8 and (b) parameter case A4 with Ωp/ωpp = 2 at time

tωs = 83.1. Parameter cases A3 and A4 are outlined in Table I. Ion number density is

overplotted with arrows indicating direction and magnitude of ion velocity in red and

electron velocity in blue. As the instability evolves the density profile steepens at the

leading edge of the eddy. For each species, the largest velocities are in regions where

diamagnetic drift and E ×B drift are aligned. Diamagnetic drift dominates the flow field

wherever ion and electron velocities have similar magnitudes and opposite directions. FLR

effects in the lower magnetization case (A3) preclude the formation of fine-scale density

features.

instability evolves. In modified configurations, where polarity of the electric and magnetic

field are reversed – see Fig. 1 and discussion in Sec. IV A, the initial charge concentration

is negative and negative charge accumulates in the vortex. The accumulation of charge is

accompanied by the development of a divergent electric field in the middle of the eddy, which

leads to enhanced circulatory polarization drift during the initial stage of eddy formation.

The main distinction between two-fluid and kinetic simulations of the KH instability is

the presence of FLR effects in the latter. As a result and as noted in previous studies29,30,

kinetic simulations have a lower bound on the gradient scale lengths that can develop during

the nonlinear evolution of the KH instability, whereas two-fluid simulations – in the absence

of collisional transport terms – do not. Since there is no viscosity in the two-fluid description
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FIG. 9: Nondimensionalized ion Larmor radius rLi/d from kinetic simulations of the A3

parameter case (see Table I and Fig. 5), plotted as a function of position at time

tωs = 85.8. Since kinetic simulations are magnetostatic, variation of ion Larmor radius

coincides with variation of ion thermal speed. The range of Larmor radii

rLi/d ∈ [0.426, 0.607] is more than a six-fold increase over the range of Larmor radii at

initial time, which indicates that the magnetic moment is not conserved and the instability

evolution is not adiabatic.

used here, the model does not have a physical dissipation scale, and in principle – though not

in numerical simulations – can produce features with infinitesimally small gradient scales.

The smallest allowable scale length can affect the local diamagnetic drift and can also have

important consequences for secondary KH and Rayleigh-Taylor instabilities, which are not

explored here. The propensity of the KH instability to lead to steeper and steeper density

variations in two-fluid simulations can also have important consequences for numerics, since

the choice of numerical dissipation used to deal with discontinuities can affect the physics

that is captured.

In kinetic simulations, the minimum scale length for each species is set by the local

Larmor radius. For case A3 at initial time rLi/d ∈ [0.472, 0.500], whereas at time tωs = 85.8

the range of Larmor radii increases to rLi/d ∈ [0.426, 0.607]. The spatial variation of Larmor

radius at time tωs = 85.8 is shown in Fig. 9. The largest Larmor orbits are in regions where

the low-density plasma infiltrates the high-density region, which is also where sharp density

features tend to get smeared out – see Fig. 8. For case A4 at initial time rLi/d ∈ [0.245, 0.250],

whereas at time tω = 83.1 the range of Larmor radii increases to rLi/d ∈ [0.225, 0.280]. Note
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that the initial variation of gyroradii is associated with the anisotropic temperature in the

equilibrium shear layer – see Fig. 5. In kinetic simulations, where the magnetic field is

uniform and fixed in time, the Larmor radius is proportional to the thermal speed. The

magnetic moment, which scales as r2
Ls, is not conserved, which implies that the nonlinear

stage of the KH instability is not adiabatic. The nonadiabatic nature of the instability is

confirmed in two-fluid simulations, where the initially-uniform ion temperature evolves to

have about ±30% variation throughout the domain, while magnetic field variation remains

less than 0.3% percent for all time. Locations of global extrema for ion temperatures in

two-fluid simulations coincide with the global extrema for ion gyroradii shown in Fig. 9.

An important feature of the KH instability in low-beta configurations is the associated

transport of plasma perpendicular to the magnetic field. Mass transport driven by the KH

instability is a nonlinear effect and is only present when density is nonuniform across the

shear layer. Uniform density profiles or density profiles that have an even symmetry across

the shear layer do not result in net mass transport. Figure 10 shows the y-averaged species

number density 〈ns〉y in the nonlinear phase obtained from two-fluid and kinetic simulations

for parameter cases A1 and A2, which are outlined in Table I. The y-averaged number

density flattens in the middle of the domain as plasma is transported across the shear layer

from left to right. This flattening process is observed for all parameter cases. The general

features of the y-averaged number densities, including charge separation and spatial extent

of the flattening in the x̂ direction, are similar for all parameter cases – independent of the

model used. The y-averaged number densities in two-fluid and kinetic simulations exhibit

better agreement for higher magnetization configurations like case A2.

Mass transport can be explicitly quantified from the x-directed momentum, which is

one of the primary variables in two-fluid simulations and which can be evaluated from the

first velocity moment (see Eq. (37)) of the distribution function(s) in kinetic simulations.

The x-directed ion mass flux per unit length in y is simply the y-averaged x-directed ion

momentum 〈Miniuix〉y, which is defined as

〈Miniuix〉y =
Mi

Ly

∫ Ly/2

−Ly/2

niuixdy, (49)

where Mi = 1. The mass flux, with uix normalized to ωsd, from two-fluid and kinetic

simulations is plotted in Fig. 11 as a function of position and time for nonuniform-density

parameter cases A1 and A2. As expected, mass flux is only apparent in the nonlinear stage
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FIG. 10: The y-averaged species number density 〈ns〉y plotted at initial and final time for

(a) two-fluid simulation of case A1, (b) two-fluid simulation of case A2 , (c) kinetic

simulation of case A1, and (d) kinetic simulation of case A2. Parameter cases A1 and A2

are outlined in Table I. The centroid of the ion number density computed over

x/d ∈ [−4, 4], which is the approximate region spanned by the instability, is shown at

initial time (black dashed line) and final time (black solid line). During the nonlinear

phase of the KH instability, plasma is transported across the shear layer, as indicated by

the flattening of the y-averaged number density profiles and the shift in centroid. While

the general trends are independent of magnetization and model, plasma transport and the

y-averaged number densities from kinetic and two-fluid simulations are in better agreement

at higher magnetization. At lower magnetization, the two-fluid simulations exhibit much

larger net shift of the plasma, which is due to the shear layer and the density drop-off

being slightly offset in the kinetic equilibrium.
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of the instability, when |uix|/(ωsd) & 0.1. Mass flux first occurs in the region where the

magnitude of the equilibrium density gradient is largest, which is generally close to the

middle of the shear layer. In all simulations, the plasma region with positive mass flux

expands approximately linearly in time until it reaches a spatial extent of about four shear

layer widths. The factor of four difference between the initial shear layer width and final

vortex width is consistent with previous findings24. Mass flux tends to reach a maximum

value near the right edge of the shear layer. The mass flux ultimately decreases as the

instability evolves, but the time-integrated mass flux remains positive for all cases for the

time scales simulated, indicating net transport of plasma across the shear layer. Figure 12

shows the mass flux across the center of the shear layer at x = 0 as a function of time for

cases A1, A2, A3, and A4. In all cases, two-fluid simulations exhibit a larger peak mass

flux than kinetic simulations, and mass flux values are in better agreement between kinetic

and two-fluid simulations for cases with higher magnetization. This trend in mass flux is

consistent with the trend observed in the instability growth rates. With the exception of the

kinetic simulation of case A1, lower magnetization configurations exhibit larger mass flux

than higher magnetization configurations. The A1 kinetic simulation presents an outlier

because in the equilibrium state the largest density gradient is offset away from the shear

layer.

While the collisionless Kelvin-Helmholtz instability is not a diffusive process, the associ-

ated mass flux can be interpreted as an effective one-dimensional diffusion, such that density

evolution can be approximately described by

∂ns
∂t

=
∂

∂x

(
D
∂ns
∂x

)
, (50)

where D is the diffusion coefficient. Consistent with this approximation and the continuity

equation given in Eq. (21), ion particle flux is equivalent to D ∂ni

∂x
. In principle, the diffu-

sion coefficient should encapsulate eddy size and instability growth rate, which captures the

effects of shear, perturbation wavelength, density variation, magnetization, and charge sep-

aration. For an order-of-magnitude estimate, the diffusion coefficient can be approximated

by D ≈ (d/2)2ωI , where d is the shear layer half-width and ωI is the instability growth

rate. Note that the choice of using d/2 as the diffusion scale length was informed by the

shifts in the density centroid, shown in Fig. 10. In nondimensional units, D ≈ 1
4
(ωI/ωs)

and ∂n/∂x ≈ nbd ≈ 1. By these arguments, for the growth rates given in Table II, we
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FIG. 11: The nondimensionalized x-directed ion mass flux 〈Miniuix〉y /(ωsd), defined in

Eq. (49), plotted as function of position and time for: (a) two-fluid simulation of case A1

with Ωp/ωpp = 1; (b) two-fluid simulation of case A2 with Ωp/ωpp = 2; (c) kinetic

simulation of case A1 with Ωp/ωpp = 1; and (d) kinetic simulation of case A2 with

Ωp/ωpp = 2. Parameter cases A1 and A2 are outlined in Table I. Two-fluid and kinetic

simulation results are shown for the nonlinear phase of the KH instability. Black vertical

lines at x/d = ±1 denote the original shear layer width and white vertical lines at

x/d = ±4 denote a region that is four times wider than the original shear layer. The mass

flux region widens approximately linearly in time in both kinetic and two-fluid simulations,

until mass flux peaks. Mass fluxes from two-fluid and kinetic simulations are in better

agreement for case A2, which has higher magnetization.
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FIG. 12: The x-directed ion mass flux 〈Miniuix〉y, defined in Eq. (49), evaluated at x = 0

and plotted as a function of time for parameter cases A1, A2, A3, and A4 (see Table I). In

all cases, two-fluid simulations exhibit a larger peak mass flux than kinetic simulations,

and peak values are in better agreement between kinetic and two-fluid simulations for

cases with higher magnetization (A2,A4). This trend is consistent with the trend in

growth rate during the linear stage of the KH instability. The mass flux ultimately

decreases at a rapid rate, but the time-integrated mass flux remains positive over the time

scales simulated, such that plasma exhibits net transport across the shear layer.

would expect a mass flux magnitude of about 10−2, which is consistent with the mass fluxes

observed in simulations, shown in Fig. 11 and Fig. 12. As expected, parameter cases with

steeper density profiles (cases A3 and A4) result in more plasma being transported across

the shear layer.

Kinetic distribution functions, and the degree to which their velocity dependence deviates

away from a Maxwellian, provide an indicator of the relative importance of kinetic physics

in the collisionless plasmas of interest. The deviation of fs away from a Maxwellian can be

quantified in terms of a relative difference,

δM =

∫∫
|fs −Ms| dvxdvy∫∫

fsdvxdvy
, (51)

where Ms is a Maxwellian distribution function,

Ms = ns
ms

4π
√
Ts1Ts2

exp

(
−ms(vx − usx)2

4Ts1
− ms(vy − usy)2

4Ts2

)
, (52)

whose local density ns, drift velocity (usx, usy), and temperatures (Ts1, Ts2) are obtained

from moments of fs. For an isotropic Maxwellian Ts1 = Ts2 = 1
2
(Tsx + Tsy), whereas for an
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FIG. 13: (a) Deviation δM, defined in Eq. (51), of the kinetic-simulation ion distribution

function away from an isotropic Maxwellian for parameter case A3 (see Table I and Fig. 5)

at time tωs = 85.8. The maximum deviation is 0.388 and its location is denoted by a black

triangle marker. Regions of the domain with velocity shear, density gradients (see

Fig. 8(a)), and large Larmor orbits (see Fig. 9) exhibit the largest deviations, indicating

that kinetic physics is more important in these regions. (b) The ion distribution function

fi(vx, vy) at the point of maximum deviation, plotted on a subset of the velocity domain.

The distribution function has two distinct peaks, and is thereby poorly represented by a

Maxwellian reconstruction.

anisotropic Maxwellian Ts1 = Tsx and Ts2 = Tsy, with Tsx and Tsy computed from fs using

Eq. (39). For parameter case A3, where Ωp/ωpp = 1, the maximum deviation of the ion

distribution function from an isotropic Maxwellian is 8% at initial time and 39% at time

tωs = 85.8. As shown in Fig. 13(a) – see also Figs. 8(a) and 9, the largest deviations coincide

with regions of the domain with velocity shear, density gradients, and large Larmor orbits.

Figure 13(b) shows the ion velocity distribution function fi(vx, vy) plotted at the location of

maximum deviation. The distribution function is anisotropic, exhibits two distinct peaks,

and an overall tilt in the (vx, vy) plane. The latter feature is an indicator of non-zero off-

diagonal terms in the pressure tensor. The development of non-Maxwellian features suggests

that the nonlinear stage of the KH instability can potentially give rise to subsidiary microin-

stabilities. The maximum deviation from an anisotropic Maxwellian is 2% at initial time

and 38% at time tωs = 85.8, indicating that anisotropic pressure does not capture the kinetic
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physics and higher moments of the distribution function are needed to represent dynamics

– as is consistent with previous findings31. For parameter case A4, where magnetization is

Ωp/ωpp = 2, the maximum deviation from an isotropic/anisotropic Maxwellian distribution

function is only slightly lower – 25% at time tωs = 83.1. These deviations grow precipitously

during the nonlinear phase of the KH instability evolution, and indicate that the nonlinear

state of the plasma is strongly affected by kinetic physics. The large deviations, which can

only occur in low-collisionality regimes, also suggest that multi-fluid descriptions based on

the first three moments of the distribution function are likely to be inaccurate when it comes

to modeling long-time KH instability turbulence. While it is possible that higher-moment

multi-fluid descriptions57–59 can incorporate the observed non-Maxwellian features of the

kinetic distribution functions, the applicability of these moment methods is not explored

here.

V. CONCLUSION

Hall-MHD linear theory, two-fluid simulations, and kinetic simulations are successfully

applied to investigate the properties of KH instabilities in low-beta nonuniform plasmas.

The staged approach, using models of increasing fidelity, facilitates the isolated study of

different physics and shows how diamagnetic drift, space charge, and finite Larmor motion

all modify the evolution of the instability.

Hall-MHD linear theory is applied to characterize KH instabilities in shear layers where

the velocity field and the perturbation wave number are transverse to the magnetic field.

Unlike previous MHD studies, the analysis admits smooth density variation outside the shear

layer and considers finite gradient scale lengths for both velocity and density. An analytic

dispersion relation is derived and solved numerically and the growth rate dependence on the

density gradient, magnetization, and wavenumber is systematically mapped out. Growth

rates are found to be higher for density profiles that decay away from the shear layer.

The associated eigenfunctions are also found to be modified from the classical fluid theory

and ideal MHD descriptions. When the ratio of ion cyclotron frequency to velocity shear

is sufficiently small, i.e. Ωi/ωs . 1, KH instabilities can couple to drift waves and an

associated high wavenumber branch is found to exist, consistent with previous cold fluid43,

large effective Larmor radius MHD20, and kinetic theory25,26 analyses.
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Two-fluid and kinetic simulations are used to investigate properties of KH instabilities

that are beyond the scope of the Hall-MHD description. A finite-element method is used for

the two-fluid simulations and a finite-volume discretization is used for Vlasov-Poisson kinetic

simulations – both are high-order accurate. Two-fluid simulations capture the complete

dynamics of finite-mass electrons and ions and thereby self-consistently capture the physics of

space charge and diamagnetic drift. Employing recently developed methods, kinetic Vlasov-

Poisson simulations are initialized with self-consistent two-species equilibria that satisfy the

steady-state governing equations and fully incorporate finite Larmor radius effects. This

technique enables the study of isolated physics in nonuniform plasmas and also enables

detailed cross-comparisons with two-fluid simulations. Together, these tools are successfully

leveraged to study KH instabilities in nonuniform low-beta plasmas, with significant charge

separation, diamagnetic drift, and FLR effects.

Two-fluid and kinetic simulations are conducted for a suite of parameter cases, wherein

the density profiles and magnetization are varied. The linear stage of the KH instability

evolution in simulations is compared across the different models. In the limit of a uniform

quasineutral plasma, two-fluid simulations are found to agree with Hall-MHD predictions.

For nonuniform plasmas with significant space charge, the results of two-fluid and kinetic

simulations do not agree with Hall-MHD predictions for growth rate and oscillation fre-

quency. In cases where diamagnetic drift constitutes a large fraction of the total equilibrium

drift velocity, the errors associated with Hall-MHD predictions for growth rate can be larger

than 70%. Two-fluid simulations indicate that the orientation of the diamagnetic drift in the

initial equilibrium has a significant effect on the charge distribution, the electric field evolu-

tion, and the growth rate. When ion diamagnetic drift opposes the E ×B drift, the growth

rates are significantly larger than those predicted by Hall-MHD; whereas when ion diamag-

netic drift is aligned with the E × B drift the growth rates are significantly smaller than

those predicted by Hall-MHD. The discrepancy between two-fluid results and Hall-MHD is

attributed to the redistribution of charge by polarization drift.

Growth rates obtained from two-fluid simulations and kinetic simulations are in close

agreement whenever the shear layer width is at least four Larmor orbits wide. For large

Larmor orbits, for example when the ratio of ion Larmor radius to shear layer half-width is

rLi/d = 0.50, FLR effects lead to diminished growth rates in kinetic simulations as compared

to two-fluid simulations. The oscillation frequencies in two-fluid and kinetic simulations
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match within two percent for all parameter cases.

In the nonlinear phase of the KH instability evolution, two-fluid and kinetic simulation

results exhibit similar features – including localized enhancement of diamagnetic drift, heat-

ing, and charge accumulation. The fundamental distinction between two-fluid and kinetic

results in the nonlinear phase is that FLR effects in kinetic simulations set a minimum bound

on the gradient scale lengths, whereas two-fluid simulations – in the absence of viscosity –

can develop features that are smaller than the ion Larmor radius. Two-fluid and kinetic

simulations of the KH instability are successfully used to study instability-induced mass

transport across the shear layer. The transport is characterized in terms of density evolu-

tion, mass flux across the shear layer, and a simplified diffusion model. Mass flux is found

to be higher for parameter cases with lower magnetization and for parameter cases with

steeper density profiles. Two-fluid simulations tend to exhibit larger mass flux. During the

nonlinear stage of the instability evolution, ion distribution functions are shown to deviate

by more than 30% from Maxwellian reconstructions, particularly in regions with velocity

and density gradients and in regions with large gyroradii. In the collisionless plasmas of

interest, such deviations point to the importance of kinetic physics in the nonlinear phase

of KH instabilities.

Simulations and quantitative comparisons across the different models demonstrate that

two-fluid and kinetic effects change the characteristics of the KH instability dramatically. Ion

density variation in the shear layer can lead to redistribution of charge via polarization drift,

which in turn affects the electric field that drives plasma advection. FLR effects also influence

growth rates and can inhibit the development of macroscopic secondary instabilities. The

associated growth rates and mass transport properties have important consequences for

applications. For the MITL application that motivated this study, the computational results

imply that collisionless plasmas created at anode and cathode surfaces can be transported

across the magnetic field – contrary to ideal MHD predictions. While the configurations

studied here were focused primarily on anode plasmas, simulation results indicate that for

the same velocity shear, plasmas near the cathode can be more unstable and thereby subject

to more significant mass transport as compared to anode plasmas. The results further

suggest that extended MHD models may be inaccurate predictors of cross-field transport in

MITL configurations.

There are a number of limitations associated with the present study, which point to fu-
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ture research directions. While time-dependent currents in the electrodes were ignored in the

present study, incorporating these currents and the associated magnetic field ramp in simu-

lations would facilitate a more complete description of the MITL configuration. The present

study does not explore the effect of multiple unstable modes and secondary instabilities, both

of which can affect the nonlinear evolution of the KH instability and the associated mass

transport. For example, multiple modes can interact to form larger vortices, the dynamics

of which can be affected by the proximity of boundaries. Simulation of longer time scales at

higher resolution would also help elucidate whether mass transport continues after multiple

roll-ups of the instability. The role of diamagnetic drift and its relative orientation to the

equilibrium velocity flow field are shown to be important and warrant further investigation.
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Appendix A: Hall-MHD dispersion relation for KH instability with finite

density gradients

Consider the velocity profile in Eq. (13) and density profile in Eq. (14). For the three

regions of the domain, Eq. (12) can be expressed as three separate differential equations,

0 =


−ûi1xk2

y

(
1− a

Ωiky
(kyV − ω)

)
+ a∂ûi1x

∂x
+ ∂2ûi1x

∂x2
x ∈ [−L,−d]

−ûi1xk2
y + ∂2ûi1x

∂x2
x ∈ [−d, d]

−ûi1xk2
y

(
1 + b

Ωiky
(kyV + ω)

)
+ b∂ûi1x

∂x
+ ∂2ûi1x

∂x2
x ∈ [d, L]

(A1)

Note that the ∂ûi1x/∂x term drops out when piecewise constant density profiles are assumed,

e.g. in the analyses presented in Refs. 17 and 20. The general form of the solution ûi1x that

satisfies Eq. (A1) is

ûi1x =


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(A2)

A =

(
1− a

Ωiky
(kyV − ω)

)
(A3)

B =

(
1 +

b

Ωiky
(kyV + ω)

)
(A4)

where Rj and Sj are unknown constant coefficients. Following the approach presented

in Refs. 12 and 17, the constant coefficients can be eliminated by applying the following

conditions on the solution ûi1x: impermeable wall boundary conditions with ûi1x = 0 at

x = ±L; continuity at x = ±d; and the jump condition[
−(kyui0y − ω)n0

∂ûi1x
∂x

+ n0ûi1x
∂ui0y
∂x

ky

1− 1
Ωiky

(kyui0y − ω) 1
n0

∂n0

∂x

]x+
x−

= 0 (A5)
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at x = ±d. The jump condition stipulates that the term in the square brackets of Eq. (12)

must be continuous at the edges of the shear layer, which ensures that the velocity eigen-

function is continuous. The resulting closed-form nonlocal dispersion relation is

e−4kyd

−a
2

+ 1
2

√
a2 + 4k2

yA coth
(

(L−d)
2

√
a2 + 4k2

yA
)
− ky

(
1 + V

d(kyV−ω)

)
A

a
2
− 1

2

√
a2 + 4k2

yA coth
(

(L−d)
2

√
a2 + 4k2

yA
)

+ ky

(
−1 + V

d(kyV−ω)

)
A


=

(
b
2

+ 1
2

√
b2 + 4k2

yB coth
(

(L−d)
2

√
b2 + 4k2

yB
)

+ ky

(
1− V

d(kyV+ω)

)
B
)

(
− b

2
− 1

2

√
b2 + 4k2

yB coth
(

(L−d)
2

√
b2 + 4k2

yB
)

+ ky

(
1 + V

d(kyV+ω)

)
B
) . (A6)

In addition to the classical features of the KH instability, Eq. (A6) encapsulates the effects of

magnetization, finite density gradients and associated diamagnetic drift, and wall proximity.

Given fixed values of {d, ky, L, a, b, V,Ωi}, Eq. (A6) can be numerically solved for ω.

Appendix B: Hall-MHD dispersion relation for KH instability in limit of

classical hydrodynamics

The hydrodynamic dispersion relation for the Kelvin-Helmholtz instability in an infinite

uniform-density classical fluid12 can be obtained by evaluating Eq. (19) in the limit of L̃→

∞, Ω̃i →∞, b̃ = 0, which yields

ω̃ = ±1

2

√
1− e−4κ − 4κ+ 4κ2. (B1)

The KH instability grows when the frequency ω̃ has a positive imaginary component, which

happens when κ ∈ [0, 0.639]. The maximum nondimensional growth rate is 0.201 and occurs

at κ = 0.398. Allowing for a finite domain size while taking the limits Ω̃i → ∞, b̃ = 0 in

Eq. (19), yields the dispersion relation

ω̃ = ±1

2

√(
e2κ(1−L̃) − 1 + 2κ

)2 − e−4κL̃
(
e2κ(L̃−1) − 1− 2κ

)2

1− e−4κL̃
, (B2)

which is more general than Eq. (B1). As expected, impermeable walls at a finite distance

from the shear layer have a stabilizing effect and L̃ ≤ 2 completely stabilizes the Kelvin-

Helmholtz instability.

The dispersion relation for a step density profile, where density is uniform for x < d and

zero to the right of the shear layer, can be evaluated by taking the limits L̃ → ∞, Ω̃i →
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∞, b̃→ −∞ in Eq. (19), which yields

ω̃ =
1

4
(1− e−4κ)∓ 1

4

√(
e−4κ + [3− 4κ]

)2

− 16e−4κ. (B3)

For the dispersion relation in Eq. (B3), the frequency has positive imaginary component for

κ ∈ [0, 0.916], and the maximum nondimensional growth rate is 0.247 at κ = 0.613. Thus

the configuration is more susceptible to instability when density decreases away from the

shear layer. In the limit of L̃ → ∞, Ω̃i → ∞, b̃ → ∞, Eq. (19) reduces to the dispersion

relation

ω̃ = −1

4

[
1− e−4κ

]
± 1

4

√[
1− e−4κ

]2

+ 8κ
[
e−4κ + (2κ− 1)

]
(B4)

wherein the frequency is real-valued and the configuration is stable.
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