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CONVEX RELAXATIONS FOR QUADRATIC ON/OFF1

CONSTRAINTS AND APPLICATIONS TO OPTIMAL2

TRANSMISSION SWITCHING3

KSENIA BESTUZHEVA˚, HASSAN HIJAZI:: , AND CARLETON COFFRIN;4

Abstract. This paper studies mixed-integer nonlinear programs featuring disjunctive con-5
straints and trigonometric functions. We first characterize the convex hull of univariate quadratic6
on/off constraints in the space of original variables using perspective functions. We then introduce7
new tight quadratic relaxations for trigonometric functions featuring variables with asymmetrical8
bounds. These results are used to further tighten recent convex relaxations introduced for the Op-9
timal Transmission Switching problem in Power Systems. Using the proposed improvements, along10
with aggressive bound propagation, we close 10 out of the 28 medium-size open test cases in the11
NESTA benchmark library. The tightened model has better computational results when compared12
to state-of-the-art formulations.13

Key words. Mixed-Integer Nonlinear Programming, Perspective Relaxation, On/Off con-14
straints, Optimal Transmission Switching, Trigonometric Functions15

AMS subject classifications. 90C11, 90C26, 90C25, 90C30, 90C9016

1. Introduction. We study non-convex Mixed-Integer Nonlinear Programs of17

the form,18

min fpx,yq19

s.t. gipx,yq ď 0, @i P I,(MINLP)20

hjpxq ď 0 if zj “ 1, @j P J,21

x P Rn,y P Zm.2223

Functions f , gi and hj are assumed to be continuous and twice differentiable.24

Given a binary variable z P t0, 1u, we are interested in the special case of a univariate25

quadratic on/off constraint,26

(1) ax2 ` bx` c´ y ď 0, if z “ 1.27

(1) is also known as a disjunctive or indicator constraint. We assume that the variable
bounds are part of the disjunction, i.e.,

#

xl0 ď x ď xu0, if z “ 0,

xl1 ď x ď xu1, if z “ 1.

In the optimization literature, on/off constraints are most oftenly formulated
using the standard big-M approach [23],

ax2 ` bx´ y ď ´cz `Mp1´ zq,

where M is a constant parameter guaranteeing that the constraint becomes re-28

dundant if u “ 0. These big-M formulations often lead to weak continuous relaxations,29

and thus inefficient computational results.30
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2 K. BESTUZHEVA, H. HIJAZI, AND C. COFFRIN

An alternative approach is to use disjunctive programming. Consider a general31

on/off constraint:32

gpxq ď 0 if z “ 0,33

x P Rn, z P t0, 1u,34

xl ď x ď xu,3536

where gpxq : Rn Ñ R is a convex function, xl and xu are two vectors in Rn. This37

constraint can be reformulated as a disjunction between two sets:38

(2)

x P Γ0 Y Γ1,

Γ0 “ tpx, zq P Rn ˆ t0, 1u | z “ 0, xl ď x ď xuu,

Γ1 “ tpx, zq P Rn ˆ t0, 1u | z “ 1, gpxq ď 0, xl ď x ď xuu.

39

or, equivalently,40

(3)
x P convpΓ0 Y Γ1q,

x P Rn, z P t0, 1u
41

Dropping the integrality requirement on variable u results in a convex relaxation42

of (2) which is typically tighter than the big-M relaxation. The challenging task lies43

in finding a compact algebraic characterization of set (3), i.e., a representation defined44

in the space of original variables.45

1.1. Related work. Extensive work has been done on deriving convex relax-46

ations of on/off constraints defined in a higher-dimensional space. Stubbs and Mehro-47

tra [29] have generalized the lifting procedure for linear sets [1, 22, 28] to the convex48

case. Ceria and Soares [7] have applied perspective functions to formulate the convex49

hull of a union of convex sets. Grossmann and Lee [14] used these results to describe50

the convex hull of a disjunction involving convex nonlinear inequalities. However, all51

these approaches require adding auxiliary variables to the original formulation, thus52

increasing the model size, and decreasing it computational efficiency.53

Based on perspective functions, Günlük and Linderoth in [15] were able to propose a54

compact characterization of the convex hull when the set Γ0 reduces to a single point.55

Hijazi et al [19] were able to generalize this result to cases where Γ0 is a hyper-56

rectangle and the constraints are isotone. In a recent work, Belotti et al. [5] study the57

efficiency of non-convex formulations for on/off constraints in conjunction with ag-58

gressive bound tightening techniques. For a detailed literature review and additional59

results, we refer to the recent work by Bonami et al. in [6].60

In this paper we extend the reach of relaxations based on perspective functions to non-61

monotone quadratic functions. In Section 2, we give the definition of a perspective62

function, review some results from disjunctive programming and provide the proof63

for our convex hull characterization. Quadratic relaxations of trigonometric functions64

are derived in Section 3. In Section 4, the Optimal Transmission Switching (OTS)65

problem in Energy Systems and its Quadratic Convex (QC) relaxation are presented.66

This problem is about finding an optimal configuration of a given power network67

where line switching is permitted. The new convex hull formulation is applied to the68
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CONVEX RELAXATIONS FOR QUADRATIC ON/OFF CONSTRAINTS AND APPLICATIONS TO OTS 3

non-monotone quadratic constraints in the QC relaxation, and other ways of strength-69

ening the model are investigated. Finally, Section 5 reports the computational results70

and Section 6 concludes the paper.71

2. The New Convex Hull.72

2.1. Perspective functions. For a given convex function fpxq : Rn Ñ R its
perspective function f̃ : Rn`1 Ñ pRY t`8uq is defined as:

f̃ “ px, zq “

#

zfpx{zq if z ą 0

`8 otherwise.

For each fixed z “ z0 the function f̃px, z0q represents a dilation of the original73

function fpxq.74

A perspective function has a focal point, which is a point approached by the75

dilations as z approaches 0. By modifying the argument of the perspective function76

one can modify its focal point. We use this property to build our convex hulls.77

Note that the perspective operator preserves convexity, i.e., if function f is convex,78

so will be its perspective f̃ .79

Fig. 1: Several dilations of the square function

2.2. State-of-the-art formulation. For completeness, we will re-state a result80

presented in [19], which characterizes the convex hull of a union of two convex sets81

defined by isotone functions.82

Definition 1 ( [19]). Let f : E Ñ R, E Ď Rn.83

‚ f is independently increasing (resp. decreasing) on coordinate i is for all84

x P dompfq and λ ą 0 such that x`λei P dompfq, where ei is ith unit vector85

of the standard basis, we have fpx` λeiq ě fpxq (resp. fpx` λeiq ď fpxq).86

‚ f is independently monotone on coordinate i if it is independently increasing87

or independently decreasing on the ith coordinate.88

‚ f is isotone if it is independently monotone on every coordinate.89

Theorem 2 ( [19]). Let f : E Ñ R, E Ď Rn, be an isotone closed convex90

function with J1 (resp., J2) the set of indices on which f is independently increasing91
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4 K. BESTUZHEVA, H. HIJAZI, AND C. COFFRIN

(resp. decreasing),92

Γ0 “ tpx, zq P Rn ˆ t0, 1u | z “ 0, l0 ď x ď u0u,93

Γ1 “ tpx, zq P Rn ˆ t0, 1u | z “ 1, fpxq ď 0, l1 ď x ď u1u ‰ H,9495

Then convpΓ0 Y Γ1q “ closurepΓ1q, where96

Γ2 “

$

’

’

&

’

’

%

px, zq P Rn`1|

zqSpx, zq ď 0 @S Ă t1, 2, ..., nu
zl1 ` p1´ zql0 ď x ď zu1 ` p1´ zqu0

0 ă z ď 1

,

/

/

.

/

/

-

,

qS “ pf ˝ hSq and hSpRn ˆ r0, 1s Ñ Rnq is defined by97

phSpx, zqqi “

$

’

’

’

’

&

’

’

’

’

%

l1i @i P S X J1

u1i @i P S X J2
xi´p1´zqu

0
i

z @i P J1, i R S,
xi´p1´zql

0
i

z @i P J2, i R S.
98

99

2.3. Convex hull of a non-monotone quadratic constraint. We start by100

proving the following lemma about convex hulls.101

Lemma 3. Let D “ D1 YD2.

Then convpDq “ convpconvpD1q Y convpD2qq

Proof. 1. rconvpDq Ď convpconvpD1q Y convpD2qqs

Since D1 Ď convpD1q and D2 Ď convpD2q, we have that

D “ D1 YD2 Ď convpD1q Y convpD2q.

By taking the convex hull of both sets we obtain that

convpDq Ď convpconvpD1q Y convpD2qq.

2. rconvpconvpD1q Y convpD2qq Ď convpDqs
Since D1 Ď D and D2 Ď D, we have that

convpD1q Ď convpDq and convpD2q Ď convpDq,

leading to

pconvpD1q Y convpD2qq Ď convpDq.

convpconvpD1q Y convpD2qq is the smallest convex set containing the union, and since
convpDq is a convex set containing the union, we can deduce that

convpconvpD1q Y convpD2qq Ď convpDq.

102

Now, we shall prove our main result.103

This manuscript is for review purposes only.



CONVEX RELAXATIONS FOR QUADRATIC ON/OFF CONSTRAINTS AND APPLICATIONS TO OTS 5

Theorem 4. Let fpx, yq “ ax2 ` bx` c´ y, a ą 0,
Γ0 “

 

px, y, zq P R2 ˆ B | z “ 0, xl0 ď x ď xu0 , y “ 0
(

, and

Γ1 “
 

px, y, zq P R2 ˆ B
ˇ

ˇ z “ 1, xl1 ď x ď xu1 , yl ď y ď yu, fpx, yq ď 0
(

then convpΓ0 Y Γ1q “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

px, y, zq P R2 ˆ r0, 1s

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x´ xu0 p1´ zq ` ρz ď
b

yz`δz2

a ,

x´ xl0 p1´ zq ` ρz ě ´
b

yz`δz2

a ,

xu1 ` ρz ě ´
b

yz`δz2

a ,

xl1 ` ρz ď
b

yz`δz2

a ,

zxl1 ` p1´ zqxl0 ď x ď zxu1 ` p1´ zqxu0 ,

ylz ď y ď yuz.

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

where ρ “ b
2a and δ “ ρ2 ´ c.104
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(a) Big-M formulation
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(b) Convex hull formulation

Fig. 2: Tightening convex relaxations

Proof. First, we split Γ1 into

Γr1 “ tpx, y, zq P Γ0 | ´ ρ ď x ď xu1u , and Γl1 “
 

px, y, zq P Γ0 | x
l1 ď x ď ´ρ

(

.

Consider the set Γr “ Γ0 Y Γr1. For x P Γr1, f(x,y) is isotone, and its inverse can be
taken. The inequality fpx, yq ď 0 can be rewritten as:

f̂px, yq “ x` ρ´

c

y ` δ

a
ď 0

f̂px, yq is isotone, thus Theorem 2 can be applied. Let us first construct the functions
zqS .
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6 K. BESTUZHEVA, H. HIJAZI, AND C. COFFRIN

‚ rS “ Hs hHpx, y, zq “

˜

px´ p1´ zqxu0q{z

y{z

¸

,

zqH “ zfphHpx, y, zqq “ x´ p1´ zqxu0 ` ρz ´

c

yz ` δz2

a
.

‚ rS “ t1us h1px, y, zq “

˜

xl1

y{z

¸

,

zq1 “ zfph1px, y, zqq “ x
l1 ` ρz ´

c

yz ` δz2

a
.

‚ rS “ t2us h2px, y, zq “

˜

px´ p1´ zqxu0q{z

yu

¸

,

zq2 “ zfph2px, y, zqq “ x´ p1´ zqxu0 ` ρz ´

c

yu1z ` z2δ

a
.

As y ď yu1 , it is easy to see that the constraint zq2 ď 0 is dominated by zqH ď 0.
Therefore, the convex hull is given by:

convpΓrq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

px, y, zq P R2 ˆ r0, 1s

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x´ xu0 p1´ zq ` ρz ď
b

yz`δz2

a ,

xl1 ` ρz ď
b

yz`δz2

a ,

´ρ ď x ď zxu1 ` p1´ zqxu0 ,

ylz ď y ď yuz.

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

The convex hull of Γl “ Γ0 Y Γl1 can be obtained similarly:

convpΓlq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

px, y, zq P R2 ˆ r0, 1s

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x´ xl0 p1´ zq ` ρz ě ´
b

yz`δz2

a ,

xu1 ` ρz ě ´
b

yz`δz2

a ,

zxl1 ` p1´ zqxl0 ď x ď ´ρ,

ylz ď y ď yuz.

,

/

/

/

/

/

/

.

/

/

/

/

/

/

-

Now we construct Γ1 by taking a union of the two sets defined above:105

Γ1 “ convpΓrq Y convpΓlq.106

Γ1 “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

px, y, zq P R2 ˆ r0, 1s

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

x´ xu0 p1´ zq ` ρz ď
b

yz`δz2

a

xl1 ` ρz ď
b

yz`δz2

a

x´ xl0 p1´ zq ` bu
2a ě ´

b

yz`δz2

a

xu1 ` ρz ě ´
b

yz`δz2

a

zxl1 ` p1´ zqxl0 ď x ď zxu1 ` p1´ zqxu0

ylz ď y ď yuz.

,

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

-
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CONVEX RELAXATIONS FOR QUADRATIC ON/OFF CONSTRAINTS AND APPLICATIONS TO OTS 7

We have that Γ0 Y Γ1 “ Γr Y Γl by definition of these sets. From Lemma 3 we107

have that convpΓrYΓlq “ convpconvpΓrqYconvpΓlqq “ convpΓ1q. It is easy to see that108

Γ1 is convex, thus convpΓr Y Γlq “ Γ1.109

110

Figure 2 compares the convex hull to the region defined by the big-M constraint.111

3. Quadratic Outer Approximations of Trigonometric Functions. In this112

section, we derive quadratic relaxations for trigonometric functions fpxq, xl ď x ď113

xu, and we consider the case pxu ´ xlq ă π{2, with asymmetrical bounds. To the114

best of our knowledge, this is the first quadratic relaxation of trigonometric functions115

exploiting asymmetrical bounds on x.116

Let Qf px1,x2,x3q denote the equation of the quadratic function passing through117

three distinct points px1; fpx1qq, px2; fpx2qq, and px3; fpx3qq.118

Qf px1,x2,x3q “
φ32δ21 ´ φ21δ32
δ21δ31δ32

px´ x1qpx´ x2q `
φ21

δ21
px´ x2q ` fpx2q119

where δij “ xi ´ xj and φij “ fpxiq ´ fpxjq.120

Proposition 5. Given ε s.t. 0 ă ε ă π
2 ´ x

u, if 0 ď xl ď xu ă π
2 , then121

cospxu ` εq ď cospxuq ´ ε sinpxuq122

Proof. Consider the tangent to the function cospxq at x “ xu. Its equation is
written fpxq “ cospxuq ´ sinpxuqpx ´ xuq. It lies above the cosine function since
cospxq is concave for 0 ă x ă π

2 . Then for all 0 ď ε ď π
2 ´ x

u we have:

cospxu ` εq ď fpxu ` εq “ cospxuq ´ ε sinpxuq

123

Fig. 3: For the sine function, we compare a linear outer approximation to the new
quadratic relaxation defined by the points pxl; sinpxlqq, pxu; sinpxuqq, and

pxu ` ε; sinpxu ` εqq

Theorem 6. Given ε s.t. 0 ă ε ă π
2 ´ x

u, if 0 ď xl ď xu ă π
2 , then124

sinpxq ď Qsinpx
l,xu,xu ` εq, @x P rxl,xus.125
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8 K. BESTUZHEVA, H. HIJAZI, AND C. COFFRIN

Proof. We have x1 “ x
l,x2 “ x

u and x3 “ x
u ` ε.126

This leads to δ32 “ xu ` ε´ xu “ ε and δ31 “ pxu ` εq ´ xl “ δ21 ` ε. Consider the127

function corresponding to the difference between Qsinpq and sinpq,128

fεpxq “ Qsinpx
l,xu,xu ` εq ´ sinpxq129

“
φ32δ21 ´ φ21ε

δ221ε` δ21ε
2
px´ x1qpx´ x2q `

φ21

δ21
px´ x2q ` sinpx2q ´ sinpxq130

131

We will first show that fεpxq is strictly decreasing at xu. Since fεpx
uq “ 0, this implies132

that f is positive in the neighborhood below xu. We will then show that fεpxq has133

a unique stationary point in the interval rxl,xus. Since fεpx
lq “ fεpx

uq “ 0, this is134

sufficient to prove that fεpxq is positive on the hole interval.135

Let us consider the derivative of fεpxq,136

f
1

εpxq “
φ32δ21 ´ φ21ε

δ221ε` δ21ε
2
p2x´ x1 ´ x2q `

φ21

δ21
´ cospxq137

Now consider f
1

εpx
uq “ f

1

εpx2q,138

f
1

εpx2q “
φ32δ21 ´ φ21ε

δ221ε` δ21ε
2
p2x2 ´ x1 ´ x2q `

φ21

δ21
´ cospx2q139

“
φ32δ21 ´ φ21ε

δ221ε` δ21ε
2
px2 ´ x1q `

φ21

δ21
´ cospx2q140

“
φ32δ21 ´ φ21ε

δ221ε` δ21ε
2
δ21 `

φ21

δ21
´ cospx2q141

“
φ32δ21 ´ φ21ε

εpδ21 ` εq
`
φ21

δ21
´ cospx2q142

“
φ32δ21
εpδ21 ` εq

´
φ21

δ21 ` ε
`
φ21

δ21
´ cospx2q143

“
φ32δ21 ´ εφ21 ` εpδ21 ` εq

´

φ21

δ21
´ cospx2q

¯

εpδ21 ` εq
“

hpεq

εpδ21 ` εq
,144

145

where

hpεq “ φ32δ21 ´ εφ21 ` εpδ21 ` εq

ˆ

φ21

δ21
´ cospx2q

˙

Since εpδ21 ` εq ą 0, we have that f
1

εpx2q ď 0 ô h1pεq ď 0.146

Consider the derivative of h,147

h1pεq “ δ21 cospx2 ` εq ´ φ21 ` pδ21 ` 2εq

ˆ

φ21

δ21
´ cospx2q

˙

148

“ δ21 pcospx2 ` εq ´ cospx2qq ` 2ε

ˆ

φ21

δ21
´ cospx2q

˙

149
150

Based on Proposition 5, we have that cospx2` εq´ cospx2q ď ε sinpx2q, consequently,151

h1pεq ď ´εδ21 sinpx2q ` 2ε

ˆ

φ21

δ21
´ cospx2q

˙

152

ď ε

ˆ

2
φ21

δ21
´ 2 cospx2q ´ δ21 sinpx2q

˙

153
154

This manuscript is for review purposes only.
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We will next to show that

2
φ21

δ21
´ 2 cospx2q ´ δ21 sinpx2q ď 0

or, equivalently,155

gpδ21q “ φ21 ´ δ21 cospx2q ´
1

2
δ221 sinpx2q156

“ sinpx2q ´ sinpx2 ´ δ21q ´ δ21 cospx2q ´
1

2
δ221 sinpx2q ď 0157

158

Consider the derivatives:

g1pδ21q “ cospx2 ´ δ21q ´ cospx2q ´ δ21 sinpx2q

g2pδ21q “ sinpx2 ´ δ21q ´ sinpx2q ă 0

Since gp0q “ 0, g1p0q “ 0 and g2pδ21q ă 0, we have proved that gpδ21q ď 0, @δ21 ě 0159

and thus f
1

εpx2q ď 0, @ε, 0 ă ε ă π
2 ´ x

u. Since f
1

εpxq is a convex function and160

is negative at the upper bound xu, it can have at most one root in the interval161

rxl,xus. Consequently fε has a unique stationary point in this interval. Since fεpx
lq “162

fεpx
uq “ 0, and fε is positive in the neighborhood of xy, it is positive on the hole163

interval.164

165

Note that this proof can be easily adapted to the case fpxq “ cospxq, x P r´π{2, 0s166

by translating the x axis by π{2. It can also be adapted to cospxq, x P r0, π{2s and167

sinpxq, x P r´π{2, 0s by inverting the sign of x.168

Having a quadratic relaxation for sinpxq and cospxq enables us to use the convex-hull169

formulation of quadratic on/off constraints introduced in Section 2.170

4. Optimal Transmission Switching. The Optimal Transmission Switching171

(OTS) problem is an extension of the Optimal Power Flow (OPF) problem where172

power lines can be switched on/off.173

4.1. The Optimal Power Flow (OPF) problem. We consider a network174

xN,Ey, where N is the set of buses (nodes) and E is the set of lines (edges) linking175

pairs of nodes in both directions. Each bus has two variables: a voltage magnitude176

vi, and a phase angle θi. The physical properties of the lines are described by two177

constants, the susceptance bij , and the conductance gij . The AC power flows in the178

network are defined by179

(4)
pij “ gijv

2
i ´ gijvivj cospθijq ´ bijvivj sinpθijq @pi, jq P E

qij “ ´bijv
2
i ` bijvivj cospθijq ´ gijvivj sinpθijq @pi, jq P E

180

where pij and qij represent respectively active and reactive power flowing through181

line pi, jq P E, and θij “ θi ´ θj is the voltage angle difference. Another physical182

constraint in the network is Kirchhoff’s Current Law, where pgi and qgi respectively183

denote active and reactive power generation, and pli and qli are constant predefined184

loads at bus i:185

(5)

pgi ´ pli “
ÿ

pi,jqPE

pij @i P N

qgi ´ qli “
ÿ

pi,jqPE

qij @i P N
186
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The operational constraints in the network are the following:187

pgli ď pgi ď p
gu
i @i P N(6a)188

qgli ď qgi ď q
gu
i @i P N(6b)189

vli ď vi ď v
u
i @i P N(6c)190

θlij ď θij ď θ
u
ij @pi, jq P E(6d)191

p2ij ` q
2
ij ď s

u
ij @pi, jq P E(6e)192193

where suij denotes the thermal capacity of line pi, jq, θlij and θuij bound the phase194

angle difference between connected buses, and vli,v
u
i represent the lower and upper195

bounds on voltage magnitude at bus i. The goal is to minimize the generation cost196

for a set of generators G while satisfying the defined above network constraints:197

min
ÿ

i PG

c0i pp
g
i q

2 ` c1i pp
g
i q198

s.t.p4q, p5q, p6q199200

4.2. The Optimal Transmission Switching (OTS) Problem.201

4.2.1. Previous Work on Optimal Transmission Switching. By changing202

the topology of a power network, congestion created by thermal limits or voltage203

bounds can be reduced [26, 27]. More recently, it has been observed that topology204

design may lead to cost savings around 10% in locational marginal price energy mar-205

kets [12, 13, 17, 18, 25]. Topology design for reducing generation costs was originally206

suggested in [24] and formalized in [12], and is referred to as Optimal Transmissions207

Switching. From a mathematical standpoint, the OTS problem presents a challeng-208

ing non-convex Mixed-Integer NonLinear Program (MINLP). To tackle this problem,209

many studies [2–4, 12, 13, 16–18] approximate the non-convex power flow equations210

with a linear power flow model known as the DC model. However, recent studies [9]211

show that the latter does not appear to be appropriate for OTS studies as it exhibits212

significant feasibility issues with respect to the original nonlinear model. Moreover,213

the approximate linear formulation can either underestimate or overestimate the ben-214

efits of line switching in different contexts.215

4.2.2. Problem Definition. The OTS problem is an extension of the OPF216

problem where line switching is permitted. For each line pi, jq a binary variable zij217

indicating the status of the line is added to the model. If a line pi, jq is disconnected218

(zij “ 0), then no active and reactive power can be flowing through it. This leads to219

disjunctive versions of constraints (4), (6d) and (6e):220

pij “ gijv
2
i ´ gijvivj cospθijq ´ bijvivj sinpθijq, if zij “ 1 @pi, jq P E,(7)221

qij “ ´bijv
2
i ` bijvivj cospθijq ´ gijvivj sinpθijq, if zij “ 1 @pi, jq P E,(8)222

p2ij ` q
2
ij ď s

u
ij , if zij “ 1 @pi, jq P E,(9)223

pij “ qij “ 0, if zij “ 0 @pi, jq P E,(10)224

θlij ď θij ď θ
u
ij , if zij “ 1 @pi, jq P E,(11)225

Ml ď θij ďMu, if zij “ 0 @pi, jq P E,(12)226227
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where Ml and Mu are big-M constants guaranteeing that the variable θij is free228

whenever zij “ 0. The standard values used for Ml and Mu are given below,229

Ml “
ÿ

E

θlij and Mu “
ÿ

E

θuij230

4.3. Tightening the big-M constants.231

Proposition 7. Let Eu (resp. El) denote the set of |N | ´ 1 edges having the232

largest upper (resp. smallest lower) bound on the phase angle difference θij. Then,233

θi ´ θj ď
ÿ

Eu

θuij , and θi ´ θj ě
ÿ

El

θlij , @pi, jq P E.234

Proof. Due to Kirchhoff’s Voltage Law, the voltage drop around a loop is zero.235

Observe that the longest loop-less path has at most |N | ´ 1 edges. Hence the voltage236

drop θi ´ θj cannot be larger than the sum of the largest p|N | ´ 1q θuij values. A237

similar argument holds for the lower bound.238

239

4.4. The Quadratic Convex (QC) Relaxation. Due to the non-convex na-240

ture of trigonometric and multilinear functions, optimality guarantees can only be241

provided using convex relaxations. Hijazi et al. [20] have introduced a quadratic re-242

laxation that exploits the tight bounds on the phase angle and voltage magnitude243

variables θij and vi.244

Let245

wRij “ vivj cospθijq(13)246

wIij “ vivj sinpθijq(14)247

wi “ v2i(15)248249

Using these auxiliary variables, equations (4) become linear:250

pij “ gijwi ´ gijw
R
ij ´ bijw

I
ij(16)251

qij “ ´bijwi ` bijw
R
ij ´ gijw

I
ij(17)252253

The QC relaxation [20] uses quadratic and polyhedral relaxations for sinpθijq254

and cospθijq in conjunction with McCormick envelopes for multilinear terms. The255

quadratic relaxations introduced in [20] for cospθijq does not support asymmetrical256

phase angle bounds. Furthermore the on/off version of these quadratic constraints are257

formulated using weak big-M approaches. In light of the results presented in previous258

sections, we are able to improve the QC relaxation using asymmetrical quadratic259

relaxations and tight on/off constraints representation. As a showcase, we present260

below the formulation of the on/off version corresponding to the quadratic relaxation261

of sinpθijq when θuij ď 0. Similar constraints can be generated for the other cases. Let262

Qsin
ij denote the auxiliary variable used in the quadratic relaxation corresponding to263

sinpθijq, we have,264

$

’

’

’

’

&

’

’

’

’

%

Qsin
ij ě aijθ

2
ij ` bijθij ` cij ,

sinpθlijq ď Qsin
ij ď sinpθuijq,

θlij ď θij ď θ
u
ij ,

zij “ 1

,

/

/

/

/

.

/

/

/

/

-

_

$

’

’

’

&

’

’

’

%

Qsin
ij “ 0,

ÿ

El

θlij ď θij ď
ÿ

Eu

θuij ,

zij “ 0

,

/

/

/

.

/

/

/

-

265

This manuscript is for review purposes only.
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Based on Theorem 4, we can write the convex hull formulation of this disjunction as266

follows,267

(18)

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

θij ´
ř

Eu

θuij p1´ zq ` ρz ď

b

Qsin
ij z`̀̀δz

2

a ,

θij ´
ř

El

θlij p1´ zq ` ρz ě ´

b

Qsin
ij z`δz

2

a ,

θuij ` ρz ě ´

b

Qsin
ij z`δz

2

a ,

θlij ` ρz ď

b

Qsin
ij z`δz

2

a ,

268

Note that this formulation is non-differentiable at points where pcsij “ zij . Nu-269

merical issues arising from this irregularity can be alleviated using a linear outer270

approximation of the nonlinear constraints. This results in a relaxation which is still271

valid as the functions are convex.272

4.5. On/Off Lifted Nonlinear Cuts. In this subsection, we use an alternate273

representation of the voltage angle bounds. Specifically, given ´π{2 ď θlij ă θuij ď274

π{2, we define the following constants:275

φij “ pθ
u
ij ` θ

l
ijq{2(19a)276

δij “ pθ
u
ij ´ θ

l
ijq{2(19b)277

vσi “ v
l
i ` v

u
i(19c)278

vσj “ v
l
j ` v

u
j(19d)279280

Using the φ, δ, vσ representation, now we can write the Lifted Nonlinear Cuts for the281

QC-OTS model. The derivation of these cuts can be found in [11].282

vσi v
σ
j pw

R
ij cospφijq ` w

I
ij sinpφijqq ´ v

u
j cospδijqv

σ
j wi´283

vui cospδijqv
σ
i wj ě v

u
i v

u
j cospδijqpv

l
iv
l
j ´ v

u
i v

u
j q @pi, jq P E(20a)284

vσi v
σ
j pw

R
ij cospφijq ` w

I
ij sinpφijqq ´ v

l
j cospδijqv

σ
j wi´285

vli cospδijqv
σ
i wj ě ´v

l
iv
l
j cospδijqpv

l
iv
l
j ´ v

u
i v

u
j q @pi, jq P E(20b)286287

We use the convex hull formulation introduced in [19] to get a disjunctive version288

of these cuts.289

4.6. Bounds Propagation. The strength of the QC relaxation depends on the290

bounds on voltage magnitudes and phase angle differences. In order to exploit this291

feature we apply bound propagation to the QC-OTS model, as was first proposed292

in [10] for the QC relaxation of the continuous Optimal Power Flow model.293

For this purpose the traditional constraint-programming notions, such as minimal294

continuous constraint networks (CCNs) and bound-consistency, are adapted in [10]295

to relaxations by defining the concept of a continuous constraint relaxation network296

(CCRN). Algorithms for computing minimal and bound-consistent CCRNs are intro-297

duced.298

In this paper we use minimal CCRNs, because they yield tighter bounds than299

bound-consistent networks. In [10] the minCCRN algorithm was used to propagate300

the bounds on θij and vi in the continuous QC model. To avoid solving many mixed-301

integer programs, in the revised minCCRN algorithm we find solutions of the contin-302

uous relaxations of the original programs. Bound propagation on the binary variables303

This manuscript is for review purposes only.



CONVEX RELAXATIONS FOR QUADRATIC ON/OFF CONSTRAINTS AND APPLICATIONS TO OTS 13

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Domain (radians)

Sine
Variable Bound
Constraint
Feasible Region

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Domain (radians)

Sine

0.
0

0.
4

0.
8

Cosine

−1.0 −0.5 0.0 0.5 1.0

0.
0

0.
4

0.
8

Domain (radians)

Cosine

Fig. 4: The impact of variable bounds on the convex relaxations

is introduced: if the lower bound of zij in the relaxed model is proven to be greater304

than 0, then this variable can be fixed to 1.305

5. Computational results.306

5.1. Bound Propagation Strength and Performance. This section eval-307

uates the bound propagation algorithm on 28 test cases from the NICTA Energy308

Systems Test Case Archive (NESTA) - v0.5.0 [8] ranging from 3 to 300 nodes. The309

models were implemented in C++ and solved using Gurobi 6.5.0 on Dell PowerEdge310

1950 machines with 2x 2.00GHz Intel Quad Core Xeon E5405 CPUs and 16GB of311

memory.312

In our experiments, we only select instances where the original QC-OTS model313

provides an optimality gap greater than 1%. The optimality gap is calculated as314

the relative difference between the upper bound obtained from solving the exact AC-315

OTS model and the lower bound returned by the QC relaxations of the OTS model.316

Upper bounds on the solution of the non-convex AC-OTS model were computed using317

Bonmin-1.8.4.318

Table 1 summarizes the bound propagation results using the following metrics:319

sequential runtime of the algorithm, parallel runtime, reduction in the size of θ and v320

domains after bound propagation (measured in percentage of the the original domain321

size) and number of free lines, i.e. lines where z cannot be fixed to 1 or 0 after bound322

propagation (measured in percentage of the total number of lines in the network).323

5.2. Results on the QC-OTS models. This subsection discusses the results324

on the QC-OTS models. The computational environment is the same as in the pre-325

vious subsection. The convergence tolerance on the relative difference between upper326

and lower bounds on the solutions of mixed-integer problems was set to ε “ 0.01, and327

the time limit was set to 7200 seconds.328

We present the results for the following modifications of the QC-OTS model:329

‚ S - simple QC-OTS model without any improvements.330

‚ BP - model with bound propagation.331

‚ Qtrig - model with bound propagation and improved quadratic relaxations of332

trigonometric functions.333

The ’SQ’ suffix indicates that the convex hull formulation was used to represent334

quadratic on/off constraints, while ’M’ indicates the use of a big-M formulation.335

Table 2 shows the runtimes in seconds. It can be seen that the new formulation336

improves the runtime compared to the standard big-M approach, especially in the337
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14 K. BESTUZHEVA, H. HIJAZI, AND C. COFFRIN

Table 1: Bound propagation results

Test Case Sequential
time(s)

Parallel
time(s)

θ domain (%) v domain (%) Free
lines (%)

3 lmbd 0.41 0.07 41.93 100 33.33
30 ieee 99.87 2.04 16.86 94.37 90.24

118 ieee 1572.70 8.20 34.25 98.12 97.31
162 ieee dtc 5123.70 19.15 35.01 98.08 97.54

300 ieee 13736 27.69 38.98 10.69 80.54
3 lmbd api 0.54 0.10 7.11 59.62 33.33
6 ww api 5.11 0.34 1.14 19.93 45.45

24 ieee rts api 80.20 2.03 28.3 66.83 55.26
30 as api 94.74 1.79 8.55 80.05 48.78

5 pjm 2.31 0.17 16.78 99.05 100.00
30 fsr api 82.15 1.94 12.86 96.3 90.24

30 ieee api 99.02 2.60 12.08 88.24 65.85
39 epri api 140.45 2.78 12.66 96.21 52.17

73 ieee rts api 885.07 14.06 31.82 67.57 59.17
118 ieee api 1589.64 11.38 31.6 97.38 91.94
189 edin api 2987.68 16.08 13.46 96.01 75.24
300 ieee api 12703 27.81 37.79 89.6 80.54
3 lmbd sad 0.42 0.04 3.39 33.53 33.33
5 pjm sad 1.47 0.13 17.45 45.15 33.33

24 ieee rts sad 47.90 1.35 64.32 92.94 68.42
29 edin sad 255.09 5.15 95.13 98.56 97.98

30 as sad 56.19 1.01 53.73 94.01 73.17
30 ieee sad 77.53 1.48 38.63 90.24 82.93

73 ieee rts sad 537.84 5.50 69.03 94 75.83
118 ieee sad 1289.59 6.36 72.97 97.85 94.62

162 ieee dtc sad 4697.00 18.50 60.7 98.07 70.39
189 edin sad 2431.62 11.87 25.07 95.2 70.39
300 ieee sad 10407 30.08 32.94 10.49 80.05

Average 2107.29 2.82 32.66 78.86 70.62

case of asymmetric bounds with models BP and Qtrig where we respectively observe338

8% and 14% time reduction on average.339

Table 3 presents the optimality gaps. Bound propagation significantly tightens340

the relaxations and thus improves the gap.341

In Table 4, we compare the gaps yielded by the QC-OTS model and the MISOCP342

model [21] on NESTA - v0.3.0 instances.343

Finally, Table 5 compares the original QC-OTS model with the strengthened344

model which includes all improvements introduced in this paper. Observe that on 10345

instances out of 28, the new formulation reduces the optimality gap to less than 1%,346

thus marking them as “closed”.347

6. Conclusion. This work introduces an explicit formulation of one-dimensional348

quadratic disjunctive constraints. The new formulation leads to tighter continuous349

relaxations when compared to the standard big-M approach, all while avoiding to add350

new variables into the model. This result was applied to the Quadratic Convex (QC)351

relaxation of the Optimal Transmission Switching problem. Numerical experiments352

showed that the new convex hull formulation leads to an improvement in solution353

times. Furthermore, exploiting the new relaxations for trigonometric functions, bound354

propagation helped reduce the optimality gap on all test cases, closing 10 out of 28355

open instances.356
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Table 2: Runtimes (s)

Test Case Qtrig-SQ Qtrig-M BP-SQ BP-M S-SQ S-M
3 lmbd 0.12 0.16 0.13 0.15 0.05 0.07
30 ieee 10.19 9.45 11.25 10.25 2.67 1.36

118 ieee 129.37 451.47 234.15 441.16 55.8 59
162 ieee dtc 285.63 438.28 308.75 496.59 243.03 254

300 ieee 7200 7200 7200 7200 7200 7200
3 lmbd api 0.13 0.14 0.13 0.13 0.03 0.02
6 ww api 0.58 0.59 0.58 0.61 0.15 0.14

24 ieee rts api 6.35 6.18 5.49 9.82 2.58 2.84
30 as api 7.09 9.34 8.47 8.79 1.13 1.25

5 pjm 0.4 0.39 0.40 0.43 0.12 0.11
30 fsr api 6.68 7.27 6.01 6.91 5.12 1.48

30 ieee api 4.07 4.79 4.04 4.60 1.33 1.37
39 epri api 7.96 10.53 8.60 9.44 4.48 0.03

73 ieee rts api 707.51 196.91 87.09 138.13 15.5 53
118 ieee api 7200 7200 7200 7200 35.39 13.58
189 edin api 7200 7200 7200 7200 395.41 507
300 ieee api 1214.01 7200 568.05 1435.37 531.5 756
3 lmbd sad 0.08 0.08 0.08 0.08 0.04 0.03
5 pjm sad 0.22 0.29 0.25 0.21 0.07 0.08

24 ieee rts sad 70.21 66.90 89.03 82.40 92.64 69
29 edin sad 7200 7200 7200 7200 7200 7200

30 as sad 11.16 11.25 14.86 12.70 6.16 13.12
30 ieee sad 5.67 3.98 4.86 4.05 4.3 2.46

73 ieee rts sad 3077.75 2401.42 2047.03 2676.31 314.88 561
118 ieee sad 7200 7200 7200 7200 7200 7200

162 ieee dtc sad 7200 7200 1172.38 7200 381.96 613
189sad 251.92 450.72 382.31 298.00 437.46 1366

300 ieee sad 7200 7200 7200 7200 7200 7200

Average 2007.70 2202.51 1719.79 2001.29 1118.99 1181.28

Table 3: Optimality gaps (%)

Test Case AC-OTS cost Qtrig BP S
3 lmbd 5813 1.27 1.28 1.27
30 ieee 194 3.66 3.66 11.49

118 ieee 3690 1.14 1.36 1.39
162 ieee dtc 4137 2.01 2.03 2.06

300 ieee 16895 2.85 2.82 2.98
3 lmbd api 367 0.54 0.54 1.63
6 ww api 252 0.40 0.40 6.03

24 ieee rts api 6055 1.77 1.85 7.39
30 as api 553 1.27 1.45 1.86

5 pjm 15174 1.05 1.15 1.15
30 fsr api 205 0.98 0.98 2.15

30 ieee api 414 0.72 0.72 0.71
39 epri api 7359 0.49 0.73 1.66

73 ieee rts api 17510 0.49 0.86 1.20
118 ieee api 6018 3.42 3.56 4.14
189 edin api 1947 5.19 4.93 5.31
300 ieee api 22825 0.83 0.83 1.03
3 lmbd sad 5990 0.03 0.03 1.20
5 pjm sad 26423 0.51 0.14 1.22

24 ieee rts sad 78346 2.23 1.58 4.09
29 edin sad 38061 18.82 18.93 18.96

30 as sad 907 1.43 1.43 2.32
30 ieee sad 205 0.98 1.46 4.84

73 ieee rts sad 226046 0.08 1.02 1.66
118 ieee sad 3932 3.81 3.97 3.97

162 ieee dtc sad 4147 0.60 2.22 2.24
189 edin sad 906 1.77 2.76 2.54
300 ieee sad 16912 2.77 2.78 2.93

Average 2.18 2.34 3.55
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Table 4: Comparing results with the MISOCP model [21]

Test Case AC-OTS cost Gap - QC-OTS (%) Gap - MISOCP (%)
3 lmbd api 367 0.62 1.17

4 gs api 767 0.00 0.00
5 pjm api 2987 0.02 0.02
6 ww api 252 0.54 1.05

9 wscc api 656 0.00 0.00
14 ieee api 321 0.31 0.41
29 edin api 295160 0.21 0.33

30 as api 553 0.31 0.34
30 ieee api 409 0.18 0.15
30 fsr api 204 0.14 0.03

39 epri api 7359 0.41 0.70
57 ieee api 1429 0.10 0.09

118 ieee api 6018 3.80 7.50
162 ieee dtc api 6018 0.36 0.60

189 edin api 1947 3.36 5.58
300 ieee api 22825 1.04 0.61

Average 0.73 1.16

Table 5: Comparing the original QC-OTS model with the strengthened model
including all improvements.

Test Case Runtime (s)
(original)

Runtime (s)
(strengthened)

Gap (%)
(original)

Gap (%)
(strengthened)

3 lmbd 0.07 0.10 1.27 0.24
30 ieee 1.36 8.75 11.49 2.88

118 ieee 59 208.51 1.39 1.16
162 ieee dtc 254 779.39 2.06 2.01

300 ieee 7200 7200 2.98 2.85
3 lmbd api 0.02 0.12 1.63 0.42
6 ww api 0.14 0.38 6.03 0.01

24 ieee rts api 2.84 6.32 7.39 1.56
30 as api 1.25 7.80 1.86 1.25

5 pjm 0.11 0.29 1.15 1.14
30 fsr api 1.48 6.24 2.15 0.63

30 ieee api 1.37 5.56 0.71 0.36
39 epri api 0.03 9.19 1.66 0.42

73 ieee rts api 53 94.93 1.20 0.25
118 ieee api 13.58 7200 4.14 3.28
189 edin api 507 7200 5.31 4.94
300 ieee api 756 7200 1.03 0.83
3 lmbd sad 0.03 0.12 1.20 0.00
5 pjm sad 0.08 0.19 1.22 0.98

24 ieee rts sad 69 65.63 4.09 2.21
29 edin sad 7200 7200 18.96 18.57

30 as sad 13.12 8.48 2.32 1.34
30 ieee sad 2.46 5.85 4.84 1.20

73 ieee rts sad 561 2518.75 1.66 0.87
118 ieee sad 7200 7200 3.97 3.81

162 ieee dtc sad 613 7200 2.24 2.20
189sad 1366 274.54 2.54 1.77

300 ieee sad 7200 7200 2.93 2.77

Average 1181.28 2205.15 3.55 2.18
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