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Hall-magnetohydrodynamic (Hall-MHD) theory, two-fluid simulations, and kinetic
simulations are used to investigate the cross-field transport properties of Kelvin-
Helmholtz instabilities in nonuniform low-beta collisionless plasmas. Hall-MHD anal-
ysis shows how the linear properties of the instability are modified by density gra-
dients and magnetization. High-order accurate two-fluid and kinetic simulations,
with complete dynamics of finite-mass electrons and ions, are applied to a suite of
parameter cases to systematically assess the effects of diamagnetic drift, magneti-
zation, charge separation, and finite Larmor motion. Initialization of exact two-
species kinetic equilibria facilitates the study of isolated physical effects and enables
detailed cross-comparisons between two-fluid and kinetic simulations, including for
cases where ion gyroradii are comparable to gradient scale lengths. For nonuniform
plasmas with significant space charge, the results of two-fluid and kinetic simula-
tions are found to disagree with Hall-MHD predictions. Kelvin-Helmholtz instability
growth rates, per unit shear, are shown to be smaller when ion diamagnetic drift and
E x B drift are parallel and larger when the two drifts are antiparallel. The effect
is attributed to polarization drift in the shear layer, which leads to redistribution
of charge, alters the electric field that drives plasma advection, and consequently
modifies growth rates. Instability-induced mass transport for different parameters
is characterized in terms of the flux across the shear layer and a simplified diffusion
model. Distribution functions from kinetic simulations are shown to deviate substan-
tially from Maxwellian reconstructions, indicating the importance of kinetic physics

during the nonlinear phase of the instability.
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I. INTRODUCTION

Transport of plasma perpendicular to a background magnetic field is a widely-observed
phenomenon. Magnetic confinement fusion concepts fundamentally rely on understanding
and controlling cross-field transport, as do technologies like Hall thrusters, high-power mag-
netrons, and magnetically insulated transmission lines. In plasmas where the ratio of thermal
pressure to magnetic pressure is much less than unity (i.e. low-beta plasmas) and where the
mean free path is long compared to other scale lengths, cross-field transport properties can
be governed by density gradients, finite Larmor motion, drifts, sheared flows, charge sep-
aration, and microturbulence. In such plasmas, gradient-driven instabilities are candidate
mechanisms of cross-field transport. The Kelvin-Helmholtz (KH) instability, which is driven

by velocity shear, is a well-known example.

Collisionless low-beta plasmas that are subject to anomalous cross-field transport and
that have properties conducive to KH instabilities are characteristic of those found in pulsed
power inertial confinement fusion experiments. Pulsed power technology relies on magneti-
cally insulated transmission lines (MITLs) to deliver megaamps of current to a load — without
high-voltage arcs. Despite magnetic insulation, plasmas produced at electrode surfaces in
MITLs undergo as yet unexplained cross-field transport that results in parasitic currents!®
and leads to contaminant plasma impinging on the load™®, thereby undercutting the perfor-
mance of pulsed power experiments™®. The surface-produced plasmas feature large density
and electric field gradients that result in sheared flows, which can drive KH instabilities and
transport. The near-anode and near-cathode plasmas, as well as their associated electric

field profiles, are shown schematically in Fig. 1.

Plasma conditions in the MITL vary considerably depending on the current pulse, the
distance from the load, and distance from a given electrode surface. The hydrogen plasmas
can have densities as high as 10'® cm™3 at the electrode surface,! whereas away from the
electrodes densities as low as 10'' cm™ have been inferred'®. The potential drop across
the centimeter-scale anode-cathode gap is typically several megavolts and magnetic fields
can range from zero to more than 200 tesla over the course of a 100 ns current pulsel.
While direct measurements of plasma conditions are limited,! characteristic conditions at
a fixed distance from the load can be estimated. For a 200 tesla magnetic field, assuming

a density of 2 x 10* ecm™3 and a temperature of 10 keV, the Knudsen number — defined
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FIG. 1: Schematic representation of (a) near-anode and (b) near-cathode plasmas that are
produced at electrode surfaces in magnetically insulated transmission lines. Field
orientation and profiles for the species number density, electric field, and ion velocity are
shown separately for the two configurations. The direction of diamagnetic drift for ions
and electrons (assuming uniform temperature) is indicated by red and blue arrows,
respectively. In the anode configuration, the ion diamagnetic drift is in the same direction

as the E x B drift.

here as the ratio of mean free path to the width of the anode-cathode gap — is on the
order of 10° and the proton-proton collision frequency is seven orders of magnitude smaller
than the proton cyclotron frequency. This means that collisions are expected to have a
negligible effect on transport phenomena in this intermediate MITL environment. As shown
in Fig. 1, the nonuniform plasmas are subject to £/ x B and diamagnetic drift, have non-zero
space charge, and can feature ion gyroradii that are comparable to gradient scale lengths,
such that their dynamics are governed by multi-fluid and kinetic physics. Significant space
charge is expected since the configuration supports Brillouin-type flows.!! Comprehensive
investigation of KH-instability-driven cross-field transport in this complex setting requires

high-fidelity modeling tools that can isolate the different physical effects.

In classical fluid theory and in plasmas, the energy source for the KH instability is the ki-
netic energy of relative motion of different fluid layers, such that for y-directed velocity with

profile u,(z), larger velocity shear (du,/dx) results in a greater tendency toward mixing and
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instability. A necessary condition for the instability is that the velocity profile must have
an inflection point where d*u,/dz* = 0.'? In order to fully capture growth rate dependence
on perturbation wavenumber, the shear layer must have a finite gradient scale length!?13.
For the magnetized plasmas of interest, where flow velocity is perpendicular to the mag-

netic field, the KH instability has been studied using ideal magnetohydrodynamic (MHD)

14-19 20-22

models , more generalized single-fluid MHD models , quasineutral kinetic-fluid hybrid

19,23,24 18,19,25-31

models , and kinetic models

MHD models applied to uniform-density plasmas have shed light on the stabilizing role of
in-plane magnetic fields and compressibility'# and have been used to explore nonlinear prop-
erties like momentum transport, energy transport, and vortex coalescence!®16:1932  Imposing
infinitesimal gradient scale lengths for density and/or velocity, MHD models that incorporate

finite Larmor radius (FLR) effects have shown that ion gyromotion in nonuniform-density

20,21 26,27 5

plasmas can modify KH instability growth rates*”*'. For uniform or nearly-uniform?

density profiles, kinetic theory analysis of KH instabilities has shown how FLR effects lead

25,27

to reduced growth rates Kinetic simulations of nonuniform plasmas have shed light

on mix!

8 and on the properties of secondary instabilities in the presence of FLR effects®.
Kinetic simulation studies have also explored how vorticity orientation relative to the mag-
netic field affects the development of the KH instability!?2*3533 The degree to which KH
instabilities — even those modeled using kinetic simulations — are influenced by two-fluid
physics (e.g. charge separation, diamagnetic drift) as opposed to kinetic physics (e.g. FLR
effects, non-Maxwellian distribution functions) remains unclear. Furthermore, in the pres-
ence of FLR effects, the use of fluid equilibria to initialize kinetic simulationg!®:19:28-31,33
complicates the interpretation of kinetic simulation results'®?334 and makes it difficult to
isolate single-fluid, multi-fluid, and kinetic physics.

To facilitate a more complete understanding of KH instabilities and associated cross-field
transport in nonuniform collisionless low-beta plasmas, we conduct a systematic investiga-
tion based on Hall-MHD linear theory, two-fluid simulations, and kinetic simulations. By
admitting finite gradient scale lengths for both velocity and density profiles, the Hall-MHD
analysis shows how the linear properties of the instability are modified by density gradi-
ents, magnetization, and perturbation wavenumber. Detailed cross-comparisons between

two-fluid and kinetic simulations are enabled by modeling complete dynamics of finite-mass

electrons and ions and by initialization of self-consistent two-species kinetic equilibria, in-



cluding for cases where ion gyroradii are comparable to gradient scale lengths®. These
techniques, combined with the use of noise-free high-order accurate numerical methods, al-
low for systematic assessment of two-fluid and kinetic effects both in the linear and nonlinear
phase of the KH instability. The findings demonstrate that diamagnetic drift and charge
separation play an important role in the evolution of the instability, and further show how
FLR effects and non-Maxwellian distribution functions modify the nonlinear dynamics.
This paper is organized as follows. Section II presents the Hall-MHD linear theory anal-
ysis for the KH instability in the presence of density gradients. Growth rates, oscillation
frequencies, and associated eigenfunctions are presented and their dependence on magneti-
zation, perturbation wavelength, and density profiles is characterized. Section III describes
the governing equations and solvers used for two-fluid simulations and kinetic simulations,
and presents the boundary conditions and the shear-layer equilibrium initial conditions for
the nonuniform low-beta plasmas of interest. The procedure for setting up consistent ini-
tializations for two-fluid and kinetic simulations is described. Section IV presents results
of two-fluid and kinetic simulations of KH instabilities in nonuniform plasmas. The linear
phase of the evolution is compared to Hall-MHD theory and the role of diamagnetic drift,
space charge, and finite Larmor radius effects are quantitatively assessed. The nonlinear
phase of the KH instability is investigated for its non-adiabatic dynamics, its mass trans-
port properties, and the degree to which velocity distribution functions deviate away from

a Maxwellian. Section V presents concluding remarks.

II. HALL-MHD LINEAR THEORY ANALYSIS

To capture the properties of KH instabilities in low-beta plasmas with finite density gradi-
ents, we apply Hall-MHD theory, wherein the plasma is treated as isothermal, quasineutral,
and electron inertia is assumed to be negligible. The magnetic field is assumed to be uniform
and time-independent, such that magnetic fields generated by plasma currents are neglected.
Since the magnetic moment is in effect constant, these assumptions are consistent with adi-
abatic theory for a 2D strongly-magnetized collisionless plasma. As is often justified for
low-beta plasmas in a uniform magnetic field, 3637 the electric field is treated as electro-
static, such that it can be expressed as the gradient of an electrostatic potential: E = —V¢.

Collisions and associated resistivity terms are neglected. The governing equations for a



hydrogen plasma are thus

0
8—?+V-(nui):0 (1)
(9'u,l-
mmﬁ +mnu; - Vu; + VP, —gn(—=Vo+u; x B) =0 (2)
VP, —qgn(—Vé+u. x B)=0 (3)
V- Z gsnsts = 0 (4)
where B is the magnetic field, ¢; = —q. = e is the particle charge, n = n; = n, is the number

density, m; is the ion mass, u is the flow velocity, and P; is the pressure for particle species s.
The ideal gas law is used as the equation of state, such that P, = P, = nT', where T =T, =T,
is the temperature, which is assumed to be uniform. Equation (4) is a direct consequence
of the quasineutrality approximation. Often in MHD analysis the ion momentum equation
(Eq. (2)) and electron momentum equation (Eq. (3)) are combined, whereas here these
equations are kept separate to facilitate the analysis of velocity profiles without having to
specify currents. Because the VP, term is retained, this model is sometimes referred to as

“extended MHD”.

A. Linear theory dispersion relation

The system of equations is linearized about an equilibrium in which the magnetic field
By = B,yZ is uniform and the flow velocity for ions and electrons is along the y direction.
The equilibrium species flow velocity wuso, (), electrostatic potential ¢y(z), and number
density ng(x) vary as a function of x and are independent of y. The equilibrium state is
assumed to be independent of the z coordinate, such that dynamics are treated as being
in the (z,y) plane. The equilibrium is perturbed with a wave vector k = k,y. Expressing

each variable in terms of an equilibrium quantity ¢o(z) plus a perturbation of the form
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o1(x,y) = b1 (z)e’*wv=<t) and dropping nonlinear terms yields the linearized equations:

iﬁl(kyuioy — LL)) + — (noﬁﬂx) + ikyno'&“y =0 (5)

Ox
o 0 96 A . on
zmmouﬂm(kyuioy — (,LJ) — (q; [—Th% - no% + nouﬂszo + nluioszo + Ta—xl =0 (6)
m;no {iuily(kyuioy — LL)) + ullx%} + qino [Zky(bl + Uﬂsz():| + Zkyan =0 (7)
99 A A 0 on
q; [—HO% + nouelyBZO + 1 (ueOyBZO - %) + Ta_; =0 (8)

—q;No [(Zky)qgl + aelezO:| + ZkyﬁlT =0 (9)
0 . . . . . oA
% [no(uﬂm — U61m>i| + Zkyno(uﬂy — uely) -+ zk:ynl (uiOy — ue(]y) = 0 (10)

In the low-beta limit that is considered here, the plasma drift speed is much less than the

Alfvén speed. Equations (5) to (10) combined with velocity from equilibrium force balance,

1 6¢>0 T 1 8710
- - 11
Hity (Bzo ox * ¢; B.ono Ox ) ’ (11)

yield a second-order differential equation that encapsulates the eigenmode properties:

A1 N Ouso
~ 2 0 —(]Cyuioy - w)no gxl + kyuilxng &Cy
nouﬂxk (k? Uioy — CU) + = =0 (12)
yryeey Oz 1— L Lok g0, —w) ’
k’yQi ng Ox y Yily

where Q; = ¢; B.o/m; is the ion cyclotron frequency, which has a positive sign, as is consistent
with the assumed magnetic field orientation. Equation (12) indicates that magnetization,
which is encapsulated in the ion cyclotron frequency, plays a role only if the equilibrium
density gradient Ong/dx is non-zero. Equation (12) also relates the eigenfunction 1, to the
equilibrium variables and to the perturbation wavenumber and frequency. In the limit of
large magnetization (€; — oo) or zero density gradient, Eq. (12) reduces to the eigenmode
equation obtained by Chandrasekhar from classical hydrodynamics theory'?. Hydrodynamic
analysis often includes a gravity (or gravity-like acceleration) term!?, which is not included
in the present analysis, and which is not necessary to drive KH instabilities.

Consider a shear layer of half-width d in the center of a plasma bounded by impermeable
walls at * = £ L. As is standard practice in linear theory KH instability analysis'?, let the

equilibrium velocity profile be piecewise linear with no variation outside of the shear layer,



such that

V. zel[-L,—d

Uioy(z) = —Yr xzel-dd - (13)
-V zeld 1]

Let the equilibrium number density profile be piecewise exponential with no variation inside

the shear layer, such that

e?@td) g ¢ [~L, —d|
no(z) = 4 1 r € [—dd - (14)
@)z e[d, L]
Note that Eq. (14) can be rescaled by a constant and the following analysis would remain

unchanged. The density profile is chosen to have a constant value of Vng/ng on either side

of the shear layer, such that

a z€[-L,—d

1 8n0

T 0 zel[-dd - (15)
b zeld L]

Figure 2 shows the velocity profile of Eq. (13) and the density profile of Eq. (14) for a = 0
and b < 0. While in Eq. (14) we have chosen density to be continuous, discontinuous density
profiles are also admissible. Density profiles that satisfy Eq. (15) admit analytic solutions
for Eq. (12) and, unlike piecewise constant density profiles used in Refs. 17, 20, and 21,
admit analysis of configurations with finite diamagnetic drift. Note that for this choice of
density profile the velocity shear in the x € [—d, d] region is entirely due to E x B drift.
For the velocity and density profiles given by Egs. (13) and (14), the eigenmode equation
given by Eq. (12) can be solved for 4;;, and the associated dispersion relation that relates
w and k, can be obtained — see Appendix A. Here we consider the special case where a = 0,

such that the density profile is in effect

1 x € [—L,d

ebe=d)  x e d, L]
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FIG. 2: Equilibrium profiles for a piecewise linear shear layer: ion velocity (top) and an
example of a number density profile with a = 0 and b < 0 that satisfies Eq. (15) (bottom).
These profiles admit analytic solutions for the eigenmode equation given in Eq. (12). For
analytic solutions to exist, the value of Vn/n should be constant outside of the shear layer

and zero inside the shear layer.

and the solution to the eigenmode equation is

X RoeFv® 4 Spe kv z € [—L,d]
Uile =
T e ({4 BB o) s ({44 3/ s 43B)) wclan
(17)
B= (1 + %(kyv + w)) . (18)
iy

where {Rg, So, Ry, Sp} are constant coefficients, which can be reduced to a single coefficient
by applying ;1, = 0 boundary conditions at x = +L and a continuity condition at x = d.
The associated dispersion relation, the dimensional form of which is derived in Appendix A,
is nondimensionalized such that spatial scales are normalized to the shear layer half-width
d and temporal scales are normalized to the shear ws = V/d, which is taken to be positive.

The resulting closed-form nonlocal dispersion relation is

e coth (([N/ - 1)/@) -1- (Hiw) (% +3 b2 + 4k2B coth <(Z;1) Vb2 + 4523) + K (1 -1 1

[ =

coth ((E — 1)/@) +1- (HEQ) (% + %\/ b2 + 4k2B coth <(E;1) Vb2 + 4K2 ~) — K (1 + e
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where we have introduced the nondimensional parameters

k= kyd

L=1L/d

O = w/ws

b=bd

_ b B

B=1+==—(k+)
QZ'H

Qz - Qi/ws

In addition to the classical features of the KH instability, Eq. (19) encapsulates the effects of
diamagnetic drift and wall proximity. Diamagnetic drift is related to the term ZN)/ Q);, which
accounts for finite density gradients and magnetization — features that were not considered in

14.17.20.21 ' Thig term drops out entirely if b = 0, such that

previous MHD theoretical analyses
the effect of magnetization only appears in the dispersion relation if the number density has a
finite gradient. This feature of the dispersion relation is consistent with incompressible MHD
linear theory analysis of the KH instability for a piecewise-uniform density configuration,
wherein magnetic field terms drop out of the dispersion relation, independent of the choice

of Ohm’s law'”. For fixed values of {, L,b,Q;} the dispersion relation in Eq. (19) can be

solved numerically for @.

B. Growth rates and eigenfunctions

Some effects of density variation on growth rate can be examined in the classical fluid
limit. In the absence of diamagnetic effects, various incompressible hydrodynamic limits of
the dispersion relation can be obtained by taking the limit €2; — oo and explicitly solving for
&. See Appendix B for details. For an infinite domain and b = 0, instability growth occurs
for x € [0,0.639] with maximum growth rate 0.201 at x = 0.398. Finite L has a stabilizing
effect. For an infinite domain and steep fall-off of density outside the shear layer, i.e. for
L — 00,b — —oo0, instability occurs for x € [0,0.916] with maximum growth rate 0.247 at
k = 0.613. For b — oo, the configuration is stable. Thus a density profile that decreases
away from the shear layer results in a more unstable configuration as compared to the case

of a uniform density profile. This is because the KH instability, which is driven by inertia, is
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easier to excite when the shear layer has a “free boundary”. Analogously, a density profile
that increases away from the shear layer has a stabilizing effect, due to the larger inertia of
the fluid outside of the shear layer.

To illustrate how plasma magnetization and finite density gradients affect the KH in-
stability, the dispersion relation in Eq. (19) is solved for @ using the Newton method. For
simplicity we set L = 10, which ensures that wall boundaries are sufficiently far from the
shear layer so as to have a negligible effect. In general, @ has both a real and imaginary
component, such that @ = @wr + iw;. The resulting growth rates, w;, are plotted in Fig. 3
as a function of k and b for different levels of magnetization, which is set by the value of
nondimensional ion cyclotron frequency ;.

For Q; < 1, the dispersion relation exhibits high-wavenumber unstable modes, which
appear as banded structures in the growth rate contour plot in Fig. 3(a). These banded
structures can be explained by the coupling between the KH instability and drift waves.
Coupling occurs when the Doppler-shifted frequency is equal to the drift wave frequency

wp, such that

WOr — Kiliyo(r) = Op, (20)
where ,0(x) = u%(z) is the spatially-dependent nondimensional equilibrium ion velocity
profile with range [—1,1]. In the limit where Qig‘ > 1, the drift wave frequency is @p =

<% — 1> Q;, ~ —,;, which is obtained by solving Eq. (12) and the associated dispersion
relation for the case where ng is given by Eq. (16) and u,o, = 0. Electrostatic drift waves
with similar dispersion relations are described in Refs. 38-42. While high-wavenumber
modes are not explored in detail here, it is worth noting that similar high-wavenumber
unstable modes have been found in previous studies of magnetized shear layers, including

in cold-fluid theoretical analysis of the diocotron instability in electron beams??

, nonlocal
electrostatic kinetic theory analysis accounting for first order finite Larmor radius effects
in plasma shear layers?®, and local electrostatic kinetic theory analysis of ion velocity shear
instabilities?®. MHD analysis that incorporates large effective Larmor radius physics has
also demonstrated the existence of short-wavelength branches of the KH instability?® for the
case of discontinuous-step density profiles. In each of these studies, the high-wavenumber
mode exhibits significantly smaller growth rates when compared to the classical KH mode

— as is consistent with the trends in Fig. 3(a).
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For sufficiently large magnetization, i.e. for ; > 1: as b decreases, the growth rate of the
KH instability increases, the wavenumber associated with the peak growth rate increases,
and the largest wavenumber that admits instability increases. This general trend is consis-
tent with the hydrodynamic limits of the dispersion relation. In fact, in the limit Q, — oo,
the variation of growth rate with b is largely a result of fluid inertia, such that the local aver-
age density matters more than the gradient of the density. This can be verified by deriving a
dispersion relation for a piecewise-uniform equilibrium density profile with number density
ny for < d and number density ny for > d (in this case Qi drops out of the dispersion
relation), in which case the growth rate dependence on the ratio ny/n; € [0,00) exhibits
similar features to the growth rate dependence on b € (—00,00). Increasing magnetization
tends to increase the range of unstable wavenumbers for b < 0 and decrease the range of
unstable wavenumbers for b > 0. Overall, however, for Q; > 1 the effect of magnetization
on growth rate is generally weak, as evidenced by the similarity of growth rates for the case

where €; = 2 and the case where Q; — 0o, shown in Fig. 3(b) and Fig. 3(c), respectively.

The spatial structure of the eigenmode for the linear phase of instability development
further elucidates the role of finite density gradients near the shear layer. The perturbed
velocity eigenfunction u;1,(z,y) = Re (t1,(z)e™¥) with @, given in Eq. (17) and with
L =10 and x = 0.4, is plotted in Fig. 4 for two density configurations. Figure 4 also shows
the perturbed velocity vector field (u14,ui1,) and identifies the mixed-complex frequency
for each configuration. For the uniform density configuration with b = 0 and €; # 0,
which corresponds to the classical incompressible hydrodynamic limit, the largest amplitude
features in wu;, are at the edges of the shear layer. The features have a skew, such that
extrema on the left side of the shear layer are offset in y from the extrema on the right
side of the shear layer. See Fig. 4(a). The eigenmode structure is also characterized by
circulation features in the velocity field at the edges of the shear layer — these ultimately
lead to the formation of an eddy in the nonlinear phase of the KH instability. Introduction
of density variation to right of the shear layer modifies the eigenmode structure, as shown in
Fig. 4(b). In the nonuniform density configuration with b= —1and Q; = 2, the magnitude
of the perturbed velocity u;1, is largest at the right edge of the shear layer. In this case
the extrema at the left and right edge of the shear layer exhibit a slightly larger offset in
y and a larger region of the domain — primarily the low density region — is affected by the

instability. It is worth noting that density variation outside of the shear layer introduces a
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FIG. 3: Instability growth rate @w; obtained by solving the dispersion relation in Eq. (19)
for different levels of magnetization: (a) Q; = 0.5, (b) Q; = 2.0, and (c) ©; — oco. For all
cases, L = 10. The growth rate is plotted as a function of nondimensional wavenumber
k = kyd and nondimensional parameter b= bd, which encapsulates the density gradient
scale length to the right of the shear layer. For b = 0, denoted by the white horizontal
lines, the plasma density is uniform, the instability is essentially hydrodynamic, and the
growth rate is independent of ;. As the nondimensional ion cyclotron frequency €
decreases, the parameter space over which an instability is admissible is modified. In

addition to low wavenumber modes that are characteristic of the classical KH instability,

high wavenumber unstable modes exist for Q; < 1.

non-zero oscillation frequency, such that wg # 0.

Taken together, the Hall-MHD-based eigenfunction and eigenvalue analysis shows how
density gradients and magnetization affect the linear phase of the KH instability. For suffi-
ciently low levels of magnetization, density variation can introduce high-wavenumber unsta-
ble modes. At high magnetization, where ion cyclotron frequency exceeds the velocity shear,
plasma configurations where the density profile decreases away from the shear layer tend to

be more unstable with the low density region more strongly affected by the KH instability.

IIT. SIMULATION SOLVERS AND EQUILIBRIUM SETUP

The linear theory analysis in Sec. II provides a basis for the study of more generalized
physics and transport properties of KH instabilities in nonuniform low-beta collisionless plas-

mas. To investigate KH instability physics beyond the scope of the Hall-MHD description
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FIG. 4: The linear perturbed velocity u,1(x,y) plotted in arbitrary units for two different
configurations: (a) Q; # 0,b = 0 for which & = i0.201; and (b) Q; = 2,b = —1 for which
w = 0.091 4 70.222. The perturbed velocity is obtained from the real part of the
eigenfunction i, (7)e® ¥ with 4,1 given in Eq. (17) and with L =10, k = 0.4. Black
arrows indicate the perturbed velocity magnitude and direction and vertical black lines
denotes the edges of the shear layer. For the uniform density configuration with b = 0,
corresponding to the incompressible uniform-density hydrodynamic KH instability, the
perturbed velocity exhibits features of equal magnitude at both edges of the shear layer.
Introducing finite density variation with b = —1 modifies the eigenmode structure such
that the largest z-directed perturbed velocity is at the right edge of the shear layer and a
larger region of the domain is affected by the instability.

we apply electromagnetic two-fluid simulations and two-species electrostatic kinetic simu-
lations. Two-fluid simulations facilitate the self-consistent study of charge separation and
diamagnetic drift in the shear layer, and kinetic simulations further enable the study of
finite Larmor radius effects and associated non-Maxwellian distribution functions. Initial
conditions for simulations are informed by the MITL application — the plasma configuration
is shown schematically in Fig. 1. As before, we consider low-beta two-species — electron and
ion — plasmas in the (x,y) plane with an out-of-plane magnetic field in the z direction and

equilibrium flow velocity with contributions from E x B and diamagnetic drift.
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A. Electromagnetic two-fluid simulations
1. Governing equations and solver

Two-fluid simulations use the nondimensional multi-fluid plasma model** as a basis. The

multi-fluid model is described by the following governing equations for each species s:

ong

oy +V - (nsus) =0 (21)
0 (nsuy) o

— VP, =2, (E+ (-2 B 22
5 + V- (nsusuy) + MSV A Msns ( + (wpp> Ug X ) (22)

Oes
T +V - ((es+ Py us) = Zsngus - E (23)

where
— L oy I (24)
Es = N — 1 s 9 sNsUyg

is the total energy of species s and v = (Dy + 2)/Dy is the adiabatic index, where Dy is
the number of degrees of freedom. Unless otherwise noted, Dy = 3 such that v = 5/3.

Maxwell’s equations, which describe the evolution of the electromagnetic fields are

- (&> 8  v«B- (&) > Zingu, (25)

Wpp ) Ot Wep )
(&)a—B—l—VXE:O (26)
Wpp ) Ot
V-E= Z Zng (27)
V-B= (28)

Here ng is the number density and wu, is the velocity of the fluid of species s, B is the
magnetic field, E is the electric field, M, is the ratio of particle mass to the proton mass,
Z, is the ratio of particle charge to the magnitude of the electron charge e, and €2, is the
proton cyclotron frequency. In Eqs. (21) to (28) time is normalized to the proton plasma
frequency w,,, velocity is normalized to the proton Alfvén speed v4 — defined in terms of a
characteristic magnetic field By, and the electric field is normalized to the product v4By. In
effect, the characteristic length scale is Ly = va/wy, = 0,£2,/wy,, where 6, is the proton skin
depth. The normalization is described in Ref. 45. The equation of state, i.e. the closure

model, is chosen to be the ideal gas law such that P, = n,T}.
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Assuming the plasma consists of protons and electrons, such that Z; = —Z, = 1, the
multi-fluid model reduces to a two-fluid model. The two-fluid model retains electron inertia
terms, does not invoke the quasineutrality approximation, and thereby fully captures the
physics of charge separation. Note that in this model the ion and electron fluids are coupled
exclusively through electromagnetic fields, such that collisional effects are neglected. For
the computational results presented here, M;/M, = 25 unless otherwise noted. The mass
ratio is chosen to ensure consistency with kinetic simulations, in which computational cost
prohibits the use of larger mass ratios. Because the KH instability is driven by inertia of
the heavier fluid, the exact value of the mass ratio is not expected to play a significant role
— this is verified to be the case in simulation results presented in Sec. IV A.

To study the linear and nonlinear behavior of KH instabilities in nonuniform magne-
tized plasmas, the governing equation system of the two-fluid plasma model is solved using
a discontinuous Galerkin finite element method?®*® within the WARPXM (Washington
Approximate Riemann Plasma) code framework. The simulations use third-order polyno-
mials for the spatial representation within each triangular element and a third-order strong

stability-preserving Runge-Kutta method*® for the temporal advance.

2. Inatial conditions, boundary conditions, and parameters

Simulations are initialized with a shear layer equilibrium, with velocity shear in x &
[—d,d]. The equilibrium number density profiles, magnetic field, z-directed electric field,
and y-directed flow velocity profiles vary only along the x coordinate. In equilibrium, y-
directed electric field and the z-directed flow are both zero, and ions and electrons have
equal and uniform temperatures with 7" = T, = T;. The equilibrium ion number density
profile is chosen to be a smooth analog of the density profile considered in the linear theory

analysis — given by Eq. (16), such that

ni(z)|,_, = (1 + exp (%))2 (29)

ni("g; _ g (14 tann (%)) (30)

Like the density profile in the Hall-MHD analysis — see Eq. (16), the density profile given
in Eq. (29) has the property that Vn;/n; ~ 0 for z < —d and Vn;/n; ~ b for x > d. Unlike

and hence

17



the density profile of Eq. (16), however, the density profile of Eq. (29) varies inside the shear
layer — see Fig. 5. Thus there is diamagnetic drift inside the shear layer. The equilibrium

electric field is chosen to have the form

E.(x)],_, = % (1 + tanh (3)) +ep, (31)

where Ey and cg are constants. The value of cg depends on the desired frame of reference,
which can be informed by the plasma application of interest. For a uniform density profile
where b = 0, the constant cg is chosen to have a value of —Ey/2, which results in an odd-
symmetry F x B velocity profile and hence an average flow velocity of zero. For nonuniform
ion density profiles where b # 0, cg is set to zero, which results in a non-zero average £ x B
flow velocity, as is characteristic of near-electrode plasmas in MITLs — see Fig. 1.

The equilibrium electron number density n. is obtained by substituting Eq. (29) and
Eq. (31) into Gauss’s law in Eq. (27). Summing the electron and ion force balance equations,
substituting in Gauss’s law and steady-state Ampere’s law (Eq. (25)), and integrating over

the interval [z, x] yields an expression for the equilibrium magnetic field,

B (o] 2] wimr) @

o o
The factor B,(xo)/|B,(zo)| accounts for the direction of the magnetic field. For convenience

Bz($)|t:0 -

we choose o = 0 and, consistent with the nondimensionalization, we set B,(zy) = 1 for
near-anode plasmas and B, () = —1 for near-cathode plasmas. Equilibrium y-directed drift
velocities for ions and electrons are obtained from one-dimensional force balance for each
species. The profiles given in Eq. (29), Eq. (31), and Eq. (32) and the choice of constants
T, Ey, b, and d along with magnetization, which is set by €,/w,,, fully determine the initial
equilibrium state.

The electromagnetic two-fluid plasma equilibrium is perturbed by introducing a trans-

verse velocity,
6

Use(2,y)|,_, = 10 % exp (—%) cos (kyy) - (33)
The exponential term in Eq. (33) ensures that the perturbation is localized around the
shear layer so as to isolate the physics of interest and avoid exciting additional dynamics.
The perturbation wavenumber k, is chosen to satisfy k,d = 0.4, which, according to the
analysis in Sec. I, is close to the fastest growing mode for the density profiles of interest.

The simulation domain is defined in nondimensional units, such that x,y € [—L,/2, L, /2] x
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—L,/2,L,/2], with L, = 1 and L, = 2n/k,. The simulation domain is periodic in the
y direction and has impermeable conducting wall boundaries at x = +L, /2, where uy, =
E, = E, = B, = 0. Dirichlet boundary conditions are set for £,, By, and B, at x = +L,/2,
such that these field components retain initial condition values at these boundaries for all
time. The rectangular domain is discretized into 256 X256 elements.

For our computational study, we perform two-fluid simulations for five parameter cases
given in Table I, denoted by A0, A1, A2, A3, and Aj. Case A0 is a uniform ion density
configuration with bd = 0, while the other cases involve nonuniform density profiles with
bd = {—0.5, —1.0} at different levels of magnetization €2, /w,, = {1.0,2.0}. Nondimensional
simulation parameters are chosen to be consistent with the broad range of characteristic
experimental parameters described in Sec. I. All cases in Table I correspond to near-anode
plasmas, shown schematically in Fig. 1(a), where the ion diamagnetic drift is in the same
direction as the F' x B drift and vorticity is antiparallel to the magnetic field. Near-cathode
plasmas are discussed in Sec. IV A. In all cases, the wall boundaries are situated sufficiently
far away from the shear layer, such that they have a negligible effect on the evolution of
the single-mode KH instability — as indicated by the linear theory analysis in Sec. IT and
verified by performing two-fluid simulations on a larger domain. FElectric field magnitude,
set by Ejy, is chosen to ensure sufficient shear velocity to observe instability over the time
scales we can simulate while also facilitating moderate charge separation and the study
thereof. Case A0 involves the smallest value of Ey and is thereby the most quasineutral
configuration. Equilibrium number density and velocity profiles used to initialize two-fluid
simulations for parameter cases A1 — A4 are shown in Fig. 5. The magnetic field, which is
not shown, is nearly uniform such that its variation across the domain is less than 0.15%
for all parameter cases. Plasma 8 = 2(n; + n.)T/B? is the ratio of nondimensional thermal
pressure to nondimensional magnetic pressure and is evaluated in the high density region.

For all parameter cases 8 < 2.5 x 1073.
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TABLE I: Parameters for five different cases, denoted by A0, A1, A2, A3, and A4, which are
used to initialize simulations. The cases cover uniform density (A0), small (A1,A2) and large
(A3,A4) density gradients, low (A0,A1,A8) and high (A2,A/) magnetization. Derived quantities
in the lower portion of the table include: the ion Larmor radius rz;; Debye length Ap; the shear
ws = |Auiy|/(2d); the jump Augy, in the ion drift velocity across the shear layer; the jump in
E x B velocity Augxp across the shear layer; plasma [, which is the ratio of thermal pressure to

magnetic pressure; and the effective shear layer half-width d.z in kinetic simulations.

Parameter Simulation Cases

A0 A1 A2 A3 AY
L, 1.0 1.0 1.0 1.0 1.0
L, 0.449 0.785 0.785 0.785 0.785
d 1/35 120 1/20 1/20 1/20
b 0.0 -10.0 -10.0 -20.0 -20.0
T 1.63e-4 6.25e-4 6.25e-4 6.25e-4 6.25e-4
Ey 5.60e-3 2.00e-2 2.00e-2 2.00e-2 2.00e-2
Qp/Wpp 100 1.00 2.0 1.00 2.00
B.|s=0 .00 1.00 1.00 1.00 1.00
kyd 0.4 0.4 0.4 0.4 0.4
bd 0 -0.50 -0.50 -1.00 -1.00
rri/d 0.448 0.500 0.250 0.500 0.250
Ap/d 0.45 050 050 050 0.50
Ws /Wy 0.1960 0.2625 0.1312 0.3250 0.1625
Qp/ws 5.10 3.81 15.24 3.08 12.31
Ay -0.0112 -0.0263 -0.0131 -0.0325 -0.0163
(Aupxp)/(Auy) || 1.000 0.760 0.762 0.615 0.615
Bloe1./2 6.52¢-4 2.50e-3 2.50e-3 2.50e-3 2.50¢-3
deg (kinetic only) - 0.068 0.055 0.070 0.055
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B. Electrostatic kinetic simulations
1. Governing equations and solver

Kinetic simulations provide a further generalization of the treatments described in Secs. 11
and IIT A. By representing each species as a distribution function fs(«,v,t) in phase space,
a kinetic treatment fully captures finite Larmor radius (FLR) effects, including pressure
anisotropies and non-Maxwellian distribution functions. For the low-beta collisionless two-
species plasmas under consideration, the evolution of each distribution function is described
by the nondimensionalized Vlasov equation

ofs ofs  Zs Q, N\ Ofs
T +v 8:c+Ms <E+wppvxz) 81;_0 (34)

and the nondimensionalized Poisson equation,
~V =Y Zn, (35)

where 2z is the unit vector along the uniform and fixed magnetic field, ¢ is the electrostatic
potential, and E = —V ¢ is the electric field. The Vlasov-Poisson system given by Eqgs. (34)
and (35) uses the same nondimensionalization as the multi-fluid model in Egs. (21) to (28).
The electrostatic potential is in effect normalized to mpwf,pL% /e. The species number density

ns is obtained from the zeroth velocity moment of the associated distribution function,

ny = / fudv. (36)

For a-directed motion, the species momentum M ngu,, kinetic energy W,,, and thermal

energy Ug, are obtained from the first and second velocity moments, such that

Mngtg, = Ms/vxfsdv, (37)
1

W = §Msnsu§x, (38)
1

Usw = §M5 / V2 fodv — W, (39)

Analogously, the momentum and kinetic energy terms associated with y-directed motion can
also be evaluated. Species temperature associated with z-directed motion is Ty, = Ug,/ns,

and the total species temperature for a two-dimensional plasma is Ty = T§, + T,.
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As in two-fluid simulation, the level of magnetization is set by the ratio €,/w,,. The as-
sumption of electrostatic and magnetostatic fields implies that magnetic fields from plasma
currents are negligible compared to the background magnetic field. This treatment of fields
is distinct from the electromagnetic treatment used in the two-fluid description of Sec. IIT A.
For our computational study, the Vlasov-Poisson equation system given by Eq. (34) and
Eq. (35) is solved on a structured grid in (z,y,v,,v,) phase space using an unsplit con-
servative fourth-order finite-volume discretization®® 2. The discretization uses a fifth-order
upwind reconstruction of the primary variable and a fourth-order quadrature rule for com-
puting fluxes. The solver has been applied to magnetized plasmas with significant FLR

3550 and has been benchmarked in Cartesian® and cylindrical geometries®®. The

effects
solver is also able to preserve complex equilibria®®, which makes it suitable for the study of

isolated KH instability physics.

2. Initial conditions, boundary conditions, and parameters

When Larmor radii and gradient scale lengths are comparable, two-fluid equilibria can

19,30,34,35

be poor approximations to kinetic equilibria and oft-used Maxwellian distribution

18,19,28-30

functions , which do not satisfy the steady-state Vlasov-Poisson or Vlasov-Maxwell

19,30.33:34 " For example, in the presence of

equation system, can introduce spurious dynamics
FLR effects, the use of two-fluid equilibria to initialize electrostatic kinetic simulations leads
to: significant departure from the initialized state; the excitation of lower-hybrid and upper-
hybrid waves; and the formation of sheaths near boundaries. Approximate kinetic equilibria
can also result in generation and propagation of waves in time-dependent simulations®.
The lack of kinetic equilibria is often identified as an impediment to the detailed study

19,30,33,34 T address this issue and to construct self-

of kinetic physics in KH instabilities
consistent two-species kinetic equilibria that satisfy the steady-state governing equations,
encapsulate finite Larmor radius effects, and can be customized to have density and elec-
tric field profiles that are consistent with the two-fluid equilibria described in Sec. IIT A, we
employ the ordinary differential equation method described in Ref. 35. The method relies
on using constants of motion to construct auxiliary distribution functions that are close to

equilibrium and numerically solving a nonlinear Poisson equation to obtain exact equilib-

rium distribution functions. The initialization of exact kinetic equilibria, wherein there are
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no propagating waves and no boundary dynamics, is advantageous because it facilitates the
study of isolated physics in experimentally-relevant conditions, such that the driving mech-
anism(s) for a targeted phenomenon — here the KH instability — can be readily identified.
The kinetic equilibria employed here thereby enable detailed quantitative comparisons with
fluid simulations and likewise with linear theory.

Kinetic equilibria are constructed as follows. Let the desired ion density profile g;(x) be

the analytic function given in Eq. (29), such that

i~ (1o (2))° w

and let the desired electrostatic potential profile ¢* be consistent with the electric field profile
given in Eq. (31), such that

¢* () = —?1@; (1 + exp (%x)) . (41)

The auxiliary ion and electron distribution functions are constructed from g; and ¢*, such

that
Z;i* (X) M; _M; (v3 + v} _ Zip*(z
aur _ (X - 42
0*¢*(X) Z.¢" (X) Me(v7 +vy)  Zeo* ()

aur _ ., au, fit X e _ Le

f |:< 1n1 ( ) + aXQ exp T X,
(43)

where n* is an analytic fit to the discretely-computed zeroth velocity moment of f,

ps = & + v,/(Qs/wyp) is the scaled canonical momentum for species s, and the nondimen-
sionalized species cyclotron frequency €2;/w,, can be positive or negative depending on the
species charge Z;. The exact equilibrium distribution functions can be expressed in terms
of the auxiliary distribution functions and the equilibrium potential ¢, which is obtained by
numerically solving the nonlinear Poisson equation

_ % — 2 exp <Zi<¢>;— ¢>) i o (Zew;— ¢>) | (44)

where nd**

is the numerically-computed zeroth velocity moment of f**. The Newton
method, with ¢ = ¢* as the initial guess, is used to solve for ¢ and Dirichlet boundary

conditions are assumed for the equilibrium potential, such that ¢(+L,/2) = ¢*(£L./2).
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Thus the equilibrium distribution function for each species is given by

o= ey (LE=9)) w

Reference 35 presents further details regarding equilibrium construction for density and
potential profiles given by Eq. (40) and Eq. (41), respectively. For the parameter cases
considered here, the relative difference between ¢ and ¢* is less than 1%. Notably even
small differences between ¢ and ¢* can strongly affect ion number density profiles, which is
why solving for the equilibrium potential is important?®.

Unlike two-fluid simulations, where the x-directed velocity of both species is perturbed,
the kinetic equilibrium is perturbed by multiplying the equilibrium electron distribution

function f, by a factor (1 4+ €), where

2 6
e = 2.0 x 10 4 sin (%) exp (—%) . (46)
Yy

As in two-fluid simulations, the perturbation is localized around the shear layer so as to
avoid introducing waves and sheaths near the boundaries. The perturbation wavenumber k,
is chosen to satisfy k,d = 0.4 to excite the fastest growing mode. The phase space simulation
domain is [—L,/2, L, /2] x [—L,/2,Ly/2] X [—Umax,s, Umax,s) X [—VUmax.ss Vmax,s|, Where L, =
1,L, = 27/ky, Umaxe = 1.0, Vmax; = 0.2. The domain is periodic in the y direction and
reflecting wall boundary conditions are applied at = +L,/2 — see Ref. 51 for details.
Dirichlet boundary conditions are used for the potential, such that ¢(+L,/2) = ¢*(+L,/2)
for all time. The velocity domain is set to have zero-flux boundary conditions, which has no
effect on the physics of the simulation provided that the value of the distribution function

20,52 " as is the case here. A resolution of

is sufficiently close to zero at these boundaries
Ny X Ny X Ny, x N,, =256 x 64 x 96 x 96 cells is used in all cases.

For our computational study, we perform four kinetic simulations corresponding to the
Al A2, A3 and A4 parameter cases given in Table I. Much like the two-fluid initialization,
the choice of constants T', Ey, b, d and magnetization ,/w,,, determine the initial equilib-
rium state. Finite Larmor motion, which is encapsulated in the construction of the kinetic
equilibrium initial condition, results in a shear layer that is not identical to the two-fluid
model shear layer. See Fig. 5 for a comparison of kinetic and two-fluid equilibrium profiles.
One difference is that the kinetic shear layer is more diffuse and its effective half-width d.g,

which is listed in Table I, does not match the half-width of the two-fluid shear layer. Like-

wise, kinetic equilibria exhibit an expected temperature anisotropy®*® that is not present
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FIG. 5: Equilibrium shear layer profiles for ions (solid lines) and electrons (dashed lines) used as initial conditions for
two-fluid simulations (black) and kinetic simulations (magenta) for parameter cases (a) A1, (b) A2, (c) A8, and (d) A4, which
are outlined in Table I. Shown are number density and drift velocity profiles for two-fluid and kinetic equilibrium
initializations. Also shown are plots of temperature T, for kinetic simulations. In two-fluid simulations initial temperature
(not shown) is uniform and isotropic such that T' = 2T, = 2T, = 6.25 X 10~4, whereas in kinetic simulations
Tse = 3.125 x 10~% is uniform, but temperature is anisotropic such that Tse # Tsy in the shear layer. FLR effects
encapsulated in the kinetic equilibria cause the density and velocity profiles to be more diffuse when compared to the
two-fluid representation. As magnetization is increased from Qp/wpp = 1.0 to 0y /wyp = 2.0, the kinetic equilibrium converges

to the two-fluid equilibrium.
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in two-fluid equilibria, such that the temperature T, associated with x-directed thermal
motion is uniform with a value of 3.125 x 10™*, whereas the temperature T}, associated with
y-directed thermal motion varies in the shear layer. Nevertheless, the kinetic and two-fluid
equilibria are consistent to within about one ion Larmor orbit. This means that as magne-
tization increases, the role of FLR effects diminish, and the kinetic equilibrium approaches

® — as shown in Fig. 5. Thus for kinetic simulations, the parame-

the two-fluid equilibrium?
ters outlined in Table I should be treated as guiding center parameters. Kinetic equilibria
whose guiding center profiles match the two-fluid equilibria, as they do here, facilitate the
isolated study of KH instability physics in the presence of FLR effects and enable systematic

cross-comparisons between the two models.

IV. TWO-FLUID AND KINETIC SIMULATIONS OF THE
KELVIN-HELMHOLTZ INSTABILITY

The evolution of the KH instability in simulations can be roughly separated into a linear
phase, during which the instability grows exponentially, and a nonlinear phase, during which
the large scale dynamics — including the formation of the characteristic vortex feature — are
observed. We proceed to examine the linear and nonlinear phases separately and assess
growth rates, oscillation frequencies, and transport properties. We rescale simulation units
to match the units used in the Hall-MHD analysis in Sec. II. This choice of units allows us
to separate shear — on which the KH instability strongly depends — from other variables of
interest. Consequently, for the analysis presented in this section, time is measured in units
of shear w, and distance is measured in units of shear-layer half-width d, which are given in

Table I for each parameter case.

A. Linear phase

The linear stage of the instability is characterized by the exponential growth in the
amplitude of the z-directed drift velocity for ions and electrons. In simulations this is
accompanied by the exponential growth in the amplitude of the y-directed electric field.
To determine the instability growth rate and oscillation frequency, the magnitude of the

x-directed ion velocity |u;,| is evaluated locally at the center of the domain and is tracked
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as a function of time. Growth rates from simulations can also be evaluated by tracking the
2

spatial integral of E§ or u;, as a function of time; however, these integrated quantities do
not retain oscillation frequency information and consequently are not used here. Temporal
evolution of |u;,| for parameter cases A0, A1, and A2 is shown in Fig. 6. Note that the
A0 parameter case is simulated using only the two-fluid solver. For all the parameter cases
outlined in Table I, growth rates and oscillation frequencies from Hall-MHD theory of Sec. II,

two-fluid simulations, and kinetic simulations are presented in Table II.

Growth rates in Table II show that for a uniform ion density configuration with a small
amount of charge separation, i.e. parameter case A0 where max(n;—n.)/n; = 0.056, the two-
fluid simulation agrees with the Hall-MHD theoretical prediction. The simulation oscillation
frequency is zero, as expected for a configuration in which w;,(z)|=¢ has odd symmetry, and
the simulation growth rate is 6% smaller than the growth rate predicted by Hall-MHD linear
theory — see Fig. 6(a). The small discrepancy in growth rates between the two models can

be attributed to charge separation in the two-fluid equilibrium shear layer.

Table IT also shows that for parameter cases that have nonuniform ion density profiles and
that are not charge-neutral, two-fluid and kinetic simulations do not agree with Hall-MHD
theory. For these cases, the growth rates predicted by Hall MHD are significantly larger
than the growth rates in two-fluid simulations, which are larger than the growth rates in
kinetic simulations. The relative difference between Hall-MHD and two-fluid growth rates
are 26%, 43%, 47%, and 72% for parameter cases A1, A2, A3 and A/, respectively. The
largest discrepancies are associated with cases A3 and A4, which have the largest density
gradients. Increasing magnetization results in more discrepancy between Hall-MHD theory
predictions and two-fluid simulation results. Interestingly, the trend observed in simulations
is that growth rate decreases as density variation at the edge of the shear layer increases
(i.e. as bd becomes more negative), which contradicts the trends predicted by Hall-MHD
theory. In particular, when changing the density profile from bd = —0.5 to a steeper density
profile with bd = —1.0 (i.e. when going from case A1 to A3 or case A2 to A4), Hall MHD
predicts about a 2% increase in the growth rate, whereas two-fluid and kinetic simulations
show about a 14-21% decrease in growth rate. This discrepancy suggests that in addition
to velocity shear and fluid inertia, charge distribution and density variation in the shear
layer (which are not accounted for in the Hall-MHD analysis) can also strongly affect KH

instability growth rates.
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FIG. 6: Evolution of the z-directed ion velocity |u;| evaluated in the middle of the
simulation domain at x = 0,y = 0. (a) For case A0 with b =0 and Q,,/w,, = 1, ion number
density is uniform, the plasma is quasineutral, and the KH instability exhibits pure growth

without oscillation. The growth rate obtained from two-fluid simulations is in close

agreement with the growth rate predicted by linear Hall-MHD theory. (b) For case A1

with bd = —0.5 and Q,/w,, = 1, the equilibrium ion number density is nonuniform and

magnetization is relatively small, and two-fluid simulations exhibit larger growth rates
than the kinetic simulations. Simulation growth rates do not agree with growth rates from

Hall-MHD analysis. Two-fluid simulations with mass ratios of M;/M, = 25 and

M; /M, = 500 produce virtually the same results. (c) For case A2 with bd = —0.5 and
Q,/wyp = 2, the equilibrium ion number density is nonuniform and magnetization is large.

Two-fluid and kinetic simulations exhibit similar growth rates, which are smaller than

those predicted by Hall-MHD analysis. Oscillation frequencies in two-fluid and kinetic

simulations are in close agreement. The different cases are outlined in Table I.

To further gauge the effects of density gradients and charge separation on growth rates,
a two-fluid simulation of a modified A1 configuration was performed, wherein the same
parameters and the same equilibrium construction were used, except the polarities of the
equilibrium electric and magnetic fields were reversed, such that Ey = —0.02 and B, |,—¢ =
—1. This modified configuration, which we will denoted by C'1, has the same E x B drift
velocity as case A1, but the direction of the diamagnetic drift for each species is reversed.
In the context of anode-cathode gaps, case Al represents a near-anode plasma and case
C1 represents a near-cathode plasma — see Fig. 1 for a schematic comparing these two

configurations. Unlike case A1, case C1 has a negative net charge, an ion diamagnetic drift
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TABLE II: Growth rates and oscillation frequencies obtained from Hall-MHD theory,
two-fluid simulations, and kinetic simulations for five different parameter cases. See Table I
for the complete set of parameters. The oscillation frequencies in simulations are negative

since the mode propagates in the —g direction. For cases A1, A2, A3, and A4 oscillation
frequency from Hall-MHD theory has been Doppler shifted by k,Au;,/2 to account for the

difference in frames of reference.

Frequency Model Description Simulation Cases

A0 A1 A2 A3 A4

Oscillation frequency wg/ws Hall-MHD theory 0 —0.254 —0.256 —0.293 —0.295
Two-fluid simulation 0 —0.306 —0.305 —0.232 —0.243
Kinetic simulation - —0.294 —0.299 —0.232 —0.239

Growth rate wy/wsg Hall-MHD theory 0.201 0.219 0.221 0.223 0.225
Two-fluid simulation |{0.189 0.174 0.155 0.152 0.131

Kinetic simulation - 0.145 0.146 0.119 0.121

that opposes the F x B drift, and vorticity that is aligned with the magnetic field. For case
C1 the two-fluid simulation growth rate is w;/ws = 0.271, which is 19% higher than that
predicted by Hall MHD. If the magnitude of the electric field is halved in case C71 then the
two-fluid growth rate is wy/ws = 0.502, which is 56% higher than that predicted by Hall
MHD. The fact that growth rate, normalized to shear, is much larger for case C7 than case
A1 suggests that the orientation and magnitude of the ion diamagnetic drift relative to the
E x B flow can have a strong effect on the evolution of the KH instability. In particular, when
ion diamagnetic drift opposes E x B drift, larger growth rates, per unit shear, are observed.
By contrast, when ion diamagnetic drift is aligned with F x B drift — as in cases A1, A2,
A3 and A4, smaller growth rates are observed. Near-anode and near-cathode plasmas thus
behave differently in the presence of velocity shear.

The observed trend in growth rates is consistent with the findings of FLR MHD?' and
kinetic simulation?® studies of nonuniform plasmas. This trend is often described in terms

of the relative orientation of vorticity w = V X u, i.e. when w - B > 0 larger growth rates
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are observed than for the case where w - B < 0. Kinetic simulations of KH instabilities in
uniform-density plasmas'®3? have also indicated a dependence on the sign of w - B, however
this finding may be partially attributed to density gradients in the shear layer, which are

3453 or which form due to finite

either inherently present in kinetic shear layer equilibria
Larmor motion when a kinetic equilibrium is not initialized'®3". Notably, in the absence
of ion density gradients and FLR effects, the orientation of vorticity is inconsequential. To
verify this, a two-fluid simulation of a modified A0 configuration was performed, wherein the
same uniform ion density configuration was modeled, but with polarities of the equilibrium
electric and magnetic fields reversed. Unlike case A0, the modified configuration, denoted
by C0, has a small negative net charge and vorticity that is aligned with the magnetic field.
The resulting growth rate for case C0 is identical to the growth rate for case A0, indicating
that the orientation of vorticity relative to the magnetic field does not play a role for uniform
density plasmas. This result suggests that the sign of w- B is not the most relevant indicator
of enhanced /diminished growth for KH instabilities, and that charge distribution and density
variation are more consequential.

Two-fluid and kinetic simulations indicate that the orientation of diamagnetic drift rela-
tive to £ x B drift affects the distribution of charge density during the linear phase of the
instability and can modify the spatial structure of the fastest growing mode. In particular,
charge redistribution leads to different parts of the shear layer having a larger-amplitude
y-directed electric field E,. Figure 7 shows the net change in charge density Ap and the
y-directed electric field during the linear phase of the KH instability for cases A1 and C1.
In case A1 the redistribution of charge causes E, to be slightly amplified at the left edge of
the shear layer, whereas in case C1 the redistribution of charge causes £, to be amplified at
the right edge of the shear layer. Since the KH instability is driven by inertia, and since the
y-directed electric field is what ultimately leads to the advective motion of the high-density
plasma, having an enhanced E, at the right edge of the shear layer — where there is a “free”
boundary — results in a more unstable configuration. From the continuity equation for each
species, the accumulation of charge p can be quantified in terms of the divergence of the
current j = > ¢snsus. Assuming a uniform magnetic field and isotropic pressure, the time
derivative of the local charge density is

o0 _

x B mn; Ou, < B
ot

B? B2 Ot ’

V.j=-V-|p (47)
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where the first term in the square brackets is the contribution from E x B drift and the
second term is the contribution from polarization drift, which is associated with the inertia of
the particles. Since m, < m;, we have dropped the electron contribution to the polarization
drift. Note that in the case of isotropic pressure, diamagnetic drift does not contribute to
charge accumulations since the associated current is always divergence free. Equation (47)
can be reexpressed as

Equation (48) shows that charge density in the presence of E x B drift and ion density gradi-
ents can contribute to local charge accumulation, and hence to the local amplification of £,.
Two-fluid simulations indicate that changing the polarity of the electric and magnetic fields
has a noticeable effect only for the case of nonuniform ion density, which indicates that it is
the last term in Eq. (48) that results in asymmetry of £, shown in Fig. 7. Equation (48) also
confirms the finding that the orientation of Vn; x B, which is correlated with diamagnetic
drift, is consequential. Notably the Vn; x B term will lead to charge accumulation even in
the absence of diamagnetic drift, e.g. even when temperature is zero.

Kinetic simulations, which in addition to capturing two-fluid physics also capture FLR
effects, exhibit smaller growth rates than two-fluid simulations. The relative difference
between two-fluid and kinetic growth rates are 20%, 6%, 28%, and 8% for parameter cases
Al, A2 A3 and A/, respectively. Two-fluid and kinetic simulation results have better
agreement for cases with higher magnetization — A2 and A4, where the ion Larmor radius
is a small fraction of the shear layer half-width, i.e. rr;/d = 0.25. For cases A1 and A3,
where 71, /d = 0.5, FLR effects are more significant and lead to larger disagreement between
two-fluid and kinetic simulations. The stabilization of KH instabilities due to FLR effects,
particularly as rp;/d increases, is consistent with previous studies!'%21:30.

It is found that the difference in the treatment of electromagnetic fields in two-fluid
simulations, as compared to kinetic simulations, does not play a significant role. In two-
fluid simulations, which encapsulate electromagnetic physics, the magnetic field components
(B, By) are self-consistently evolved and retain a value of zero for all time. The B, compo-
nent of the magnetic field changes by less than 0.3% from the initialized profile — even well
into the nonlinear stage of the instability. This suggests that the electrostatic and magneto-

static treatment of fields in kinetic simulations is justified for the low-beta (3 < 2.5 x 1073)
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FIG. 7: The net change in the charge density relative to initial time (left) and the E, component
of the electric field (right) from two-fluid simulations of of (a) parameter case A1 with B,|z—0 = 1,
Ep =0.02 and (b) parameter case C1 with B,|,—0 = —1, Ey = —0.02. In case A1 ion diamagnetic
drift is aligned with E x B drift and the initial configuration has a net positive charge and in case
C1 ion diamagnetic drift opposes E x B drift and the initial configuration has a net negative
charge — see Fig. 1 for a schematic. During the linear phase of the instability, the charge density
is redistributed, resulting in localized amplification of E,. For case A1 E, is amplified near the
left edge of the shear layer, and for case CI E, is amplified near the right edge of the shear layer.
Amplification of the electric field near the right edge of the shear layer, where ion density
transitions from high to low and where the shear layer is more susceptible to attenuation, leads to
a more unstable configuration and an enhanced growth rate. In two-fluid simulations the growth
rate for case A1 is wy/ws = 0.174 and growth rate for case C1 is wy/ws = 0.271. Thus the

redistribution of charge can strongly affect the development of the KH instability.
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configurations considered. While the present computational investigation is restricted to
the case of k- B = 0, electromagnetic effects can become non-negligible if the perturbation
wavenumber along the magnetic field is non-zero.>** A non-zero electric field (or current)

parallel to the magnetic field can also introduce electromagnetic physics.37:5%:%6

In addition to growth rates, other features of the linear evolution of the KH instability are
consistent between the kinetic and two-fluid simulations. As shown in Table II, the oscillation
frequency for kinetic simulations is within two percent of the oscillation frequency obtained
from two-fluid simulations for parameter cases A1, A2, A3, and A4. Oscillation frequencies
predicted by Hall-MHD theory agree with two-fluid simulations for the A0 parameter case,
but otherwise have significantly different values. This discrepancy is expected given that
two-fluid and kinetic descriptions encapsulate more physics and more waves than Hall MHD.
In simulations the nondimensional oscillation frequency is wg/ws = 7/(Atmin), where Atyin
is the average time between local minima in the linear evolution of |u;,| versus time. See
Fig. 6(a) for case with zero oscillation frequency and Figs. 6(b) and 6(c) for cases with
finite oscillation frequencies. The linear stage of the KH instability evolution ends when
the instability stops growing exponentially, which occurs when |u,|/(wsd) reaches a value
of ~ 0.1. As shown in Fig. 6, the time at which this happens in simulations depends on
the perturbation and on the details of how the most unstable mode evolves. Notably the
form and magnitude of the perturbation is different in two-fluid simulations as compared to
kinetic simulations, the unstable eigenmode tends to develop faster in kinetic simulations
than in two-fluid simulations, and the growth rate tends to be larger in two-fluid simulations.
The eigenmode structures in kinetic and two-fluid simulations are in close agreement and the
spatial structure of E,(x,y), which is shown in Fig. 7, follows closely the spatial structure
of u,(z,y). For nonuniform-density anode configurations shown schematically in Fig. 1(a),
the eigenmode structure in simulations (see Fig. 7(a)) closely resembles the Hall-MHD-
derived eigenmode structure for a uniform-density plasma (see Fig. 4(a)), except amplitudes
tend to be slightly larger on the high-density side of the shear layer. In nonuniform-density
cathode configurations (see Fig. 1(b)), the eigenmode structure in simulations (see Fig. 7(b))
resembles the Hall-MHD-derived eigenmode structure for a nonuniform-density plasma (see
Fig. 4(b)), with significantly larger amplitudes and wider extent on the low-density side of

the shear layer.

On account of computational cost considerations for kinetic simulations and in the interest
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of consistency, a mass ratio of M;/M, = 25 was used for all simulation parameter cases
outlined in Table I and results presented in Table II. To evaluate the effect of different mass
ratios, a two-fluid simulation of the A1 parameter case was also performed for M; /M, = 500.
The evolution of |u;,| is shown in Fig. 6(b) and the associated growth rate and real frequency
is found to be virtually the same as the M; /M, = 25 mass ratio simulation. Figure 6(b) also
shows that M; /M, = 25 and M;/M, = 500 simulations result in the same dynamics well into
the nonlinear phase of the instability, which suggests that electron inertia does not affect
the evolution of the KH instability and using M, = 1/25 is sufficient for practical purposes.
This finding is consistent with previous studies that considered mass ratio effects in kinetic

1830 " In principle, mass ratio can affect the development of

simulations of KH instabilities
secondary instabilities, which can form during the nonlinear stage and which are not explored
here. The end time for simulations is chosen to be before secondary instabilities develop.
While kinetic simulations had two velocity coordinates and hence two degrees of freedom,
two-fluid simulations used an adiabatic index of v = 5/3, which corresponds to three degrees
of freedom. Two-fluid simulations with 7 = 2 and with v = 5/3 were compared and the

resulting KH instability growth rates were found to be indistinguishable, which is consistent

with the findings of previous MHD simulation studies®®.

B. Nonlinear phase and mass transport

In addition to modifying growth rates and oscillation frequencies, two-fluid and kinetic
physics also affects the nonlinear phase of the KH instability. The characteristic eddy feature
is modified on account of FLR physics, diamagnetic drift, and charge separation, which affect
the velocity flow field. The ion number density and the velocity field for ions and electrons
from kinetic simulations are shown in Fig. 8 for low- and high-magnetization configurations
with large density gradients, i.e. cases A3 and A4. While the eddy structure is similar,
density features at low magnetization are more diffuse on account of more significant FLR
effects. Ion and electron velocities are aligned in regions where the pressure gradient is
low and diamagnetic drift is negligible, e.g. in regions near wall boundaries and in the
middle of the eddy. The combined effect of £ x B and polarization drift leads to localized
accumulation of charge. For these parameter cases, the initial charge density is positive, and

during the onset of the nonlinear phase more positive charge accumulates in the vortex as the
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FIG. 8: Ion number density from kinetic simulations of (a) parameter case A3 with
Q,/wpy, =1 at time tw, = 85.8 and (b) parameter case A4 with Q,/w,, =2 at time
tws = 83.1. Parameter cases A3 and A4 are outlined in Table I. Ton number density is
overplotted with arrows indicating direction and magnitude of ion velocity in red and
electron velocity in blue. As the instability evolves the density profile steepens at the
leading edge of the eddy. For each species, the largest velocities are in regions where
diamagnetic drift and E x B drift are aligned. Diamagnetic drift dominates the flow field
wherever ion and electron velocities have similar magnitudes and opposite directions. FLR
effects in the lower magnetization case (A3) preclude the formation of fine-scale density

features.

instability evolves. In modified configurations, where polarity of the electric and magnetic
field are reversed — see Fig. 1 and discussion in Sec. IV A, the initial charge concentration
is negative and negative charge accumulates in the vortex. The accumulation of charge is
accompanied by the development of a divergent electric field in the middle of the eddy, which

leads to enhanced circulatory polarization drift during the initial stage of eddy formation.

The main distinction between two-fluid and kinetic simulations of the KH instability is
the presence of FLR effects in the latter. As a result and as noted in previous studies?3"
kinetic simulations have a lower bound on the gradient scale lengths that can develop during
the nonlinear evolution of the KH instability, whereas two-fluid simulations — in the absence

of collisional transport terms — do not. Since there is no viscosity in the two-fluid description
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FIG. 9: Nondimensionalized ion Larmor radius rr;/d from kinetic simulations of the A3
parameter case (see Table I and Fig. 5), plotted as a function of position at time
tws = 85.8. Since kinetic simulations are magnetostatic, variation of ion Larmor radius
coincides with variation of ion thermal speed. The range of Larmor radii
rri/d € [0.426,0.607] is more than a six-fold increase over the range of Larmor radii at
initial time, which indicates that the magnetic moment is not conserved and the instability

evolution is not adiabatic.

used here, the model does not have a physical dissipation scale, and in principle — though not
in numerical simulations — can produce features with infinitesimally small gradient scales.
The smallest allowable scale length can affect the local diamagnetic drift and can also have
important consequences for secondary KH and Rayleigh-Taylor instabilities, which are not
explored here. The propensity of the KH instability to lead to steeper and steeper density
variations in two-fluid simulations can also have important consequences for numerics, since
the choice of numerical dissipation used to deal with discontinuities can affect the physics
that is captured.

In kinetic simulations, the minimum scale length for each species is set by the local
Larmor radius. For case A3 at initial time r;/d € [0.472,0.500], whereas at time tw; = 85.8
the range of Larmor radii increases to rr;/d € [0.426,0.607]. The spatial variation of Larmor
radius at time ftw; = 85.8 is shown in Fig. 9. The largest Larmor orbits are in regions where
the low-density plasma infiltrates the high-density region, which is also where sharp density
features tend to get smeared out —see Fig. 8. For case A/ at initial time r,;/d € [0.245, 0.250],
whereas at time tw = 83.1 the range of Larmor radii increases to rp;/d € [0.225,0.280]. Note
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that the initial variation of gyroradii is associated with the anisotropic temperature in the
equilibrium shear layer — see Fig. 5. In kinetic simulations, where the magnetic field is
uniform and fixed in time, the Larmor radius is proportional to the thermal speed. The
magnetic moment, which scales as r%_, is not conserved, which implies that the nonlinear
stage of the KH instability is not adiabatic. The nonadiabatic nature of the instability is
confirmed in two-fluid simulations, where the initially-uniform ion temperature evolves to
have about +30% variation throughout the domain, while magnetic field variation remains
less than 0.3% percent for all time. Locations of global extrema for ion temperatures in
two-fluid simulations coincide with the global extrema for ion gyroradii shown in Fig. 9.

An important feature of the KH instability in low-beta configurations is the associated
transport of plasma perpendicular to the magnetic field. Mass transport driven by the KH
instability is a nonlinear effect and is only present when density is nonuniform across the
shear layer. Uniform density profiles or density profiles that have an even symmetry across
the shear layer do not result in net mass transport. Figure 10 shows the y-averaged species
number density (ns), in the nonlinear phase obtained from two-fluid and kinetic simulations
for parameter cases A1 and A2, which are outlined in Table I. The y-averaged number
density flattens in the middle of the domain as plasma is transported across the shear layer
from left to right. This flattening process is observed for all parameter cases. The general
features of the y-averaged number densities, including charge separation and spatial extent
of the flattening in the # direction, are similar for all parameter cases — independent of the
model used. The y-averaged number densities in two-fluid and kinetic simulations exhibit
better agreement for higher magnetization configurations like case A2.

Mass transport can be explicitly quantified from the z-directed momentum, which is
one of the primary variables in two-fluid simulations and which can be evaluated from the
first velocity moment (see Eq. (37)) of the distribution function(s) in kinetic simulations.
The z-directed ion mass flux per unit length in y is simply the y-averaged x-directed ion

momentum (M;n;u;,) ,» Which is defined as

Mi Ly/2
<Mznluzx>y = —/ niUizdy, (49)
Ly —Ly/2
where M; = 1. The mass flux, with wu;, normalized to wyd, from two-fluid and kinetic

simulations is plotted in Fig. 11 as a function of position and time for nonuniform-density

parameter cases A1 and A2. As expected, mass flux is only apparent in the nonlinear stage
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FIG. 10: The y-averaged species number density (n;) , Plotted at initial and final time for
(a) two-fluid simulation of case A1, (b) two-fluid simulation of case A2, (c) kinetic
simulation of case A1, and (d) kinetic simulation of case A2. Parameter cases A7 and A2
are outlined in Table I. The centroid of the ion number density computed over
x/d € [—4,4], which is the approximate region spanned by the instability, is shown at
initial time (black dashed line) and final time (black solid line). During the nonlinear
phase of the KH instability, plasma is transported across the shear layer, as indicated by
the flattening of the y-averaged number density profiles and the shift in centroid. While
the general trends are independent of magnetization and model, plasma transport and the
y-averaged number densities from kinetic and two-fluid simulations are in better agreement
at higher magnetization. At lower magnetization, the two-fluid simulations exhibit much
larger net shift of the plasma, which is due to the shear layer and the density drop-off
being slightly offset i§18the kinetic equilibrium.



of the instability, when |u;|/(wsd) 2 0.1. Mass flux first occurs in the region where the
magnitude of the equilibrium density gradient is largest, which is generally close to the
middle of the shear layer. In all simulations, the plasma region with positive mass flux
expands approximately linearly in time until it reaches a spatial extent of about four shear
layer widths. The factor of four difference between the initial shear layer width and final
vortex width is consistent with previous findings?*. Mass flux tends to reach a maximum
value near the right edge of the shear layer. The mass flux ultimately decreases as the
instability evolves, but the time-integrated mass flux remains positive for all cases for the
time scales simulated, indicating net transport of plasma across the shear layer. Figure 12
shows the mass flux across the center of the shear layer at x = 0 as a function of time for
cases A1, A2, A3, and A/. In all cases, two-fluid simulations exhibit a larger peak mass
flux than kinetic simulations, and mass flux values are in better agreement between kinetic
and two-fluid simulations for cases with higher magnetization. This trend in mass flux is
consistent with the trend observed in the instability growth rates. With the exception of the
kinetic simulation of case A1, lower magnetization configurations exhibit larger mass flux
than higher magnetization configurations. The A7 kinetic simulation presents an outlier
because in the equilibrium state the largest density gradient is offset away from the shear
layer.

While the collisionless Kelvin-Helmholtz instability is not a diffusive process, the associ-
ated mass flux can be interpreted as an effective one-dimensional diffusion, such that density

evolution can be approximately described by

ong 0 ong
ot _8_x<D3x)7 (50)

where D is the diffusion coefficient. Consistent with this approximation and the continuity

on;
ox *

equation given in Eq. (21), ion particle flux is equivalent to D In principle, the diffu-
sion coefficient should encapsulate eddy size and instability growth rate, which captures the
effects of shear, perturbation wavelength, density variation, magnetization, and charge sep-
aration. For an order-of-magnitude estimate, the diffusion coefficient can be approximated
by D =~ (d/2)*wr, where d is the shear layer half-width and wy is the instability growth
rate. Note that the choice of using d/2 as the diffusion scale length was informed by the

shifts in the density centroid, shown in Fig. 10. In nondimensional units, D ~ (w/w;)

and On/0x =~ nbd =~ 1. By these arguments, for the growth rates given in Table II, we
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FIG. 11: The nondimensionalized z-directed ion mass flux (M;n;ui), /(wsd), defined in
Eq. (49), plotted as function of position and time for: (a) two-fluid simulation of case A1
with Q,/w,, = 1; (b) two-fluid simulation of case A2 with ,/w,, = 2; (c) kinetic
simulation of case A1 with €2,/w,, = 1; and (d) kinetic simulation of case A2 with
Q,/wy, = 2. Parameter cases A1 and A2 are outlined in Table I. Two-fluid and kinetic
simulation results are shown for the nonlinear phase of the KH instability. Black vertical
lines at x/d = £1 denote the original shear layer width and white vertical lines at
x/d = +4 denote a region that is four times wider than the original shear layer. The mass
flux region widens approximately linearly in time in both kinetic and two-fluid simulations,
until mass flux peaks. Mass fluxes from two-fluid and kinetic simulations are in better

agreement for case A2, which has higher magnetization.
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FIG. 12: The z-directed ion mass flux (M;n;ui,),,, defined in Eq. (49), evaluated at z =0
and plotted as a function of time for parameter cases A1, A2, A3, and A4 (see Table I). In
all cases, two-fluid simulations exhibit a larger peak mass flux than kinetic simulations,
and peak values are in better agreement between kinetic and two-fluid simulations for
cases with higher magnetization (A2,44). This trend is consistent with the trend in
growth rate during the linear stage of the KH instability. The mass flux ultimately
decreases at a rapid rate, but the time-integrated mass flux remains positive over the time

scales simulated, such that plasma exhibits net transport across the shear layer.

would expect a mass flux magnitude of about 1072, which is consistent with the mass fluxes
observed in simulations, shown in Fig. 11 and Fig. 12. As expected, parameter cases with
steeper density profiles (cases A8 and A4) result in more plasma being transported across
the shear layer.

Kinetic distribution functions, and the degree to which their velocity dependence deviates
away from a Maxwellian, provide an indicator of the relative importance of kinetic physics
in the collisionless plasmas of interest. The deviation of f, away from a Maxwellian can be

quantified in terms of a relative difference,

5y = [[1fs — M| vy, 51

[[ fsdvyduv,

where M, is a Maxwellian distribution function,

M

ms
T T, Y ( AT, AT,

whose local density n,, drift velocity (uss,usy), and temperatures (Ts;,Ts2) are obtained

ms(Vy — Usy)®  mis(vy — Usy)2> ’ (52)

from moments of f,. For an isotropic Maxwellian T, = Ty = %(Tsx + Ty,), whereas for an
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FIG. 13: (a) Deviation 0y, defined in Eq. (51), of the kinetic-simulation ion distribution
function away from an isotropic Maxwellian for parameter case A3 (see Table I and Fig. 5)
at time tw, = 85.8. The maximum deviation is 0.388 and its location is denoted by a black

triangle marker. Regions of the domain with velocity shear, density gradients (see

Fig. 8(a)), and large Larmor orbits (see Fig. 9) exhibit the largest deviations, indicating

that kinetic physics is more important in these regions. (b) The ion distribution function

fi(vz, vy) at the point of maximum deviation, plotted on a subset of the velocity domain.

The distribution function has two distinct peaks, and is thereby poorly represented by a

Maxwellian reconstruction.

anisotropic Maxwellian Ty, = T, and Ty = T, with Ty, and T, computed from f; using
Eq. (39). For parameter case A3, where (2,/w,, = 1, the maximum deviation of the ion
distribution function from an isotropic Maxwellian is 8% at initial time and 39% at time
tws = 85.8. As shown in Fig. 13(a) — see also Figs. 8(a) and 9, the largest deviations coincide
with regions of the domain with velocity shear, density gradients, and large Larmor orbits.
Figure 13(b) shows the ion velocity distribution function f;(v,,v,) plotted at the location of
maximum deviation. The distribution function is anisotropic, exhibits two distinct peaks,
and an overall tilt in the (v,,v,) plane. The latter feature is an indicator of non-zero off-
diagonal terms in the pressure tensor. The development of non-Maxwellian features suggests
that the nonlinear stage of the KH instability can potentially give rise to subsidiary microin-
stabilities. The maximum deviation from an anisotropic Maxwellian is 2% at initial time

and 38% at time tw, = 85.8, indicating that anisotropic pressure does not capture the kinetic
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physics and higher moments of the distribution function are needed to represent dynamics
— as is consistent with previous findings®'. For parameter case A4, where magnetization is
Q,/w,, = 2, the maximum deviation from an isotropic/anisotropic Maxwellian distribution
function is only slightly lower — 25% at time tw, = 83.1. These deviations grow precipitously
during the nonlinear phase of the KH instability evolution, and indicate that the nonlinear
state of the plasma is strongly affected by kinetic physics. The large deviations, which can
only occur in low-collisionality regimes, also suggest that multi-fluid descriptions based on
the first three moments of the distribution function are likely to be inaccurate when it comes
to modeling long-time KH instability turbulence. While it is possible that higher-moment

multi-fluid descriptions®”?

can incorporate the observed non-Maxwellian features of the
kinetic distribution functions, the applicability of these moment methods is not explored

here.

V. CONCLUSION

Hall-MHD linear theory, two-fluid simulations, and kinetic simulations are successfully
applied to investigate the properties of KH instabilities in low-beta nonuniform plasmas.
The staged approach, using models of increasing fidelity, facilitates the isolated study of
different physics and shows how diamagnetic drift, space charge, and finite Larmor motion
all modify the evolution of the instability.

Hall-MHD linear theory is applied to characterize KH instabilities in shear layers where
the velocity field and the perturbation wave number are transverse to the magnetic field.
Unlike previous MHD studies, the analysis admits smooth density variation outside the shear
layer and considers finite gradient scale lengths for both velocity and density. An analytic
dispersion relation is derived and solved numerically and the growth rate dependence on the
density gradient, magnetization, and wavenumber is systematically mapped out. Growth
rates are found to be higher for density profiles that decay away from the shear layer.
The associated eigenfunctions are also found to be modified from the classical fluid theory
and ideal MHD descriptions. When the ratio of ion cyclotron frequency to velocity shear

< 1, KH instabilities can couple to drift waves and an

is sufficiently small, ie. Q;/ws <
associated high wavenumber branch is found to exist, consistent with previous cold fluid*3,

25,26

large effective Larmor radius MHD?°, and kinetic theory?>2¢ analyses.
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Two-fluid and kinetic simulations are used to investigate properties of KH instabilities
that are beyond the scope of the Hall-MHD description. A finite-element method is used for
the two-fluid simulations and a finite-volume discretization is used for Vlasov-Poisson kinetic
simulations — both are high-order accurate. Two-fluid simulations capture the complete
dynamics of finite-mass electrons and ions and thereby self-consistently capture the physics of
space charge and diamagnetic drift. Employing recently developed methods, kinetic Vlasov-
Poisson simulations are initialized with self-consistent two-species equilibria that satisfy the
steady-state governing equations and fully incorporate finite Larmor radius effects. This
technique enables the study of isolated physics in nonuniform plasmas and also enables
detailed cross-comparisons with two-fluid simulations. Together, these tools are successfully
leveraged to study KH instabilities in nonuniform low-beta plasmas, with significant charge

separation, diamagnetic drift, and FLR effects.

Two-fluid and kinetic simulations are conducted for a suite of parameter cases, wherein
the density profiles and magnetization are varied. The linear stage of the KH instability
evolution in simulations is compared across the different models. In the limit of a uniform
quasineutral plasma, two-fluid simulations are found to agree with Hall-MHD predictions.
For nonuniform plasmas with significant space charge, the results of two-fluid and kinetic
simulations do not agree with Hall-MHD predictions for growth rate and oscillation fre-
quency. In cases where diamagnetic drift constitutes a large fraction of the total equilibrium
drift velocity, the errors associated with Hall-MHD predictions for growth rate can be larger
than 70%. Two-fluid simulations indicate that the orientation of the diamagnetic drift in the
initial equilibrium has a significant effect on the charge distribution, the electric field evolu-
tion, and the growth rate. When ion diamagnetic drift opposes the E' x B drift, the growth
rates are significantly larger than those predicted by Hall-MHD; whereas when ion diamag-
netic drift is aligned with the E' x B drift the growth rates are significantly smaller than
those predicted by Hall-MHD. The discrepancy between two-fluid results and Hall-MHD is
attributed to the redistribution of charge by polarization drift.

Growth rates obtained from two-fluid simulations and kinetic simulations are in close
agreement whenever the shear layer width is at least four Larmor orbits wide. For large
Larmor orbits, for example when the ratio of ion Larmor radius to shear layer half-width is
rri/d = 0.50, FLR effects lead to diminished growth rates in kinetic simulations as compared

to two-fluid simulations. The oscillation frequencies in two-fluid and kinetic simulations
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match within two percent for all parameter cases.

In the nonlinear phase of the KH instability evolution, two-fluid and kinetic simulation
results exhibit similar features — including localized enhancement of diamagnetic drift, heat-
ing, and charge accumulation. The fundamental distinction between two-fluid and kinetic
results in the nonlinear phase is that FLR effects in kinetic simulations set a minimum bound
on the gradient scale lengths, whereas two-fluid simulations — in the absence of viscosity —
can develop features that are smaller than the ion Larmor radius. Two-fluid and kinetic
simulations of the KH instability are successfully used to study instability-induced mass
transport across the shear layer. The transport is characterized in terms of density evolu-
tion, mass flux across the shear layer, and a simplified diffusion model. Mass flux is found
to be higher for parameter cases with lower magnetization and for parameter cases with
steeper density profiles. Two-fluid simulations tend to exhibit larger mass flux. During the
nonlinear stage of the instability evolution, ion distribution functions are shown to deviate
by more than 30% from Maxwellian reconstructions, particularly in regions with velocity
and density gradients and in regions with large gyroradii. In the collisionless plasmas of
interest, such deviations point to the importance of kinetic physics in the nonlinear phase
of KH instabilities.

Simulations and quantitative comparisons across the different models demonstrate that
two-fluid and kinetic effects change the characteristics of the KH instability dramatically. Ton
density variation in the shear layer can lead to redistribution of charge via polarization drift,
which in turn affects the electric field that drives plasma advection. FLR effects also influence
growth rates and can inhibit the development of macroscopic secondary instabilities. The
associated growth rates and mass transport properties have important consequences for
applications. For the MITL application that motivated this study, the computational results
imply that collisionless plasmas created at anode and cathode surfaces can be transported
across the magnetic field — contrary to ideal MHD predictions. While the configurations
studied here were focused primarily on anode plasmas, simulation results indicate that for
the same velocity shear, plasmas near the cathode can be more unstable and thereby subject
to more significant mass transport as compared to anode plasmas. The results further
suggest that extended MHD models may be inaccurate predictors of cross-field transport in

MITL configurations.

There are a number of limitations associated with the present study, which point to fu-
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ture research directions. While time-dependent currents in the electrodes were ignored in the
present study, incorporating these currents and the associated magnetic field ramp in simu-
lations would facilitate a more complete description of the MITL configuration. The present
study does not explore the effect of multiple unstable modes and secondary instabilities, both
of which can affect the nonlinear evolution of the KH instability and the associated mass
transport. For example, multiple modes can interact to form larger vortices, the dynamics
of which can be affected by the proximity of boundaries. Simulation of longer time scales at
higher resolution would also help elucidate whether mass transport continues after multiple
roll-ups of the instability. The role of diamagnetic drift and its relative orientation to the

equilibrium velocity flow field are shown to be important and warrant further investigation.
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Appendix A: Hall-MHD dispersion relation for KH instability with finite

density gradients

Consider the velocity profile in Eq. (13) and density profile in Eq. (14). For the three

regions of the domain, Eq. (12) can be expressed as three separate differential equations,

ik (1— g2 (kyV —w)) + a2 + Bl g€ (-1, —d]

0 =19 —t,k2 + Slge z € [—d,d (A1)

—ﬁilxk@% (1 + %ky (kyv + w)) + bauzlz + 02 Uzlz = [d’ L]
Note that the 01,1, /0x term drops out when piecewise constant density profiles are assumed,
e.g. in the analyses presented in Refs. 17 and 20. The general form of the solution ;, that

satisfies Eq. (A1) is

;

Uity = Roeky‘r + S()e*kyx x € [—d, d]
Ryexp ({5 - 3\ /02 + 428} 2) + Spexp ({-5 + 5\ /2 + 4B} 2)  we(a1]

(A2)

a
—(1- % (kv - A

A= (1 gy —o) (A3)
b

B_<1 o V—i—w)) (A4)

where R; and S; are unknown constant coefficients. Following the approach presented
in Refs. 12 and 17, the constant coefficients can be eliminated by applying the following
conditions on the solution ;,: impermeable wall boundary conditions with ;, = 0 at

x = £L; continuity at x = +d; and the jump condition

~0 (A5)

1 9ng

—(kyuioy )noa tle + nguzlxa—k
]_ Q k (lf uzOy w)n_oa_r _
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at x = £d. The jump condition stipulates that the term in the square brackets of Eq. (12)
must be continuous at the edges of the shear layer, which ensures that the velocity eigen-

function is continuous. The resulting closed-form nonlocal dispersion relation is

. 1 (L—d) v
e [ + 54/0% + 4k§.A coth (T a’+ 41{35/4) —ky ( L+ d(kyV
1%

) A

— 1 ¥ A2 Acoth (@ a? + 416%) +ky (—1 * d(kyv—w) A
)B

)B

e

5
) ( b4 1\ /07 1 4k2B coth (@ b2 + 4k§,l’>’) +ky (1 ~ TV
<_g — 1 /PP F4k2B coth <(L—;‘“ b + 4’@%) + ky (1 + am v

In addition to the classical features of the KH instability, Eq. (A6) encapsulates the effects of

~

magnetization, finite density gradients and associated diamagnetic drift, and wall proximity.

Given fixed values of {d, ky, L,a,b,V,Q;}, Eq. (A6) can be numerically solved for w.

Appendix B: Hall-MHD dispersion relation for KH instability in limit of

classical hydrodynamics

The hydrodynamic dispersion relation for the Kelvin-Helmholtz instability in an infinite
uniform-density classical fluid'? can be obtained by evaluating Eq. (19) in the limit of L—

0, Q; — oo,lNJ = 0, which yields

O =2-vV1— e — 4k + 42 (B1)

N | —

The KH instability grows when the frequency @ has a positive imaginary component, which
happens when x € [0,0.639]. The maximum nondimensional growth rate is 0.201 and occurs
at k = 0.398. Allowing for a finite domain size while taking the limits Q; — 00,b = 0 in

Eq. (19), yields the dispersion relation

&=+

1 (62/{(1711) — 1+ 25)2 _ €f4n[~/ (625([~171) —1-— 2,%)2
2 (B2

1 — e—4nl~l !
which is more general than Eq. (B1). As expected, impermeable walls at a finite distance
from the shear layer have a stabilizing effect and L < 2 completely stabilizes the Kelvin-
Helmholtz instability.

The dispersion relation for a step density profile, where density is uniform for x < d and

zero to the right of the shear layer, can be evaluated by taking the limits L — co,{; —
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00,b — —oo in Eq. (19), which yields

o= }1(1 O i\/(t@“‘“ T3 4@)2 — 16e-tx, (B3)

For the dispersion relation in Eq. (B3), the frequency has positive imaginary component for
k € [0,0.916], and the maximum nondimensional growth rate is 0.247 at x = 0.613. Thus
the configuration is more susceptible to instability when density decreases away from the
shear layer. In the limit of L — 00,{; — 00,b — oo, Eq. (19) reduces to the dispersion

relation

W= —i [1—e ]+ i\/[l — 6_4”}2 + 8k [6‘4“ + (2K — 1)] (B4)

wherein the frequency is real-valued and the configuration is stable.
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