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How do defects limit LED efficiency?

“Efficiency Droop” of InGaN LEDs Threading dislocations reduce peak efficiency
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Goal: Quantify relationship between LED TDD and deep level incorporation
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Threading dislocations reduce LED non-radiative lifetime

Iy 413Gy g;GaN/GaN LEDs
> MOCVD on c-plane GaN

» Simultaneous LED growth on co-loaded templates
»TDD controlled by template nucleation and coalescence parameters

Sapphire (or SiC)

GaN Template
TDD =7 x 108 cm-2
or
TDD =3 x 10° cm-2
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Threading dislocations reduce LED non-radiative lifetime

LED efficiency vs. TDD Standing challenges to studying defect levels in LEDs
50000 —— TDD=3E9 Cm:z ' > Sensitivity to non-radiative defects
| TDD=8E8 e | 1 » Quantify deep level defect density (N,)

» Quantify deep level energy (E,)
» Sensitivity to mid-gap deep levels
» Nanoscopic depth sensitivity within MOW region
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> Improved EQE for reduced TDD v E,

» Suspect defect reduction as root cause

 How to satisfy all of these requirements?
‘ Deep Level Optical Spectroscopy (DLOS)
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Deep Level Optical Spectroscopy

Deep Level Optical Spectroscopy (DLOS)!
» Photocapacitance technique
» Backside, sub-band gap optical stimulation to photoionize defect levels
» Quantify non-radiative defect level energy and density

Increasing hv

—

Photocapacitance

v

Time

» Optical cross-section o¢° = e°/@ = alN,
« DLOS only sensitive to depleted regions * 0°(hv) oc dC(t)/dt|,—g
* Measure optical ionization energy E°

1. Chantre et al. PRB 23, 5335 (1981).
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DLOS provides depth resolution in LEDs
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» How to distinguish?

)
- V ~ 0 V: DLOS selective to the MQW region
Ec > Detect both InGaN QW and GaN QB defects
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0 ] V ~-10V: DLOS “sees” MQW and n-GaN region
T

» Reduced sensitivity to QW defects
» Enhanced sensitivity to GaN defects (QB, bulk)
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QW defects identified by DLOS spectra that quench at large V, fa
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CV analysis relates V, and depth sensitivity

LED Capacitance-Voltage

200 — 1 T T T T r T T 1
——TDD = 3e9 cm” QW2/QB2
160 R
o Bulk QW1/QB1
o
@)
120 / B
] ] ] | ] ] ]

V., = -3V delineates MQW region from n-type bulk
e DLOS at V > - 3V sensitive to MQW region
« DLOS at V < -3V emphasizes n-type bulk GaN
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-3V DLOS reveals MQW deep levels

-3V DLOS of MQW region
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Observe three deep levels in MOW reqion:

» Saturation near the In, 3Ga, 57N, GaN band edges

» Similar deep levels for both samples — no new defect states with increased TDD

\-% > Location of defects (QB vs. QW) not yet clear
?{ EERE

; *Fit to model of R. Paessler, JAP 96 715 2004
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- 10 V DLOS identifies QB/bulk deep levels

-3V/10 V DLOS, TDD = 3e9 cm~
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« E.— 1.7, 2.63 eV levels quenched — attribute to QW
« E.— 2.3, ~2.6 eV levels fully revealed — attribute to QB/Bulk
— E.—2.6 eV spectra similar to reports for Vg,,* carbon?3
« Emergent levels at E, - 3.1, 3.3 eV — attribute to QB/Bulk
| — E.—3.3 eV level similar to report for carbon?
& sste e
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' 1. Reschikov et al., MRS Symp. Proc. 693, 16.19 (2002). 2. Armstrong et al., JAP 98, 053704 (2005). 3. Lyons et al., APL 97, 152108 (2010). Laboratories



Lighted-CV quantifies defect density

Lighted C-V, TDD = 7E8 cm™ DLOS
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« Poisson Equation relates 4V and N,
| * Focus on 4V for MQW region (X4 <~70 nm)
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LCV can measure N, for individual QWs/QBs
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Lighted-CV quantifies defect density

S 1E-3

E.—2.3eV 4V, TDD = 7E8 cm™
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« E. —2.3eV QB appears equally distributed among QBs
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Lighted-CV quantifies defect density

E.-1.7eV 4V, TDD = 7E8 cm~2
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Lighted-CV quantifies defect density

E.—2.63 eV 4V, TDD = 7E8 cm~2
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« E.—2.63 eV QW deep level concentrated near n-side

* May result from longer QB T, exposure for n-side QW
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Enhanced TDD increases density of most observed deep levels!

TDD =7e8 cm=2 TDD =3e9cm? N DD
VS.
Lo Location TDD=7.6e8 cm? | TDD=2.8e9 cm2
E Level N, (cm) N, (cm3) AN,
c (ev) t t
E.—17 QW1 2.0e16 3.7e16 1.9x
- > E,—2.3 BAR1 0.9e15 1.0e15
(@]
E ’g E.—2.65 QW1 1.2e17 3.5e17 2.9x
LLl Ll
E.—26/3.1/3.3 BAR1 2.2e16 5.2e16 2.4x
« Enhanced N, with TDD agrees with reduced LED ¢!
DOS DOS * QWs more defective than QBs
N0.13G80 7N N0.13G80 7N e Large N, increase for levels near-E,and mid-gap
a » Consistent with simple SRH and negative-U
¢ ¢ models of non-radiative recombination
o o » Suspect TDD facilitates point defect incorporation
2 |__.E > |_..E as well, e.g. carbon and E, — 2.6, E. — 3.3 eV GaN
g e C g:":g levels?
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Summary and Conclusions

e Studied impact of TDD on InGaN/GaN LED efficiency

— LED efficiency reduces with increased TDD

 Used DLOS and LCV to correlate TDD and LED deep level density

— First quantitative, depth-resolved method to study deep levels in Ill-
Nitride emitters

Excess deep level incorporation with increasing TDD
— Agrees with reduced z,, with greater TDD?

— Increase in mid-gap and near-E, levels consistent with simple SRH and
negative-U models for non-radiative recombination

— Preponderance of QW deep levels near n-side likely due to mismatched
Ty, In MQW region

— General correlation of deep level incorporation and TDD suggests TDs
facilitate point defect incorporation
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