

LA-UR-17-28336 (Accepted Manuscript)

Convex Relaxations for Quadratic On/Off Constraints and Applications to Optimal Transmission Switching

Hijazi, Hassan Lionel
Coffrin, Carleton James
BESTUZHEVA, KSEНИA

Provided by the author(s) and the Los Alamos National Laboratory (2020-10-22).

To be published in: INFORMS Journal on Computing

DOI to publisher's version: 10.1287/ijoc.2019.0900

Permalink to record: <http://permalink.lanl.gov/object/view?what=info:lanl-repo/lareport/LA-UR-17-28336>

Disclaimer:

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

1 **CONVEX RELAXATIONS FOR QUADRATIC ON/OFF
2 CONSTRAINTS AND APPLICATIONS TO OPTIMAL
3 TRANSMISSION SWITCHING**

4 KSENIJA BESTUZHEVA*, HASSAN HIJAZI^{††}, AND CARLETON COFFRIN[‡]

5 **Abstract.** This paper studies mixed-integer nonlinear programs featuring disjunctive
6 constraints and trigonometric functions. We first characterize the convex hull of univariate quadratic
7 on/off constraints in the space of original variables using perspective functions. We then introduce
8 new tight quadratic relaxations for trigonometric functions featuring variables with asymmetrical
9 bounds. These results are used to further tighten recent convex relaxations introduced for the Optimal
10 Transmission Switching problem in Power Systems. Using the proposed improvements, along
11 with aggressive bound propagation, we close 10 out of the 28 medium-size open test cases in the
12 NESTA benchmark library. The tightened model has better computational results when compared
13 to state-of-the-art formulations.

14 **Key words.** Mixed-Integer Nonlinear Programming, Perspective Relaxation, On/Off constraints,
15 Optimal Transmission Switching, Trigonometric Functions

16 **AMS subject classifications.** 90C11, 90C26, 90C25, 90C30, 90C90

17 **1. Introduction.** We study non-convex Mixed-Integer Nonlinear Programs of
18 the form,

$$\begin{aligned} 19 \quad & \min f(\mathbf{x}, \mathbf{y}) \\ 20 \quad (\text{MINLP}) \quad & \text{s.t. } g_i(\mathbf{x}, \mathbf{y}) \leq 0, \forall i \in I, \\ 21 \quad & h_j(\mathbf{x}) \leq 0 \text{ if } z_j = 1, \forall j \in J, \\ 22 \quad & \mathbf{x} \in \mathbb{R}^n, \mathbf{y} \in \mathbb{Z}^m. \end{aligned}$$

24 Functions f , g_i and h_j are assumed to be continuous and twice differentiable.
25 Given a binary variable $z \in \{0, 1\}$, we are interested in the special case of a univariate
26 quadratic on/off constraint,

$$27 \quad (1) \quad ax^2 + bx + c - y \leq 0, \text{ if } z = 1.$$

(1) is also known as a disjunctive or indicator constraint. We assume that the variable bounds are part of the disjunction, i.e.,

$$\begin{cases} \mathbf{x}^{l0} \leq \mathbf{x} \leq \mathbf{x}^{u0}, & \text{if } z = 0, \\ \mathbf{x}^{l1} \leq \mathbf{x} \leq \mathbf{x}^{u1}, & \text{if } z = 1. \end{cases}$$

In the optimization literature, on/off constraints are most oftenly formulated using the standard big-M approach [23],

$$ax^2 + bx - y \leq -cz + M(1 - z),$$

28 where M is a constant parameter guaranteeing that the constraint becomes redundant if $u = 0$. These big-M formulations often lead to weak continuous relaxations,
29 and thus inefficient computational results.

*The Australian National University, Data61-CSIRO, Canberra 2601, Australia.
hassan.hijazi@anu.edu.au, ksenija.bestuzheva@data61.csiro.au

[†]Corresponding author.

[‡]Los Alamos National Laboratory, Los Alamos, New Mexico 87545.
cjc@lanl.gov

31 An alternative approach is to use disjunctive programming. Consider a general
 32 on/off constraint:

$$33 \quad g(\mathbf{x}) \leq 0 \text{ if } z = 0,$$

$$34 \quad \mathbf{x} \in \mathbb{R}^n, z \in \{0, 1\},$$

$$35 \quad \mathbf{x}^l \leq \mathbf{x} \leq \mathbf{x}^u,$$

37 where $g(\mathbf{x}) : \mathbb{R}^n \rightarrow \mathbb{R}$ is a convex function, \mathbf{x}^l and \mathbf{x}^u are two vectors in \mathbb{R}^n . This
 38 constraint can be reformulated as a disjunction between two sets:

$$39 \quad \mathbf{x} \in \Gamma_0 \cup \Gamma_1,$$

$$(2) \quad \Gamma_0 = \{(\mathbf{x}, z) \in \mathbb{R}^n \times \{0, 1\} \mid z = 0, \mathbf{x}^l \leq \mathbf{x} \leq \mathbf{x}^u\},$$

$$\Gamma_1 = \{(\mathbf{x}, z) \in \mathbb{R}^n \times \{0, 1\} \mid z = 1, g(\mathbf{x}) \leq 0, \mathbf{x}^l \leq \mathbf{x} \leq \mathbf{x}^u\}.$$

40 or, equivalently,

$$41 \quad (3) \quad \mathbf{x} \in \text{conv}(\Gamma_0 \cup \Gamma_1),$$

$$\mathbf{x} \in \mathbb{R}^n, z \in \{0, 1\}$$

42 Dropping the integrality requirement on variable u results in a convex relaxation
 43 of (2) which is typically tighter than the big-M relaxation. The challenging task lies
 44 in finding a compact algebraic characterization of set (3), i.e., a representation defined
 45 in the space of original variables.

46 **1.1. Related work.** Extensive work has been done on deriving convex relax-
 47 ations of on/off constraints defined in a higher-dimensional space. Stubbs and Mehro-
 48 tra [29] have generalized the lifting procedure for linear sets [1, 22, 28] to the convex
 49 case. Ceria and Soares [7] have applied perspective functions to formulate the convex
 50 hull of a union of convex sets. Grossmann and Lee [14] used these results to describe
 51 the convex hull of a disjunction involving convex nonlinear inequalities. However, all
 52 these approaches require adding auxiliary variables to the original formulation, thus
 53 increasing the model size, and decreasing its computational efficiency.

54 Based on perspective functions, Günlük and Linderoth in [15] were able to propose a
 55 compact characterization of the convex hull when the set Γ_0 reduces to a single point.
 56 Hijazi et al [19] were able to generalize this result to cases where Γ_0 is a hyper-
 57 rectangle and the constraints are isotone. In a recent work, Belotti et al. [5] study the
 58 efficiency of non-convex formulations for on/off constraints in conjunction with ag-
 59 gressive bound tightening techniques. For a detailed literature review and additional
 60 results, we refer to the recent work by Bonami et al. in [6].

61 In this paper we extend the reach of relaxations based on perspective functions to non-
 62 monotone quadratic functions. In Section 2, we give the definition of a perspective
 63 function, review some results from disjunctive programming and provide the proof
 64 for our convex hull characterization. Quadratic relaxations of trigonometric functions
 65 are derived in Section 3. In Section 4, the Optimal Transmission Switching (OTS)
 66 problem in Energy Systems and its Quadratic Convex (QC) relaxation are presented.
 67 This problem is about finding an optimal configuration of a given power network
 68 where line switching is permitted. The new convex hull formulation is applied to the

69 non-monotone quadratic constraints in the QC relaxation, and other ways of strengthening
 70 the model are investigated. Finally, Section 5 reports the computational results
 71 and Section 6 concludes the paper.

72 **2. The New Convex Hull.**

73 **2.1. Perspective functions.** For a given convex function $f(\mathbf{x}) : \mathbb{R}^n \rightarrow \mathbb{R}$ its
 74 perspective function $\tilde{f} : \mathbb{R}^{n+1} \rightarrow (\mathbb{R} \cup \{+\infty\})$ is defined as:

$$\tilde{f} = (\mathbf{x}, z) = \begin{cases} zf(\mathbf{x}/z) & \text{if } z > 0 \\ +\infty & \text{otherwise.} \end{cases}$$

75 For each fixed $z = z^0$ the function $\tilde{f}(\mathbf{x}, z^0)$ represents a dilation of the original
 76 function $f(\mathbf{x})$.

77 A perspective function has a focal point, which is a point approached by the
 78 dilations as z approaches 0. By modifying the argument of the perspective function
 79 one can modify its focal point. We use this property to build our convex hulls.

78 Note that the perspective operator preserves convexity, i.e., if function f is convex,
 79 so will be its perspective \tilde{f} .

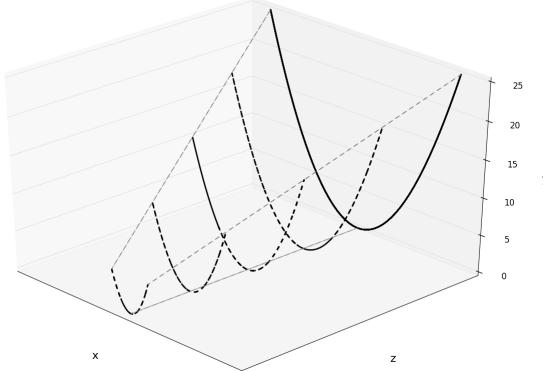


Fig. 1: Several dilations of the square function

80 **2.2. State-of-the-art formulation.** For completeness, we will re-state a result
 81 presented in [19], which characterizes the convex hull of a union of two convex sets
 82 defined by isotone functions.

83 **DEFINITION 1** ([19]). *Let $f : E \rightarrow \mathbb{R}$, $E \subseteq \mathbb{R}^n$.*

- 84 *• f is independently increasing (resp. decreasing) on coordinate i if for all
 85 $\mathbf{x} \in \text{dom}(f)$ and $\lambda > 0$ such that $\mathbf{x} + \lambda e_i \in \text{dom}(f)$, where e_i is i th unit vector
 86 of the standard basis, we have $f(\mathbf{x} + \lambda e_i) \geq f(\mathbf{x})$ (resp. $f(\mathbf{x} + \lambda e_i) \leq f(\mathbf{x})$).*
- 87 *• f is independently monotone on coordinate i if it is independently increasing
 88 or independently decreasing on the i th coordinate.*
- 89 *• f is isotone if it is independently monotone on every coordinate.*

90 **THEOREM 2** ([19]). *Let $f : E \rightarrow \mathbb{R}$, $E \subseteq \mathbb{R}^n$, be an isotone closed convex
 91 function with J^1 (resp., J^2) the set of indices on which f is independently increasing*

92 (resp. decreasing),

$$93 \quad \Gamma_0 = \{(\mathbf{x}, z) \in \mathbb{R}^n \times \{0, 1\} \mid z = 0, \mathbf{l}^0 \leq \mathbf{x} \leq \mathbf{u}^0\},$$

$$94 \quad \Gamma_1 = \{(\mathbf{x}, z) \in \mathbb{R}^n \times \{0, 1\} \mid z = 1, f(\mathbf{x}) \leq 0, \mathbf{l}^1 \leq \mathbf{x} \leq \mathbf{u}^1\} \neq \emptyset,$$

96 Then $\text{conv}(\Gamma_0 \cup \Gamma_1) = \text{closure}(\Gamma')$, where

$$\Gamma'' = \left\{ \begin{array}{l} (\mathbf{x}, z) \in \mathbb{R}^{n+1} \mid \\ zq_S(\mathbf{x}, z) \leq 0 \quad \forall S \subset \{1, 2, \dots, n\} \\ zl^1 + (1-z)l^0 \leq x \leq zu^1 + (1-z)u^0 \\ 0 < z \leq 1 \end{array} \right\},$$

97 $q_S = (f \circ h_S)$ and $h_S(\mathbb{R}^n \times [0, 1] \rightarrow \mathbb{R}^n)$ is defined by

$$(h_S(\mathbf{x}, z))_i = \begin{cases} l_i^1 & \forall i \in S \cap J_1 \\ u_i^1 & \forall i \in S \cap J_2 \\ \frac{x_i - (1-z)u_i^0}{z} & \forall i \in J_1, i \notin S, \\ \frac{x_i - (1-z)l_i^0}{z} & \forall i \in J_2, i \notin S. \end{cases}$$

98

99

100 **2.3. Convex hull of a non-monotone quadratic constraint.** We start by
101 proving the following lemma about convex hulls.

LEMMA 3. Let $D = D_1 \cup D_2$.

$$Then \text{conv}(D) = \text{conv}(\text{conv}(D_1) \cup \text{conv}(D_2))$$

Proof. 1. $[\text{conv}(D) \subseteq \text{conv}(\text{conv}(D_1) \cup \text{conv}(D_2))]$

Since $D_1 \subseteq \text{conv}(D_1)$ and $D_2 \subseteq \text{conv}(D_2)$, we have that

$$D = D_1 \cup D_2 \subseteq \text{conv}(D_1) \cup \text{conv}(D_2).$$

By taking the convex hull of both sets we obtain that

$$\text{conv}(D) \subseteq \text{conv}(\text{conv}(D_1) \cup \text{conv}(D_2)).$$

2. $[\text{conv}(\text{conv}(D_1) \cup \text{conv}(D_2)) \subseteq \text{conv}(D)]$

Since $D_1 \subseteq D$ and $D_2 \subseteq D$, we have that

$$\text{conv}(D_1) \subseteq \text{conv}(D) \text{ and } \text{conv}(D_2) \subseteq \text{conv}(D),$$

leading to

$$(\text{conv}(D_1) \cup \text{conv}(D_2)) \subseteq \text{conv}(D).$$

$\text{conv}(\text{conv}(D_1) \cup \text{conv}(D_2))$ is the smallest convex set containing the union, and since $\text{conv}(D)$ is a convex set containing the union, we can deduce that

$$\text{conv}(\text{conv}(D_1) \cup \text{conv}(D_2)) \subseteq \text{conv}(D).$$

□

102

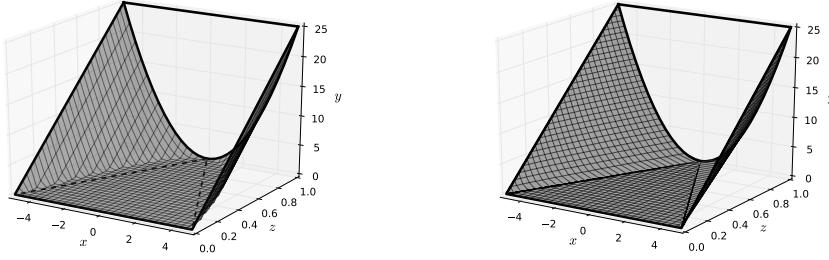
103 Now, we shall prove our main result.

THEOREM 4. Let $f(x, y) = \mathbf{a}x^2 + \mathbf{b}x + \mathbf{c} - y$, $a > 0$,
 $\Gamma_0 = \{(x, y, z) \in \mathbb{R}^2 \times \mathbb{B} \mid z = 0, \mathbf{x}^{l_0} \leq x \leq \mathbf{x}^{u_0}, y = 0\}$, and
 $\Gamma_1 = \{(x, y, z) \in \mathbb{R}^2 \times \mathbb{B} \mid z = 1, \mathbf{x}^{l_1} \leq x \leq \mathbf{x}^{u_1}, \mathbf{y}^l \leq y \leq \mathbf{y}^u, f(x, y) \leq 0\}$

then $\text{conv}(\Gamma_0 \cup \Gamma_1) =$

$$\left\{ (x, y, z) \in \mathbb{R}^2 \times [0, 1] \mid \begin{array}{l} x - \mathbf{x}^{u_0}(1-z) + \rho z \leq \sqrt{\frac{yz+\delta z^2}{a}}, \\ x - \mathbf{x}^{l_0}(1-z) + \rho z \geq -\sqrt{\frac{yz+\delta z^2}{a}}, \\ \mathbf{x}^{u_1} + \rho z \geq -\sqrt{\frac{yz+\delta z^2}{a}}, \\ \mathbf{x}^{l_1} + \rho z \leq \sqrt{\frac{yz+\delta z^2}{a}}, \\ z\mathbf{x}^{l_1} + (1-z)\mathbf{x}^{l_0} \leq x \leq z\mathbf{x}^{u_1} + (1-z)\mathbf{x}^{u_0}, \\ \mathbf{y}^l z \leq y \leq \mathbf{y}^u z. \end{array} \right\}$$

104 where $\rho = \frac{b}{2a}$ and $\delta = \rho^2 - c$.



(a) Big-M formulation

(b) Convex hull formulation

Fig. 2: Tightening convex relaxations

Proof. First, we split Γ_1 into

$$\Gamma_1^r = \{(x, y, z) \in \Gamma_0 \mid -\rho \leq x \leq \mathbf{x}^{u_1}\}, \text{ and } \Gamma_1^l = \{(x, y, z) \in \Gamma_0 \mid \mathbf{x}^{l_1} \leq x \leq -\rho\}.$$

Consider the set $\Gamma^r = \Gamma_0 \cup \Gamma_1^r$. For $x \in \Gamma_1^r$, $f(x, y)$ is isotone, and its inverse can be taken. The inequality $f(x, y) \leq 0$ can be rewritten as:

$$\hat{f}(x, y) = x + \rho - \sqrt{\frac{y + \delta}{a}} \leq 0$$

$\hat{f}(x, y)$ is isotone, thus Theorem 2 can be applied. Let us first construct the functions zq_S .

$$\bullet [S = \emptyset] h_{\emptyset}(x, y, z) = \begin{pmatrix} (x - (1-z)\mathbf{x}^{u_0})/z \\ y/z \end{pmatrix},$$

$$zq_{\emptyset} = zf(h_{\emptyset}(x, y, z)) = x - (1-z)\mathbf{x}^{u_0} + \rho z - \sqrt{\frac{yz + \delta z^2}{a}}.$$

$$\bullet [S = \{1\}] h_1(x, y, z) = \begin{pmatrix} \mathbf{x}^{l_1} \\ y/z \end{pmatrix},$$

$$zq_1 = zf(h_1(x, y, z)) = \mathbf{x}^{l_1} + \rho z - \sqrt{\frac{yz + \delta z^2}{a}}.$$

$$\bullet [S = \{2\}] h_2(x, y, z) = \begin{pmatrix} (x - (1-z)\mathbf{x}^{u_0})/z \\ \mathbf{y}^u \end{pmatrix},$$

$$zq_2 = zf(h_2(x, y, z)) = x - (1-z)\mathbf{x}^{u_0} + \rho z - \sqrt{\frac{\mathbf{y}^{u_1} z + z^2 \delta}{a}}.$$

As $y \leq \mathbf{y}^{u_1}$, it is easy to see that the constraint $zq_2 \leq 0$ is dominated by $zq_{\emptyset} \leq 0$. Therefore, the convex hull is given by:

$$\text{conv}(\Gamma^r) = \left\{ (x, y, z) \in \mathbb{R}^2 \times [0, 1] \mid \begin{array}{l} x - \mathbf{x}^{u_0} (1-z) + \rho z \leq \sqrt{\frac{yz + \delta z^2}{a}}, \\ \mathbf{x}^{l_1} + \rho z \leq \sqrt{\frac{yz + \delta z^2}{a}}, \\ -\rho \leq x \leq z\mathbf{x}^{u_1} + (1-z)\mathbf{x}^{u_0}, \\ \mathbf{y}^l z \leq y \leq \mathbf{y}^u z. \end{array} \right\}$$

The convex hull of $\Gamma^l = \Gamma_0 \cup \Gamma_1^l$ can be obtained similarly:

$$\text{conv}(\Gamma^l) = \left\{ (x, y, z) \in \mathbb{R}^2 \times [0, 1] \mid \begin{array}{l} x - \mathbf{x}^{l_0} (1-z) + \rho z \geq -\sqrt{\frac{yz + \delta z^2}{a}}, \\ \mathbf{x}^{u_1} + \rho z \geq -\sqrt{\frac{yz + \delta z^2}{a}}, \\ z\mathbf{x}^{l_1} + (1-z)\mathbf{x}^{l_0} \leq x \leq -\rho, \\ \mathbf{y}^l z \leq y \leq \mathbf{y}^u z. \end{array} \right\}$$

105 Now we construct Γ' by taking a union of the two sets defined above:

106 $\Gamma' = \text{conv}(\Gamma^r) \cup \text{conv}(\Gamma^l)$.

$$\Gamma' = \left\{ (x, y, z) \in \mathbb{R}^2 \times [0, 1] \mid \begin{array}{l} x - \mathbf{x}^{u_0} (1-z) + \rho z \leq \sqrt{\frac{yz + \delta z^2}{a}} \\ \mathbf{x}^{l_1} + \rho z \leq \sqrt{\frac{yz + \delta z^2}{a}} \\ x - \mathbf{x}^{l_0} (1-z) + \frac{bu}{2a} \geq -\sqrt{\frac{yz + \delta z^2}{a}} \\ \mathbf{x}^{u_1} + \rho z \geq -\sqrt{\frac{yz + \delta z^2}{a}} \\ z\mathbf{x}^{l_1} + (1-z)\mathbf{x}^{l_0} \leq x \leq z\mathbf{x}^{u_1} + (1-z)\mathbf{x}^{u_0} \\ \mathbf{y}^l z \leq y \leq \mathbf{y}^u z. \end{array} \right\}$$

107 We have that $\Gamma_0 \cup \Gamma_1 = \Gamma^r \cup \Gamma^l$ by definition of these sets. From Lemma 3 we
 108 have that $\text{conv}(\Gamma^r \cup \Gamma^l) = \text{conv}(\text{conv}(\Gamma^r) \cup \text{conv}(\Gamma^l)) = \text{conv}(\Gamma')$. It is easy to see that
 109 Γ' is convex, thus $\text{conv}(\Gamma^r \cup \Gamma^l) = \Gamma'$. □

110

111 Figure 2 compares the convex hull to the region defined by the big-M constraint.

112 **3. Quadratic Outer Approximations of Trigonometric Functions.** In this
 113 section, we derive quadratic relaxations for trigonometric functions $f(x)$, $\mathbf{x}^l \leq x \leq$
 114 \mathbf{x}^u , and we consider the case $(\mathbf{x}^u - \mathbf{x}^l) < \pi/2$, with asymmetrical bounds. To the
 115 best of our knowledge, this is the first quadratic relaxation of trigonometric functions
 116 exploiting asymmetrical bounds on x .

117 Let $Q_f(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3)$ denote the equation of the quadratic function passing through
 118 three distinct points $(\mathbf{x}_1; f(\mathbf{x}_1)), (\mathbf{x}_2; f(\mathbf{x}_2))$, and $(\mathbf{x}_3; f(\mathbf{x}_3))$.

119
$$Q_f(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) = \frac{\phi_{32}\delta_{21} - \phi_{21}\delta_{32}}{\delta_{21}\delta_{31}\delta_{32}}(\mathbf{x} - \mathbf{x}_1)(\mathbf{x} - \mathbf{x}_2) + \frac{\phi_{21}}{\delta_{21}}(\mathbf{x} - \mathbf{x}_2) + f(\mathbf{x}_2)$$

120 where $\delta_{ij} = \mathbf{x}_i - \mathbf{x}_j$ and $\phi_{ij} = f(\mathbf{x}_i) - f(\mathbf{x}_j)$.

121 **PROPOSITION 5.** *Given ϵ s.t. $0 < \epsilon < \frac{\pi}{2} - \mathbf{x}^u$, if $0 \leq \mathbf{x}^l \leq \mathbf{x}^u < \frac{\pi}{2}$, then*

122
$$\cos(\mathbf{x}^u + \epsilon) \leq \cos(\mathbf{x}^u) - \epsilon \sin(\mathbf{x}^u)$$

Proof. Consider the tangent to the function $\cos(x)$ at $x = \mathbf{x}^u$. Its equation is written $f(x) = \cos(\mathbf{x}^u) - \sin(\mathbf{x}^u)(x - \mathbf{x}^u)$. It lies above the cosine function since $\cos(x)$ is concave for $0 < x < \frac{\pi}{2}$. Then for all $0 \leq \epsilon \leq \frac{\pi}{2} - \mathbf{x}^u$ we have:

$$\cos(\mathbf{x}^u + \epsilon) \leq f(\mathbf{x}^u + \epsilon) = \cos(\mathbf{x}^u) - \epsilon \sin(\mathbf{x}^u)$$

123

□

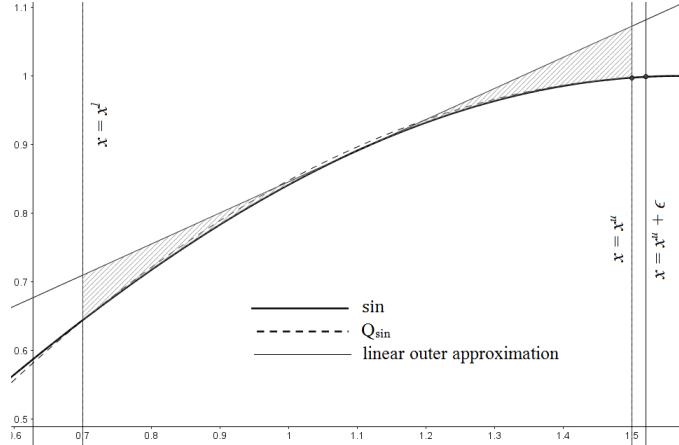


Fig. 3: For the sine function, we compare a linear outer approximation to the new quadratic relaxation defined by the points $(\mathbf{x}^l; \sin(\mathbf{x}^l)), (\mathbf{x}^u; \sin(\mathbf{x}^u))$, and $(\mathbf{x}^u + \epsilon; \sin(\mathbf{x}^u + \epsilon))$

124 **THEOREM 6.** *Given ϵ s.t. $0 < \epsilon < \frac{\pi}{2} - \mathbf{x}^u$, if $0 \leq \mathbf{x}^l \leq \mathbf{x}^u < \frac{\pi}{2}$, then*

125
$$\sin(x) \leq Q_{\sin}(\mathbf{x}^l, \mathbf{x}^u, \mathbf{x}^u + \epsilon), \forall x \in [\mathbf{x}^l, \mathbf{x}^u].$$

126 *Proof.* We have $\mathbf{x}_1 = \mathbf{x}^l$, $\mathbf{x}_2 = \mathbf{x}^u$ and $\mathbf{x}_3 = \mathbf{x}^u + \epsilon$.

127 This leads to $\delta_{32} = \mathbf{x}_u + \epsilon - \mathbf{x}_u = \epsilon$ and $\delta_{31} = (\mathbf{x}_u + \epsilon) - \mathbf{x}_l = \delta_{21} + \epsilon$. Consider the
128 function corresponding to the difference between $Q_{\sin}()$ and $\sin()$,

$$129 \quad f_\epsilon(x) = Q_{\sin}(\mathbf{x}^l, \mathbf{x}^u, \mathbf{x}^u + \epsilon) - \sin(x) \\ 130 \quad = \frac{\phi_{32}\delta_{21} - \phi_{21}\epsilon}{\delta_{21}^2\epsilon + \delta_{21}\epsilon^2}(x - \mathbf{x}_1)(x - \mathbf{x}_2) + \frac{\phi_{21}}{\delta_{21}}(x - \mathbf{x}_2) + \sin(\mathbf{x}_2) - \sin(x) \\ 131$$

132 We will first show that $f_\epsilon(x)$ is strictly decreasing at \mathbf{x}^u . Since $f_\epsilon(\mathbf{x}^u) = 0$, this implies
133 that f is positive in the neighborhood below \mathbf{x}^u . We will then show that $f_\epsilon(x)$ has
134 a unique stationary point in the interval $[\mathbf{x}^l, \mathbf{x}^u]$. Since $f_\epsilon(\mathbf{x}^l) = f_\epsilon(\mathbf{x}^u) = 0$, this is
135 sufficient to prove that $f_\epsilon(x)$ is positive on the hole interval.

136 Let us consider the derivative of $f_\epsilon(x)$,

$$137 \quad f'_\epsilon(x) = \frac{\phi_{32}\delta_{21} - \phi_{21}\epsilon}{\delta_{21}^2\epsilon + \delta_{21}\epsilon^2}(2x - \mathbf{x}_1 - \mathbf{x}_2) + \frac{\phi_{21}}{\delta_{21}} - \cos(x)$$

138 Now consider $f'_\epsilon(\mathbf{x}^u) = f'_\epsilon(\mathbf{x}_2)$,

$$139 \quad f'_\epsilon(\mathbf{x}_2) = \frac{\phi_{32}\delta_{21} - \phi_{21}\epsilon}{\delta_{21}^2\epsilon + \delta_{21}\epsilon^2}(2\mathbf{x}_2 - \mathbf{x}_1 - \mathbf{x}_2) + \frac{\phi_{21}}{\delta_{21}} - \cos(\mathbf{x}_2) \\ 140 \quad = \frac{\phi_{32}\delta_{21} - \phi_{21}\epsilon}{\delta_{21}^2\epsilon + \delta_{21}\epsilon^2}(\mathbf{x}_2 - \mathbf{x}_1) + \frac{\phi_{21}}{\delta_{21}} - \cos(\mathbf{x}_2) \\ 141 \quad = \frac{\phi_{32}\delta_{21} - \phi_{21}\epsilon}{\delta_{21}^2\epsilon + \delta_{21}\epsilon^2}\delta_{21} + \frac{\phi_{21}}{\delta_{21}} - \cos(\mathbf{x}_2) \\ 142 \quad = \frac{\phi_{32}\delta_{21} - \phi_{21}\epsilon}{\epsilon(\delta_{21} + \epsilon)} + \frac{\phi_{21}}{\delta_{21}} - \cos(\mathbf{x}_2) \\ 143 \quad = \frac{\phi_{32}\delta_{21}}{\epsilon(\delta_{21} + \epsilon)} - \frac{\phi_{21}}{\delta_{21} + \epsilon} + \frac{\phi_{21}}{\delta_{21}} - \cos(\mathbf{x}_2) \\ 144 \quad = \frac{\phi_{32}\delta_{21} - \epsilon\phi_{21} + \epsilon(\delta_{21} + \epsilon) \left(\frac{\phi_{21}}{\delta_{21}} - \cos(\mathbf{x}_2) \right)}{\epsilon(\delta_{21} + \epsilon)} = \frac{h(\epsilon)}{\epsilon(\delta_{21} + \epsilon)}, \\ 145$$

where

$$h(\epsilon) = \phi_{32}\delta_{21} - \epsilon\phi_{21} + \epsilon(\delta_{21} + \epsilon) \left(\frac{\phi_{21}}{\delta_{21}} - \cos(\mathbf{x}_2) \right)$$

146 Since $\epsilon(\delta_{21} + \epsilon) > 0$, we have that $f'_\epsilon(\mathbf{x}_2) \leq 0 \Leftrightarrow h'(\epsilon) \leq 0$.

147 Consider the derivative of h ,

$$148 \quad h'(\epsilon) = \delta_{21} \cos(\mathbf{x}_2 + \epsilon) - \phi_{21} + (\delta_{21} + 2\epsilon) \left(\frac{\phi_{21}}{\delta_{21}} - \cos(\mathbf{x}_2) \right) \\ 149 \quad = \delta_{21} (\cos(\mathbf{x}_2 + \epsilon) - \cos(\mathbf{x}_2)) + 2\epsilon \left(\frac{\phi_{21}}{\delta_{21}} - \cos(\mathbf{x}_2) \right) \\ 150$$

151 Based on Proposition 5, we have that $\cos(\mathbf{x}_2 + \epsilon) - \cos(\mathbf{x}_2) \leq \epsilon \sin(\mathbf{x}_2)$, consequently,

$$152 \quad h'(\epsilon) \leq -\epsilon\delta_{21} \sin(\mathbf{x}_2) + 2\epsilon \left(\frac{\phi_{21}}{\delta_{21}} - \cos(\mathbf{x}_2) \right) \\ 153 \quad \leq \epsilon \left(2\frac{\phi_{21}}{\delta_{21}} - 2\cos(\mathbf{x}_2) - \delta_{21} \sin(\mathbf{x}_2) \right) \\ 154$$

We will next to show that

$$2\frac{\phi_{21}}{\delta_{21}} - 2\cos(\mathbf{x}_2) - \delta_{21}\sin(\mathbf{x}_2) \leq 0$$

155 or, equivalently,

$$\begin{aligned} 156 \quad g(\delta_{21}) &= \phi_{21} - \delta_{21}\cos(\mathbf{x}_2) - \frac{1}{2}\delta_{21}^2\sin(\mathbf{x}_2) \\ 157 \quad &= \sin(\mathbf{x}_2) - \sin(\mathbf{x}_2 - \delta_{21}) - \delta_{21}\cos(\mathbf{x}_2) - \frac{1}{2}\delta_{21}^2\sin(\mathbf{x}_2) \leq 0 \\ 158 \end{aligned}$$

Consider the derivatives:

$$g'(\delta_{21}) = \cos(\mathbf{x}_2 - \delta_{21}) - \cos(\mathbf{x}_2) - \delta_{21}\sin(\mathbf{x}_2)$$

$$g''(\delta_{21}) = \sin(\mathbf{x}_2 - \delta_{21}) - \sin(\mathbf{x}_2) < 0$$

159 Since $g(0) = 0$, $g'(0) = 0$ and $g''(\delta_{21}) < 0$, we have proved that $g(\delta_{21}) \leq 0$, $\forall \delta_{21} \geq 0$
160 and thus $f'_\epsilon(\mathbf{x}_2) \leq 0$, $\forall \epsilon$, $0 < \epsilon < \frac{\pi}{2} - \mathbf{x}^u$. Since $f'_\epsilon(x)$ is a convex function and
161 is negative at the upper bound \mathbf{x}^u , it can have at most one root in the interval
162 $[\mathbf{x}^l, \mathbf{x}^u]$. Consequently f_ϵ has a unique stationary point in this interval. Since $f_\epsilon(\mathbf{x}^l) =$
163 $f_\epsilon(\mathbf{x}^u) = 0$, and f_ϵ is positive in the neighborhood of \mathbf{x}^y , it is positive on the hole
164 interval.

165 \square

166 Note that this proof can be easily adapted to the case $f(x) = \cos(x)$, $x \in [-\pi/2, 0]$
167 by translating the x axis by $\pi/2$. It can also be adapted to $\cos(x)$, $x \in [0, \pi/2]$ and
168 $\sin(x)$, $x \in [-\pi/2, 0]$ by inverting the sign of x .
169 Having a quadratic relaxation for $\sin(x)$ and $\cos(x)$ enables us to use the convex-hull
170 formulation of quadratic on/off constraints introduced in Section 2.

171 **4. Optimal Transmission Switching.** The Optimal Transmission Switching
172 (OTS) problem is an extension of the Optimal Power Flow (OPF) problem where
173 power lines can be switched on/off.

174 **4.1. The Optimal Power Flow (OPF) problem.** We consider a network
175 $\langle N, E \rangle$, where N is the set of buses (nodes) and E is the set of lines (edges) linking
176 pairs of nodes in both directions. Each bus has two variables: a voltage magnitude
177 v_i , and a phase angle θ_i . The physical properties of the lines are described by two
178 constants, the susceptance \mathbf{b}_{ij} , and the conductance \mathbf{g}_{ij} . The AC power flows in the
179 network are defined by

$$\begin{aligned} 180 \quad (4) \quad p_{ij} &= \mathbf{g}_{ij}v_i^2 - \mathbf{g}_{ij}v_i v_j \cos(\theta_{ij}) - \mathbf{b}_{ij}v_i v_j \sin(\theta_{ij}) \quad \forall (i, j) \in E \\ &q_{ij} = -\mathbf{b}_{ij}v_i^2 + \mathbf{b}_{ij}v_i v_j \cos(\theta_{ij}) - \mathbf{g}_{ij}v_i v_j \sin(\theta_{ij}) \quad \forall (i, j) \in E \end{aligned}$$

181 where p_{ij} and q_{ij} represent respectively active and reactive power flowing through
182 line $(i, j) \in E$, and $\theta_{ij} = \theta_i - \theta_j$ is the voltage angle difference. Another physical
183 constraint in the network is Kirchhoff's Current Law, where p_i^g and q_i^g respectively
184 denote active and reactive power generation, and \mathbf{p}_i^l and \mathbf{q}_i^l are constant predefined
185 loads at bus i :

$$\begin{aligned} 186 \quad (5) \quad p_i^g - \mathbf{p}_i^l &= \sum_{(i,j) \in E} p_{ij} \quad \forall i \in N \\ &q_i^g - \mathbf{q}_i^l = \sum_{(i,j) \in E} q_{ij} \quad \forall i \in N \end{aligned}$$

187 The operational constraints in the network are the following:

$$\begin{aligned}
 188 \quad (6a) \quad & p_i^{gl} \leq p_i^g \leq p_i^{gu} \quad \forall i \in N \\
 189 \quad (6b) \quad & q_i^{gl} \leq q_i^g \leq q_i^{gu} \quad \forall i \in N \\
 190 \quad (6c) \quad & v_i^l \leq v_i \leq v_i^u \quad \forall i \in N \\
 191 \quad (6d) \quad & \theta_{ij}^l \leq \theta_{ij} \leq \theta_{ij}^u \quad \forall (i, j) \in E \\
 192 \quad (6e) \quad & p_{ij}^2 + q_{ij}^2 \leq s_{ij}^u \quad \forall (i, j) \in E
 \end{aligned}$$

194 where s_{ij}^u denotes the thermal capacity of line (i, j) , θ_{ij}^l and θ_{ij}^u bound the phase
 195 angle difference between connected buses, and v_i^l, v_i^u represent the lower and upper
 196 bounds on voltage magnitude at bus i . The goal is to minimize the generation cost
 197 for a set of generators G while satisfying the defined above network constraints:

$$\begin{aligned}
 198 \quad & \min \sum_{i \in G} c_i^0(p_i^g)^2 + c_i^1(p_i^g) \\
 199 \quad & \text{s.t. (4), (5), (6)}
 \end{aligned}$$

201 4.2. The Optimal Transmission Switching (OTS) Problem.

202 **4.2.1. Previous Work on Optimal Transmission Switching.** By changing
 203 the topology of a power network, congestion created by thermal limits or voltage
 204 bounds can be reduced [26, 27]. More recently, it has been observed that topology
 205 design may lead to cost savings around 10% in locational marginal price energy
 206 markets [12, 13, 17, 18, 25]. Topology design for reducing generation costs was originally
 207 suggested in [24] and formalized in [12], and is referred to as Optimal Transmissions
 208 Switching. From a mathematical standpoint, the OTS problem presents a challenging
 209 non-convex Mixed-Integer NonLinear Program (MINLP). To tackle this problem,
 210 many studies [2–4, 12, 13, 16–18] approximate the non-convex power flow equations
 211 with a linear power flow model known as the DC model. However, recent studies [9]
 212 show that the latter does not appear to be appropriate for OTS studies as it exhibits
 213 significant feasibility issues with respect to the original nonlinear model. Moreover,
 214 the approximate linear formulation can either underestimate or overestimate the ben-
 215 efits of line switching in different contexts.

216 **4.2.2. Problem Definition.** The OTS problem is an extension of the OPF
 217 problem where line switching is permitted. For each line (i, j) a binary variable z_{ij}
 218 indicating the status of the line is added to the model. If a line (i, j) is disconnected
 219 ($z_{ij} = 0$), then no active and reactive power can be flowing through it. This leads to
 220 disjunctive versions of constraints (4), (6d) and (6e):

$$\begin{aligned}
 221 \quad (7) \quad & p_{ij} = \mathbf{g}_{ij}v_i^2 - \mathbf{g}_{ij}v_i v_j \cos(\theta_{ij}) - \mathbf{b}_{ij}v_i v_j \sin(\theta_{ij}), \quad \text{if } z_{ij} = 1 \quad \forall (i, j) \in E, \\
 222 \quad (8) \quad & q_{ij} = -\mathbf{b}_{ij}v_i^2 + \mathbf{b}_{ij}v_i v_j \cos(\theta_{ij}) - \mathbf{g}_{ij}v_i v_j \sin(\theta_{ij}), \quad \text{if } z_{ij} = 1 \quad \forall (i, j) \in E, \\
 223 \quad (9) \quad & p_{ij}^2 + q_{ij}^2 \leq s_{ij}^u, \quad \text{if } z_{ij} = 1 \quad \forall (i, j) \in E, \\
 224 \quad (10) \quad & p_{ij} = q_{ij} = 0, \quad \text{if } z_{ij} = 0 \quad \forall (i, j) \in E, \\
 225 \quad (11) \quad & \theta_{ij}^l \leq \theta_{ij} \leq \theta_{ij}^u, \quad \text{if } z_{ij} = 1 \quad \forall (i, j) \in E, \\
 226 \quad (12) \quad & M_l \leq \theta_{ij} \leq M_u, \quad \text{if } z_{ij} = 0 \quad \forall (i, j) \in E,
 \end{aligned}$$

228 where M_l and M_u are big-M constants guaranteeing that the variable θ_{ij} is free
 229 whenever $z_{ij} = 0$. The standard values used for M_l and M_u are given below,

$$230 \quad M_l = \sum_E \theta_{ij}^l \text{ and } M_u = \sum_E \theta_{ij}^u$$

231 **4.3. Tightening the big-M constants.**

232 **PROPOSITION 7.** *Let E^u (resp. E^l) denote the set of $|N| - 1$ edges having the
 233 largest upper (resp. smallest lower) bound on the phase angle difference θ_{ij} . Then,*

$$234 \quad \theta_i - \theta_j \leq \sum_{E^u} \theta_{ij}^u, \text{ and } \theta_i - \theta_j \geq \sum_{E^l} \theta_{ij}^l, \quad \forall (i, j) \in E.$$

235 *Proof.* Due to Kirchhoff's Voltage Law, the voltage drop around a loop is zero.
 236 Observe that the longest loop-less path has at most $|N| - 1$ edges. Hence the voltage
 237 drop $\theta_i - \theta_j$ cannot be larger than the sum of the largest $(|N| - 1)$ θ_{ij}^u values. A
 238 similar argument holds for the lower bound.

239 \square

240 **4.4. The Quadratic Convex (QC) Relaxation.** Due to the non-convex nature
 241 of trigonometric and multilinear functions, optimality guarantees can only be
 242 provided using convex relaxations. Hijazi et al. [20] have introduced a quadratic
 243 relaxation that exploits the tight bounds on the phase angle and voltage magnitude
 244 variables θ_{ij} and v_i .

245 Let

$$246 \quad (13) \quad w_{ij}^R = v_i v_j \cos(\theta_{ij})$$

$$247 \quad (14) \quad w_{ij}^I = v_i v_j \sin(\theta_{ij})$$

$$248 \quad (15) \quad w_i = v_i^2$$

250 Using these auxiliary variables, equations (4) become linear:

$$251 \quad (16) \quad p_{ij} = \mathbf{g}_{ij} w_i - \mathbf{g}_{ij} w_{ij}^R - \mathbf{b}_{ij} w_{ij}^I$$

$$252 \quad (17) \quad q_{ij} = -\mathbf{b}_{ij} w_i + \mathbf{b}_{ij} w_{ij}^R - \mathbf{g}_{ij} w_{ij}^I$$

254 The QC relaxation [20] uses quadratic and polyhedral relaxations for $\sin(\theta_{ij})$
 255 and $\cos(\theta_{ij})$ in conjunction with McCormick envelopes for multilinear terms. The
 256 quadratic relaxations introduced in [20] for $\cos(\theta_{ij})$ does not support asymmetrical
 257 phase angle bounds. Furthermore the on/off version of these quadratic constraints are
 258 formulated using weak big-M approaches. In light of the results presented in previous
 259 sections, we are able to improve the QC relaxation using asymmetrical quadratic
 260 relaxations and tight on/off constraints representation. As a showcase, we present
 261 below the formulation of the on/off version corresponding to the quadratic relaxation
 262 of $\sin(\theta_{ij})$ when $\theta_{ij}^u \leq 0$. Similar constraints can be generated for the other cases. Let
 263 Q_{ij}^{\sin} denote the auxiliary variable used in the quadratic relaxation corresponding to
 264 $\sin(\theta_{ij})$, we have,

$$265 \quad \left\{ \begin{array}{l} Q_{ij}^{\sin} \geq \mathbf{a}_{ij} \theta_{ij}^2 + \mathbf{b}_{ij} \theta_{ij} + \mathbf{c}_{ij}, \\ \sin(\theta_{ij}^l) \leq Q_{ij}^{\sin} \leq \sin(\theta_{ij}^u), \\ \theta_{ij}^l \leq \theta_{ij} \leq \theta_{ij}^u, \\ z_{ij} = 1 \end{array} \right\} \vee \left\{ \begin{array}{l} Q_{ij}^{\sin} = 0, \\ \sum_{E^l} \theta_{ij}^l \leq \theta_{ij} \leq \sum_{E^u} \theta_{ij}^u, \\ z_{ij} = 0 \end{array} \right\}$$

266 Based on Theorem 4, we can write the convex hull formulation of this disjunction as
 267 follows,

$$268 \quad (18) \quad \begin{cases} \theta_{ij} - \sum_{E^u} \theta_{ij}^u (1-z) + \rho z \leq \sqrt{\frac{Q_{ij}^{\sin} z + \delta z^2}{a}}, \\ \theta_{ij} - \sum_{E^l} \theta_{ij}^l (1-z) + \rho z \geq -\sqrt{\frac{Q_{ij}^{\sin} z + \delta z^2}{a}}, \\ \theta_{ij}^u + \rho z \geq -\sqrt{\frac{Q_{ij}^{\sin} z + \delta z^2}{a}}, \\ \theta_{ij}^l + \rho z \leq \sqrt{\frac{Q_{ij}^{\sin} z + \delta z^2}{a}}, \end{cases}$$

269 Note that this formulation is non-differentiable at points where $\hat{c}s_{ij} = z_{ij}$. Numerical issues arising from this irregularity can be alleviated using a linear outer
 270 approximation of the nonlinear constraints. This results in a relaxation which is still
 271 valid as the functions are convex.

273 **4.5. On/Off Lifted Nonlinear Cuts.** In this subsection, we use an alternate
 274 representation of the voltage angle bounds. Specifically, given $-\pi/2 \leq \theta_{ij}^l < \theta_{ij}^u \leq$
 275 $\pi/2$, we define the following constants:

$$276 \quad (19a) \quad \phi_{ij} = (\theta_{ij}^u + \theta_{ij}^l)/2$$

$$277 \quad (19b) \quad \delta_{ij} = (\theta_{ij}^u - \theta_{ij}^l)/2$$

$$278 \quad (19c) \quad \mathbf{v}_i^\sigma = \mathbf{v}_i^l + \mathbf{v}_i^u$$

$$279 \quad (19d) \quad \mathbf{v}_j^\sigma = \mathbf{v}_j^l + \mathbf{v}_j^u$$

281 Using the ϕ, δ, v^σ representation, now we can write the Lifted Nonlinear Cuts for the
 282 QC-OTS model. The derivation of these cuts can be found in [11].

$$283 \quad \mathbf{v}_i^\sigma \mathbf{v}_j^\sigma (w_{ij}^R \cos(\phi_{ij}) + w_{ij}^I \sin(\phi_{ij})) - \mathbf{v}_j^u \cos(\delta_{ij}) \mathbf{v}_j^\sigma w_i -$$

$$284 \quad (20a) \quad \mathbf{v}_i^u \cos(\delta_{ij}) \mathbf{v}_i^\sigma w_j \geq \mathbf{v}_i^u \mathbf{v}_j^u \cos(\delta_{ij}) (\mathbf{v}_i^l \mathbf{v}_j^l - \mathbf{v}_i^u \mathbf{v}_j^u) \quad \forall (i, j) \in E$$

$$285 \quad \mathbf{v}_i^\sigma \mathbf{v}_j^\sigma (w_{ij}^R \cos(\phi_{ij}) + w_{ij}^I \sin(\phi_{ij})) - \mathbf{v}_j^l \cos(\delta_{ij}) \mathbf{v}_j^\sigma w_i -$$

$$286 \quad (20b) \quad \mathbf{v}_i^l \cos(\delta_{ij}) \mathbf{v}_i^\sigma w_j \geq -\mathbf{v}_i^l \mathbf{v}_j^l \cos(\delta_{ij}) (\mathbf{v}_i^l \mathbf{v}_j^l - \mathbf{v}_i^u \mathbf{v}_j^u) \quad \forall (i, j) \in E$$

288 We use the convex hull formulation introduced in [19] to get a disjunctive version
 289 of these cuts.

290 **4.6. Bounds Propagation.** The strength of the QC relaxation depends on the
 291 bounds on voltage magnitudes and phase angle differences. In order to exploit this
 292 feature we apply bound propagation to the QC-OTS model, as was first proposed
 293 in [10] for the QC relaxation of the continuous Optimal Power Flow model.

294 For this purpose the traditional constraint-programming notions, such as minimal
 295 continuous constraint networks (CCNs) and bound-consistency, are adapted in [10]
 296 to relaxations by defining the concept of a continuous constraint relaxation network
 297 (CCRN). Algorithms for computing minimal and bound-consistent CCRNs are intro-
 298 duced.

299 In this paper we use minimal CCRNs, because they yield tighter bounds than
 300 bound-consistent networks. In [10] the minCCRN algorithm was used to propagate
 301 the bounds on θ_{ij} and v_i in the continuous QC model. To avoid solving many mixed-
 302 integer programs, in the revised minCCRN algorithm we find solutions of the contin-
 303 uous relaxations of the original programs. Bound propagation on the binary variables

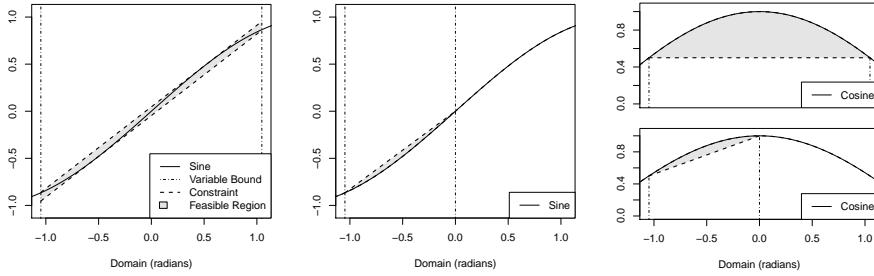


Fig. 4: The impact of variable bounds on the convex relaxations

304 is introduced: if the lower bound of z_{ij} in the relaxed model is proven to be greater
 305 than 0, then this variable can be fixed to 1.

306 **5. Computational results.**

307 **5.1. Bound Propagation Strength and Performance.** This section eval-
 308 uates the bound propagation algorithm on 28 test cases from the NICTA Energy
 309 Systems Test Case Archive (NESTA) - v0.5.0 [8] ranging from 3 to 300 nodes. The
 310 models were implemented in C++ and solved using Gurobi 6.5.0 on Dell PowerEdge
 311 1950 machines with 2x 2.00GHz Intel Quad Core Xeon E5405 CPUs and 16GB of
 312 memory.

313 In our experiments, we only select instances where the original QC-OTS model
 314 provides an optimality gap greater than 1%. The optimality gap is calculated as
 315 the relative difference between the upper bound obtained from solving the exact AC-
 316 OTS model and the lower bound returned by the QC relaxations of the OTS model.
 317 Upper bounds on the solution of the non-convex AC-OTS model were computed using
 318 Bonmin-1.8.4.

319 Table 1 summarizes the bound propagation results using the following metrics:
 320 sequential runtime of the algorithm, parallel runtime, reduction in the size of θ and v
 321 domains after bound propagation (measured in percentage of the the original domain
 322 size) and number of free lines, i.e. lines where z cannot be fixed to 1 or 0 after bound
 323 propagation (measured in percentage of the total number of lines in the network).

324 **5.2. Results on the QC-OTS models.** This subsection discusses the results
 325 on the QC-OTS models. The computational environment is the same as in the pre-
 326 vious subsection. The convergence tolerance on the relative difference between upper
 327 and lower bounds on the solutions of mixed-integer problems was set to $\epsilon = 0.01$, and
 328 the time limit was set to 7200 seconds.

329 We present the results for the following modifications of the QC-OTS model:

- 330 • S - simple QC-OTS model without any improvements.
- 331 • BP - model with bound propagation.
- 332 • Qtrig - model with bound propagation and improved quadratic relaxations of
 333 trigonometric functions.

334 The 'SQ' suffix indicates that the convex hull formulation was used to represent
 335 quadratic on/off constraints, while 'M' indicates the use of a big-M formulation.

336 Table 2 shows the runtimes in seconds. It can be seen that the new formulation
 337 improves the runtime compared to the standard big-M approach, especially in the

Table 1: Bound propagation results

Test Case	Sequential time(s)	Parallel time(s)	θ domain (%)	v domain (%)	Free lines (%)
3_lmbd	0.41	0.07	41.93	100	33.33
30_ieee	99.87	2.04	16.86	94.37	90.24
118_ieee	1572.70	8.20	34.25	98.12	97.31
162_ieee_dtc	5123.70	19.15	35.01	98.08	97.54
300_ieee	13736	27.69	38.98	10.69	80.54
3_lmbd_api	0.54	0.10	7.11	59.62	33.33
6_ww_api	5.11	0.34	1.14	19.93	45.45
24_ieee_rts_api	80.20	2.03	28.3	66.83	55.26
30_as_api	94.74	1.79	8.55	80.05	48.78
5_pjm	2.31	0.17	16.78	99.05	100.00
30_fsr_api	82.15	1.94	12.86	96.3	90.24
30_ieee_api	99.02	2.60	12.08	88.24	65.85
39_epri_api	140.45	2.78	12.66	96.21	52.17
73_ieee_rts_api	885.07	14.06	31.82	67.57	59.17
118_ieee_api	1589.64	11.38	31.6	97.38	91.94
189_edin_api	2987.68	16.08	13.46	96.01	75.24
300_ieee_api	12703	27.81	37.79	89.6	80.54
3_lmbd_sad	0.42	0.04	3.39	33.53	33.33
5_pjm_sad	1.47	0.13	17.45	45.15	33.33
24_ieee_rts_sad	47.90	1.35	64.32	92.94	68.42
29_edin_sad	255.09	5.15	95.13	98.56	97.98
30_as_sad	56.19	1.01	53.73	94.01	73.17
30_ieee_sad	77.53	1.48	38.63	90.24	82.93
73_ieee_rts_sad	537.84	5.50	69.03	94	75.83
118_ieee_sad	1289.59	6.36	72.97	97.85	94.62
162_ieee_dtc_sad	4697.00	18.50	60.7	98.07	70.39
189_edin_sad	2431.62	11.87	25.07	95.2	70.39
300_ieee_sad	10407	30.08	32.94	10.49	80.05
Average	2107.29	2.82	32.66	78.86	70.62

338 case of asymmetric bounds with models BP and Qtrig where we respectively observe
 339 8% and 14% time reduction on average.

340 Table 3 presents the optimality gaps. Bound propagation significantly tightens
 341 the relaxations and thus improves the gap.

342 In Table 4, we compare the gaps yielded by the QC-OTS model and the MISOCP
 343 model [21] on NESTA - v0.3.0 instances.

344 Finally, Table 5 compares the original QC-OTS model with the strengthened
 345 model which includes all improvements introduced in this paper. Observe that on 10
 346 instances out of 28, the new formulation reduces the optimality gap to less than 1%,
 347 thus marking them as “closed”.

348 **6. Conclusion.** This work introduces an explicit formulation of one-dimensional
 349 quadratic disjunctive constraints. The new formulation leads to tighter continuous
 350 relaxations when compared to the standard big-M approach, all while avoiding to add
 351 new variables into the model. This result was applied to the Quadratic Convex (QC)
 352 relaxation of the Optimal Transmission Switching problem. Numerical experiments
 353 showed that the new convex hull formulation leads to an improvement in solution
 354 times. Furthermore, exploiting the new relaxations for trigonometric functions, bound
 355 propagation helped reduce the optimality gap on all test cases, closing 10 out of 28
 356 open instances.

Table 2: Runtimes (s)

Test Case	Qtrig-SQ	Qtrig-M	BP-SQ	BP-M	S-SQ	S-M
3.lmbd	0.12	0.16	0.13	0.15	0.05	0.07
30.ieee	10.19	9.45	11.25	10.25	2.67	1.36
118.ieee	129.37	451.47	234.15	441.16	55.8	59
162.ieee_dtc	285.63	438.28	308.75	496.59	243.03	254
300.ieee	7200	7200	7200	7200	7200	7200
3.lmbd_api	0.13	0.14	0.13	0.13	0.03	0.02
6.ww_api	0.58	0.59	0.58	0.61	0.15	0.14
24.ieee_rts_api	6.35	6.18	5.49	9.82	2.58	2.84
30.as_api	7.09	9.34	8.47	8.79	1.13	1.25
5.pjm	0.4	0.39	0.40	0.43	0.12	0.11
30.fsr_api	6.68	7.27	6.01	6.91	5.12	1.48
30.ieee_api	4.07	4.79	4.04	4.60	1.33	1.37
39.epri_api	7.96	10.53	8.60	9.44	4.48	0.03
73.ieee_rts_api	707.51	196.91	87.09	138.13	15.5	53
118.ieee_api	7200	7200	7200	7200	35.39	13.58
189.edin_api	7200	7200	7200	7200	395.41	507
300.ieee_api	1214.01	7200	568.05	1435.37	531.5	756
3.lmbd_sad	0.08	0.08	0.08	0.08	0.04	0.03
5.pjm_sad	0.22	0.29	0.25	0.21	0.07	0.08
24.ieee_rts_sad	70.21	66.90	89.03	82.40	92.64	69
29.edin_sad	7200	7200	7200	7200	7200	7200
30.as_sad	11.16	11.25	14.86	12.70	6.16	13.12
30.ieee_sad	5.67	3.98	4.86	4.05	4.3	2.46
73.ieee_rts_sad	3077.75	2401.42	2047.03	2676.31	314.88	561
118.ieee_sad	7200	7200	7200	7200	7200	7200
162.ieee_dtc_sad	7200	7200	1172.38	7200	381.96	613
189sad	251.92	450.72	382.31	298.00	437.46	1366
300.ieee_sad	7200	7200	7200	7200	7200	7200
Average	2007.70	2202.51	1719.79	2001.29	1118.99	1181.28

Table 3: Optimality gaps (%)

Test Case	AC-OTS cost	Qtrig	BP	S
3.lmbd	5813	1.27	1.28	1.27
30.ieee	194	3.66	3.66	11.49
118.ieee	3690	1.14	1.36	1.39
162.ieee_dtc	4137	2.01	2.03	2.06
300.ieee	16895	2.85	2.82	2.98
3.lmbd_api	367	0.54	0.54	1.63
6.ww_api	252	0.40	0.40	6.03
24.ieee_rts_api	6055	1.77	1.85	7.39
30.as_api	553	1.27	1.45	1.86
5.pjm	15174	1.05	1.15	1.15
30.fsr_api	205	0.98	0.98	2.15
30.ieee_api	414	0.72	0.72	0.71
39.epri_api	7359	0.49	0.73	1.66
73.ieee_rts_api	17510	0.49	0.86	1.20
118.ieee_api	6018	3.42	3.56	4.14
189.edin_api	1947	5.19	4.93	5.31
300.ieee_api	22825	0.83	0.83	1.03
3.lmbd_sad	5990	0.03	0.03	1.20
5.pjm_sad	26423	0.51	0.14	1.22
24.ieee_rts_sad	78346	2.23	1.58	4.09
29.edin_sad	38061	18.82	18.93	18.96
30.as_sad	907	1.43	1.43	2.32
30.ieee_sad	205	0.98	1.46	4.84
73.ieee_rts_sad	226046	0.08	1.02	1.66
118.ieee_sad	3932	3.81	3.97	3.97
162.ieee_dtc_sad	4147	0.60	2.22	2.24
189.edin_sad	906	1.77	2.76	2.54
300.ieee_sad	16912	2.77	2.78	2.93
Average		2.18	2.34	3.55

Table 4: Comparing results with the MISOCP model [21]

Test Case	AC-OTS cost	Gap - QC-OTS (%)	Gap - MISOCP (%)
3.lmbd.api	367	0.62	1.17
4_gs_api	767	0.00	0.00
5_pjm_api	2987	0.02	0.02
6_ww_api	252	0.54	1.05
9_wscc_api	656	0.00	0.00
14_ieee_api	321	0.31	0.41
29_edin_api	295160	0.21	0.33
30_as_api	553	0.31	0.34
30_ieee_api	409	0.18	0.15
30_fsr_api	204	0.14	0.03
39_epri_api	7359	0.41	0.70
57_ieee_api	1429	0.10	0.09
118_ieee_api	6018	3.80	7.50
162_ieee_dtc_api	6018	0.36	0.60
189_edin_api	1947	3.36	5.58
300_ieee_api	22825	1.04	0.61
Average		0.73	1.16

Table 5: Comparing the original QC-OTS model with the strengthened model including all improvements.

Test Case	Runtime (s) (original)	Runtime (s) (strengthened)	Gap (%) (original)	Gap (%) (strengthened)
3.lmbd	0.07	0.10	1.27	0.24
30_ieee	1.36	8.75	11.49	2.88
118_ieee	59	208.51	1.39	1.16
162_ieee_dtc	254	779.39	2.06	2.01
300_ieee	7200	7200	2.98	2.85
3.lmbd_api	0.02	0.12	1.63	0.42
6_ww_api	0.14	0.38	6.03	0.01
24_ieee_rts_api	2.84	6.32	7.39	1.56
30_as_api	1.25	7.80	1.86	1.25
5_pjm	0.11	0.29	1.15	1.14
30_fsr_api	1.48	6.24	2.15	0.63
30_ieee_api	1.37	5.56	0.71	0.36
39_epri_api	0.03	9.19	1.66	0.42
73_ieee_rts_api	53	94.93	1.20	0.25
118_ieee_api	13.58	7200	4.14	3.28
189_edin_api	507	7200	5.31	4.94
300_ieee_api	756	7200	1.03	0.83
3.lmbd_sad	0.03	0.12	1.20	0.00
5_pjm_sad	0.08	0.19	1.22	0.98
24_ieee_rts_sad	69	65.63	4.09	2.21
29_edin_sad	7200	7200	18.96	18.57
30_as_sad	13.12	8.48	2.32	1.34
30_ieee_sad	2.46	5.85	4.84	1.20
73_ieee_rts_sad	561	2518.75	1.66	0.87
118_ieee_sad	7200	7200	3.97	3.81
162_ieee_dtc_sad	613	7200	2.24	2.20
189sad	1366	274.54	2.54	1.77
300_ieee_sad	7200	7200	2.93	2.77
Average	1181.28	2205.15	3.55	2.18

358 [1] E. BALAS, S. CERIA, AND G. CORNUÉJOLS, *A lift-and-project cutting plane algorithm for mixed*
359 *0-1 programs*, Mathematical programming, 58 (1993), pp. 295–324.

360 [2] C. BARROWS AND S. BLUMSACK, *Transmission switching in the rts-96 test system*, IEEE Transactions
361 on Power Systems, 27 (2012), pp. 1134–1135, <http://dx.doi.org/10.1109/TPWRS.2011.2170771>.

363 [3] C. BARROWS, S. BLUMSACK, AND R. BENT, *Computationally efficient optimal transmission*
364 *switching: Solution space reduction*, in Power and Energy Society General Meeting, 2012

365 IEEE, July 2012, pp. 1–8, <http://dx.doi.org/10.1109/PESGM.2012.6345550>.

366 [4] C. BARROWS, S. BLUMSACK, AND P. HINES, *Correcting optimal transmission switching for ac*
367 *power flows*, in System Sciences (HICSS), 2014 47th Hawaii International Conference on,
368 Jan 2014, pp. 2374–2379.

369 [5] P. BELOTTI, P. BONAMI, M. FISCHETTI, A. LODI, M. MONACI, A. NOGALES-GÓMEZ, AND
370 D. SALVAGNIN, *On handling indicator constraints in mixed integer programming*, Computational Optimization and Applications, (2016), pp. 1–22, <http://dx.doi.org/10.1007/s10589-016-9847-8>.

373 [6] P. BONAMI, A. LODI, A. TRAMONTANI, AND S. WIESE, *On mathematical programming with*
374 *indicator constraints*, Mathematical Programming, 151 (2015), pp. 191–223, <http://dx.doi.org/10.1007/s10107-015-0891-4>.

376 [7] S. CERIA AND J. SOARES, *Convex programming for disjunctive convex optimization*, Mathematical Programming, 86 (1999), pp. 595–614, <http://dx.doi.org/10.1007/s101070050106>.

378 [8] C. COFFRIN, D. GORDON, AND P. SCOTT, *NESTA, The NICTA Energy System Test Case*
379 *Archive*, CoRR, abs/1411.0359 (2014), <http://arxiv.org/abs/1411.0359>.

380 [9] C. COFFRIN, H. HIJAZI, K. LEHMANN, AND P. VAN HENTENRYCK, *Primal and dual bounds for*
381 *optimal transmission switching*, Power Systems Computation Conference (PSCC), (2014),
382 pp. 1–8, <http://dx.doi.org/10.1109/PSCC.2014.7038446>.

383 [10] C. COFFRIN, H. HIJAZI, AND P. VAN HENTENRYCK, *Strengthening convex relaxations with bound*
384 *tightening for power network optimization*, in Principles and Practice of Constraint Programming, G. Pesant, ed., vol. 9255 of Lecture Notes in Computer Science, Springer International Publishing, 2015, pp. 39–57, http://dx.doi.org/10.1007/978-3-319-23219-5_4,
387 http://dx.doi.org/10.1007/978-3-319-23219-5_4.

388 [11] C. COFFRIN, H. L. HIJAZI, AND P. V. HENTENRYCK, *Strengthening the SDP Relaxation of*
389 *AC Power Flows with Convex Envelopes, Bound Tightening, and Lifted Nonlinear Cuts*,
390 CoRR, abs/1512.04644 (2015), <http://arxiv.org/abs/1512.04644>.

391 [12] E. FISHER, R. O’NEILL, AND M. FERRIS, *Optimal transmission switching*, IEEE Transactions
392 on Power Systems, 23 (2008), pp. 1346–1355, <http://dx.doi.org/10.1109/TPWRS.2008.922256>.

394 [13] J. FULLER, R. RAMASRA, AND A. CHA, *Fast heuristics for transmission-line switching*, IEEE
395 Transactions on Power Systems, 27 (2012), pp. 1377–1386, <http://dx.doi.org/10.1109/TPWRS.2012.2186155>.

397 [14] I. E. GROSSMANN AND S. LEE, *Generalized convex disjunctive programming: Nonlinear convex*
398 *hull relaxation*, Computational Optimization and Applications, 26, pp. 83–100, <http://dx.doi.org/10.1023/A:1025154322278>,
399 <http://dx.doi.org/10.1023/A:1025154322278>.

400 [15] O. GÜNLÜK AND J. LINDEROTH, *Perspective reformulations of mixed integer nonlinear programs*
401 *with indicator variables*, Mathematical Programming, 124 (2010), pp. 183–205.

402 [16] K. HEDMAN, M. FERRIS, R. O’NEILL, E. FISHER, AND S. OREN, *Co-optimization of generation*
403 *unit commitment and transmission switching with n-1 reliability*, in Power and Energy
404 Society General Meeting, 2010 IEEE, July 2010, pp. 1–1, <http://dx.doi.org/10.1109/PES.2010.5589434>.

406 [17] K. HEDMAN, R. O’NEILL, E. FISHER, AND S. OREN, *Optimal transmission switching — sensi-*
407 *tivity analysis and extensions*, IEEE Transactions on Power Systems, 23 (2008), pp. 1469–
408 1479, <http://dx.doi.org/10.1109/TPWRS.2008.926411>.

409 [18] K. HEDMAN, R. O’NEILL, E. FISHER, AND S. OREN, *Optimal transmission switching with*
410 *contingency analysis*, IEEE Transactions on Power Systems, 24 (2009), pp. 1577–1586.

411 [19] H. HIJAZI, P. BONAMI, G. CORNUJOLS, AND A. OUOROU, *Mixed-integer nonlinear programs*
412 *featuring on/off constraints*, Computational Optimization and Applications, 52 (2012),
413 pp. 537–558.

414 [20] H. HIJAZI, C. COFFRIN, AND P. VAN HENTENRYCK, *Convex quadratic relaxations of*
415 *mixed-integer nonlinear programs in power systems*. Published online at http://www.optimization-online.org/DB_HTML/2013/09/4057.html, 2013.

417 [21] B. KOCUK, S. S. DEY, AND X. A. SUN, *New Formulation and Strong MISOCP Relaxations for*
418 *AC Optimal Transmission Switching Problem*, ArXiv e-prints, (2015), [arXiv:1510.02064](http://arxiv.org/abs/1510.02064).

419 [22] L. LOVÁSZ AND A. SCHRIJVER, *Cones of matrices and set-functions and 0-1 optimization*, SIAM
420 *Journal on Optimization*, 1 (1991), pp. 166–190.

421 [23] G. NEMHAUSER AND L. WOLSEY, *Integer and combinatorial optimization*, Wiley-Interscience
422 series in discrete mathematics and optimization, 1988.

423 [24] R. O’NEILL, R. BALDICK, U. HELMAN, M. ROTHKOPF, AND J. STEWART, W., *Dispatchable*
424 *transmission in rto markets*, IEEE Transactions on Power Systems, 20 (2005), pp. 171–
425 179, <http://dx.doi.org/10.1109/TPWRS.2004.841168>.

426 [25] T. POTLURI AND K. HEDMAN, *Impacts of topology control on the acopf*, in Power and Energy

427 Society General Meeting, 2012 IEEE, 2012, pp. 1–7, <http://dx.doi.org/10.1109/PESGM.2012.6345676>.

428

429 [26] J. ROLIM AND L. MACHADO, *A study of the use of corrective switching in transmission systems*,
430 IEEE Transactions on Power Systems, 14 (1999), pp. 336–341, <http://dx.doi.org/10.1109/59.744552>.

431

432 [27] W. SHAO AND V. VITTAL, *Corrective switching algorithm for relieving overloads and voltage*
433 *violations*, IEEE Transactions on Power Systems, 20 (2005), pp. 1877–1885, <http://dx.doi.org/10.1109/TPWRS.2005.857931>.

434

435 [28] H. D. SHERALI AND W. P. ADAMS, *A hierarchy of relaxations between the continuous and*
436 *convex hull representations for zero-one programming problems*, SIAM Journal on Discrete
437 Mathematics, 3 (1990), pp. 411–430.

438

439 [29] A. R. STUBBS AND S. MEHROTRA, *A branch-and-cut method for 0-1 mixed convex programming*,
440 Mathematical Programming, 86, pp. 515–532, <http://dx.doi.org/10.1007/s101070050103>,
<http://dx.doi.org/10.1007/s101070050103>.