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% Gas Flow in a Microscale Tube
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Investigate steady isothermal gas flow in microscale tube
— Tube is long and thin (L >> D) with circular cross section
— Tube joins gas reservoirs at different pressures (Pq. 2 P3.)
— Tube and reservoirs have same temperature (T)
— Molecules partially accommodate (a £ 1) when reflecting
— Flow speed << molecule speed, laminar, no turbulence

Determine the mass flow rate and the pressure profile
— General physics-based closed-form expressions
— Free-molecular to continuum (arbitrary mean free path A)

— Theory and molecular-gas-dynamics simulations
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% Tube Mass Flow Rate — Classic Studies

"3 M. Knudsen (1909)
%X - Interpolation between free-molecular and continuum

flow for long tubes (L >> D) and accommodation a =1
— Knudsen minimum: actual value < free-molecular value

M. Smoluchowski (1910)

— Extension of Knudsen’s expression for long tubes
(L >> D) with accommodation a =1

— Free-molecular accommodation factor (2 — a)/a

P. Clausing (1932)

— Rigorous integral equation for free-molecular flow for
arbitrary length with accommodation a =1

E. H. Kennard (1938)

— Free-molecular expression for arbitrary cross section
for long tubes (L >> D) with accommodation o £ 1
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% Tube Mass Flow Rate — Recent Studies

n F. Sharipov and Collaborators (1990+)

— BGK-based analytical methods for long tubes (L >> D)
with accommodation a = 1, and some simulations

— Extensive tables of mass flow rate for all regimes

G. E. Karniadakis and A. Beskok (1990+)

— More accurate velocity profiles through better slip
boundary conditions for Navier-Stokes equations

— More accurate mass flow rate into transition regime

jf M. A. Gallis, D. J. Rader, and J. R. Torczynski (2000+)
— Transport rate more important than related spatial field

— Construct boundary conditions to give accurate rates
In all regimes when used with Navier-Stokes equations

— Works well for energy, momentum, & mass transport
between parallel plates (Fourier, Couette, Fickian flow)
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Tube-Flow Application
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Boundary condition yields closed-form expressions for
mass flow rate and pressure profile covering all regimes

— Parameters b,, by, b,, and ¢ are specified to ensure accuracy
In free-molecular, slip, and transition regimes

— Mass flow rate has Knudsen minimum: eb, > 1 + b,a @ﬁ}"iﬂﬁau

Laboratories



_ '
} Mass Flow Rate Has Correct Limits
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Approximate Closed-Form Expression
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Free-Molecular
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Continuum Oirifice
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Free-Molecular Orifice Free-Molecular Short Tube

M., :ﬂRZ%(n@—nZw) My =Mg /(1+(aL/D)), al/D<<1

Expression reproduces known limits correctly

Continuum
Slip

Free-Molecular
Orifice/Short-Tube Determined by g, b,

Not affected by g, by, by, b,
Determined by b,
Determined by g, b,
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% How Parameters Are Specified

Approximate Closed-Form Expression

S 8p 2—a b, p Patb,p
M=M.|1+—2a@|p,p ], @| Py Pg|=——131+ba+(eb, —1-ba)—+= In{ A2 i}
C[ o [ pe] ] @lpy po] =2 (<t )pA—pB P +b,p,

Mass flow rate and pressure profile contain 4 parameters

— Product b, controls behavior in free-molecular regime

* Choose b, =16/3n to match Knudsen-Smoluchowski formula

 Choose € to match Clausing-Kennard inlet-outlet resistances
— Parameter b, controls behavior in slip regime

» Loyalka, Siewert, and coworkers suggested (1 + b,a) form

 Gallis and coworkers showed common gases have b; = 0.15
— Parameter b, controls behavior in transition regime

« Cannot be determined from above known limits

 May depend on accommodation coefficient

Determine b, using molecular-gas-dynamics simulations
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} Molecular-Gas-Dynamics Simulations

A Massively Parallel Performance
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molecules move ballistically molecule pairs collide Processors

Direct Simulation Monte Carlo (DSMC) method of Bird
uses computational molecules to simulate gas flows

— Each computational molecule (‘simulator’) represents
a very large number of real molecules

— Simulators move, reflect from boundaries, and collide with
each other so as to reproduce statistics of real molecules

— Flow field is found by averaging the (stationary) properties
of the simulators in each cell over many time steps

DSMC scales well on massively parallel computers @ﬁgt"-“ia.
— Essential for simulations in slip regime Laboratoies
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DSMC simulation parameters
— Tube radius: 10 um

— Tube length: 10 and 1 mm

* Length/radius = 1000 and 100,
long and short

— Accom: 1.00, 0.75, 0.50, 0.25

* Most gases/surfaces are ~0.8,
but helium/metal can be ~0.4

— Inlet pressure: 1-10,000 Pa
* Free-molecular to slip regime
*Kn=1atp=p, =316.4 Pa

— Qutlet pressure: (0.0-0.5) inlet

* 0.51is weak gradient;
0.0 is strong gradient

Mass flow rate uncertainty ~1%

Simulation Conditions

Quantity Symbol | Value

Boltzmann constant ky 1.380658 <107 J/K
Gas, interaction Ar, HS | Argon, hard-sphere
Mass, molecular m 6.63x107° kg
Temperature, wall T 273.15K

Viscosity u 2.117x107° Pa-s
Pressure, inlet P, 10°-10" Pa
Pressure, outlet P, (0-0.5) p,

Mean molecular speed c 380.6 m/s

Mean free path A 0.6328 um at 10* Pa
Radius, tube R 10 gm

Length, tube L 1 or 10 mm

Square side, plenum S 50 um
Accommodation a 1.00, 0.75, 0.50, 0.25
Pressure, Knudsen p; 316.4 Pa

Time step At 0.5 ns

Cell size, radial Ar 0.2 um

Cell size, axial Az L/500 = (10-100) Ar
Cell size, plenum As 1 gm

Molecules per cell Ny 30 (average)

Time step, normalized cAt/A <0.30

Cell size, normalized Ar/2 <0.32

Simulations take
~1 processor-year
on a massively
parallel computer
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Mass Flow Rate (kg/s)
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i Mass Flow Rate: Short Tube

Conditions
* L/R =100 (short)
* p./p, = 0.0 (strong)

Expression agrees well
with simulations

 All inlet pressures p;
« All accom. coeffs. a

Expected behavior is
observed in known limits

* FM at low pressures
* Slip at high pressures

Expression & simulations
have Knudsen minimum

» Accurate depth, breadth
* Reasonable g, by, by, b,
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Mass Flow Rate: Long Tube
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Normalized Mass Flow Rate

Normalized Mass Flow Rate
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ormalized Mass Flow Rate: Short Tube

Conditions
* L/R =100 (short)
* p./p, = 0.5 (strong)

Expression agrees well
with simulations

 All inlet pressures p,
* All accom. coeffs. a

Normalized quantities
facilitate comparison

« M/M_., free-molecular
* 1/Kng, = (P1 + P2)/2p,

Expression & simulations
have Knudsen minimum

» Accurate depth, breadth
* Reasonable g, by, by, b,

&)
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Normalized Mass Flow Rate

Normalized Mass Flow Rate
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ormalized Mass Flow Rate: Long Tube

Conditions
* L/R =1000 (long)
* p,/p; = 0.5 (weak)

Expression agrees well
with simulations

 All inlet pressures p,
* All accom. coeffs. a

Normalized quantities
facilitate comparison

« M/M_., free-molecular
* 1/Kng, = (P1 + P2)/2p,

Expression & simulations
have Knudsen minimum

» Accurate depth, breadth
* Reasonable g, by, by, b,
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ormalized Pressure Profiles: Short Tube

Conditions
* L/R =100 (short)
* p./p, = 0.0 (strong)

Expression agrees well
with simulations

 All inlet pressures p,
* All accom. coeffs. a

Normalized quantities
facilitate comparison

* Pressure: 0 < p/p, =1
* Position: 0 = z/L =1

Profiles have rather small
discontinuities

* At inlet and at outlet
*Increase as p; & a are

decreased
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Conditions
* L/R =1000 (long)
* p./p; = 0.5 (weak)

Expression agrees well
with simulations

 All inlet pressures p,
* All accom. coeffs. a

Normalized quantities
facilitate comparison

* Pressure: 0 < p/p, =1
* Position: 0 = z/L =1

Profiles have rather small

discontinuities
* At inlet and at outlet
*Increase as p; & a are

decreased
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} Ewart et al. (2006) Tube Experiments
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= Same values of g, by, by, b, used for all circular tubes
L0 - Values are unchanged from previous cases (no adjusting)
* Relative to diameter, this tube length is essentially infinite
10_15 A A R -"!. FEPTTTY B EPEPTPTY IR YT EE AT
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Inlet Pressure (Pa)

Mass flow rate measured for silica microscale tube
—~D=252pum,L=53mm, a=0.9,N,, T=296.5K, p,/p, = 0.2

Expression and simulations agree well with experiment
— Lowest experiment pressure is above Knudsen minimum

— Highest simulation pressure reaches experiment @ﬁ&’%ﬂﬁau
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} Ewart et al. (2007) Channel Experiments
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© //,
= y Channel-flow expression correlates experiment values well
13 3 * Derived for LxWxH rectangular channel just like for tube
7’ ,-" J g J
o * b, from Kennard infinite-length free-molecular flow
107" A R * b, =0.15 as before to match slip regime for most gases
10' 10° 10° 10* 10° 10°  +b,and e selected to match transition regime: L/W = 19.1

Inlet Pressure (Pa)

Mass flow rate measured for silicon microscale channel

— H,W,L =9.38, 492, 9390 um, a = 0.9, He, T = 295.5 K, p,/p; = 0.2
Expression and simulations agree with experiment

— 2D simulation overpredicts 3D experiment at low pressures

— b, and € in channel expression are fit to experiment @ﬁ&"iﬂﬁau
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Normalized Mass Flow Rate

Conclusions
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Expressions for mass flow rate & pressure profile developed

Expression agrees with simulations & experiments @

for iIsothermal steady flow in microscale tubes & channels

— Covers free-molecular, transition, slip, & continuum regimes
— Treats all accommodation coefficients & tube aspect ratios
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