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Gas Flow in a Microscale Tube

Investigate steady isothermal gas flow in microscale tube

– Tube is long and thin (L >> D) with circular cross section

– Tube joins gas reservoirs at different pressures (p1∞ ≥ p2∞)

– Tube and reservoirs have same temperature (T)

– Molecules partially accommodate (a ≤ 1) when reflecting

– Flow speed << molecule speed, laminar, no turbulence

Determine the mass flow rate and the pressure profile

– General physics-based closed-form expressions

– Free-molecular to continuum (arbitrary mean free path l)

– Theory and molecular-gas-dynamics simulations
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Tube Mass Flow Rate – Classic Studies

M. Knudsen (1909)

– Interpolation between free-molecular and continuum 

flow for long tubes (L >> D) and accommodation a = 1

– Knudsen minimum: actual value < free-molecular value

M. Smoluchowski (1910)

– Extension of Knudsen’s expression for long tubes 

(L >> D) with accommodation a ≤ 1 

– Free-molecular accommodation factor (2 – a)/a

P. Clausing (1932)

– Rigorous integral equation for free-molecular flow for 

arbitrary length with accommodation a = 1

E. H. Kennard (1938)

– Free-molecular expression for arbitrary cross section 

for long tubes (L >> D) with accommodation a ≤ 1



Tube Mass Flow Rate – Recent Studies

F. Sharipov and Collaborators (1990+)

– BGK-based analytical methods for long tubes (L >> D) 

with accommodation a = 1, and some simulations

– Extensive tables of mass flow rate for all regimes

G. E. Karniadakis and A. Beskok (1990+)

– More accurate velocity profiles through better slip 

boundary conditions for Navier-Stokes equations

– More accurate mass flow rate into transition regime 

M. A. Gallis, D. J. Rader, and J. R. Torczynski (2000+)

– Transport rate more important than related spatial field

– Construct boundary conditions to give accurate rates 

in all regimes when used with Navier-Stokes equations

– Works well for energy, momentum, & mass transport 

between parallel plates (Fourier, Couette, Fickian flow)



Tube-Flow Application

Boundary condition yields closed-form expressions for 

mass flow rate and pressure profile covering all regimes

– Parameters b0, b1, b2, and e are specified to ensure accuracy 

in free-molecular, slip, and transition regimes

– Mass flow rate has Knudsen minimum: eb0 > 1 + b1a
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Mass Flow Rate Has Correct Limits

Expression reproduces known limits correctly

Continuum Not affected by e, b0, b1, b2

Slip Determined by b1

Free-Molecular Determined by e, b0

Orifice/Short-Tube Determined by e, b0
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Approximate Closed-Form Expression
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How Parameters Are Specified

Mass flow rate and pressure profile contain 4 parameters

– Product eb0 controls behavior in free-molecular regime

• Choose b0 = 16/3 to match Knudsen-Smoluchowski formula

• Choose e to match Clausing-Kennard inlet-outlet resistances

– Parameter b1 controls behavior in slip regime

• Loyalka, Siewert, and coworkers suggested (1 + b1a) form

• Gallis and coworkers showed common gases have b1 ≈ 0.15

– Parameter b2 controls behavior in transition regime

• Cannot be determined from above known limits

• May depend on accommodation coefficient

Determine b2 using molecular-gas-dynamics simulations
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Molecular-Gas-Dynamics Simulations

Direct Simulation Monte Carlo (DSMC) method of Bird 

uses computational molecules to simulate gas flows

– Each computational molecule (‘simulator’) represents 

a very large number of real molecules

– Simulators move, reflect from boundaries, and collide with 

each other so as to reproduce statistics of real molecules

– Flow field is found by averaging the (stationary) properties 

of the simulators in each cell over many time steps

DSMC scales well on massively parallel computers

– Essential for simulations in slip regime

molecules move ballistically molecule pairs collide



Simulation Conditions

DSMC simulation parameters

– Tube radius: 10 m

– Tube length: 10 and 1 mm

• Length/radius = 1000 and 100, 

long and short

– Accom: 1.00, 0.75, 0.50, 0.25

• Most gases/surfaces are ~0.8, 

but helium/metal can be ~0.4

– Inlet pressure: 1-10,000 Pa

• Free-molecular to slip regime

• Kn = 1 at p = pl = 316.4 Pa

– Outlet pressure: (0.0-0.5) inlet

• 0.5 is weak gradient; 

0.0 is strong gradient

Mass flow rate uncertainty ~1%

Simulations take

~1 processor-year 

on a massively

parallel computer



Mass Flow Rate: Short Tube

Conditions

• L/R = 100 (short)

• p2/p1 = 0.0 (strong)

Expression agrees well 

with simulations

• All inlet pressures p1

• All accom. coeffs. a

Expected behavior is 

observed in known limits

• FM at low pressures

• Slip at high pressures

Expression & simulations 

have Knudsen minimum

• Accurate depth, breadth

• Reasonable e, b0, b1, b2



Mass Flow Rate: Long Tube

Conditions

• L/R = 1000 (long)

• p2/p1 = 0.5 (weak)

Expression agrees well 

with simulations

• All inlet pressures p1

• All accom. coeffs. a

Expected behavior is 

observed in known limits

• FM at low pressures

• Slip at high pressures

Expression & simulations 

have Knudsen minimum

• Accurate depth, breadth

• Reasonable e, b0, b1, b2



Normalized Mass Flow Rate: Short Tube

Conditions

• L/R = 100 (short)

• p2/p1 = 0.5 (strong)

Expression agrees well 

with simulations

• All inlet pressures p1

• All accom. coeffs. a

Normalized quantities 

facilitate comparison

• Ṁ/ṀF, free-molecular

• 1/Knm = (p1 + p2)/2pl

Expression & simulations 

have Knudsen minimum

• Accurate depth, breadth

• Reasonable e, b0, b1, b2



Normalized Mass Flow Rate: Long Tube

Conditions

• L/R = 1000 (long)

• p2/p1 = 0.5 (weak)

Expression agrees well 

with simulations

• All inlet pressures p1

• All accom. coeffs. a

Normalized quantities 

facilitate comparison

• Ṁ/ṀF, free-molecular

• 1/Knm = (p1 + p2)/2pl

Expression & simulations 

have Knudsen minimum

• Accurate depth, breadth

• Reasonable e, b0, b1, b2



Normalized Pressure Profiles: Short Tube

Conditions

• L/R = 100 (short)

• p2/p1 = 0.0 (strong)

Expression agrees well 

with simulations

• All inlet pressures p1

• All accom. coeffs. a

Normalized quantities 

facilitate comparison

• Pressure: 0 ≤ p/p1 ≤ 1

• Position: 0 ≤ z/L ≤ 1

Profiles have rather small 

discontinuities

• At inlet and at outlet

• Increase as p1 & a are 

decreased



Normalized Pressure Profiles: Long Tube

Conditions

• L/R = 1000 (long)

• p2/p1 = 0.5 (weak)

Expression agrees well 

with simulations

• All inlet pressures p1

• All accom. coeffs. a

Normalized quantities 

facilitate comparison

• Pressure: 0 ≤ p/p1 ≤ 1

• Position: 0 ≤ z/L ≤ 1

Profiles have rather small 

discontinuities

• At inlet and at outlet

• Increase as p1 & a are 

decreased



Ewart et al. (2006) Tube Experiments

Mass flow rate measured for silica microscale tube

– D = 25.2 m, L = 53 mm, a = 0.9, N2, T = 296.5 K, p2/p1 = 0.2

Expression and simulations agree well with experiment

– Lowest experiment pressure is above Knudsen minimum

– Highest simulation pressure reaches experiment

Same values of e, b0, b1, b2 used for all circular tubes

• Values are unchanged from previous cases (no adjusting)

• Relative to diameter, this tube length is essentially infinite
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Ewart et al. (2007) Channel Experiments

Mass flow rate measured for silicon microscale channel

– H,W,L = 9.38, 492, 9390 m, a = 0.9, He, T = 295.5 K, p2/p1 = 0.2

Expression and simulations agree with experiment

– 2D simulation overpredicts 3D experiment at low pressures

– b2 and e in channel expression are fit to experiment

Channel-flow expression correlates experiment values well

• Derived for L×W×H rectangular channel just like for tube

• b0 from Kennard infinite-length free-molecular flow

• b1 = 0.15 as before to match slip regime for most gases

• b2 and e selected to match transition regime: L/W = 19.1
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Conclusions

Expressions for mass flow rate & pressure profile developed 

for isothermal steady flow in microscale tubes & channels

– Covers free-molecular, transition, slip, & continuum regimes

– Treats all accommodation coefficients & tube aspect ratios

Expression agrees with simulations & experiments
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