

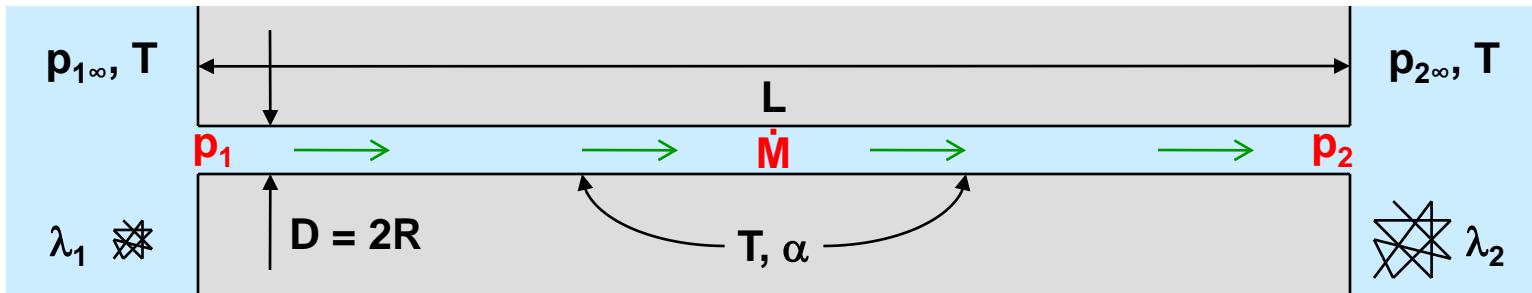
An Expression for the Gas Mass Flow Rate through a Tube from Free-Molecular to Continuum Conditions

John R. Torczynski and Michael A. Gallis

Engineering Sciences Center
Sandia National Laboratories
Albuquerque, New Mexico, USA

*American Physical Society Division of Fluid Dynamics DFD11
64th Annual Meeting; Baltimore, Maryland; November 20-22, 2011*

Gas Flow in a Microscale Tube



Investigate steady isothermal gas flow in microscale tube

- Tube is long and thin ($L \gg D$) with circular cross section
- Tube joins gas reservoirs at different pressures ($p_{1\infty} \geq p_{2\infty}$)
- Tube and reservoirs have same temperature (T)
- Molecules partially accommodate ($\alpha \leq 1$) when reflecting
- Flow speed \ll molecule speed, laminar, no turbulence

Determine the mass flow rate and the pressure profile

- General physics-based closed-form expressions
- Free-molecular to continuum (arbitrary mean free path λ)
- Theory and molecular-gas-dynamics simulations

Tube Mass Flow Rate – Classic Studies

M. Knudsen (1909)

- Interpolation between free-molecular and continuum flow for long tubes ($L \gg D$) and accommodation $\alpha = 1$
- Knudsen minimum: actual value < free-molecular value

M. Smoluchowski (1910)

- Extension of Knudsen's expression for long tubes ($L \gg D$) with accommodation $\alpha \leq 1$
- Free-molecular accommodation factor $(2 - \alpha)/\alpha$

P. Clausing (1932)

- Rigorous integral equation for free-molecular flow for arbitrary length with accommodation $\alpha = 1$

E. H. Kennard (1938)

- Free-molecular expression for arbitrary cross section for long tubes ($L \gg D$) with accommodation $\alpha \leq 1$

Tube Mass Flow Rate – Recent Studies

F. Sharipov and Collaborators (1990+)

- BGK-based analytical methods for long tubes ($L \gg D$) with accommodation $\alpha = 1$, and some simulations
- Extensive tables of mass flow rate for all regimes

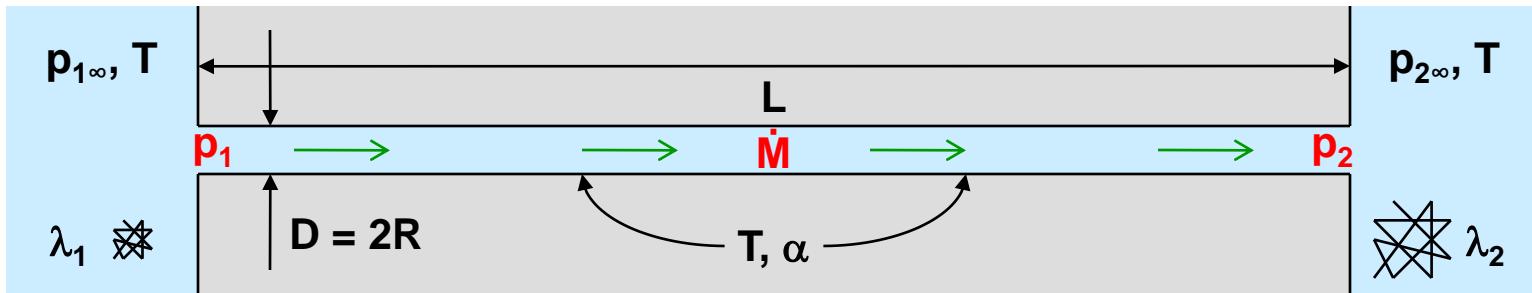
G. E. Karniadakis and A. Beskok (1990+)

- More accurate velocity profiles through better slip boundary conditions for Navier-Stokes equations
- More accurate mass flow rate into transition regime

M. A. Gallis, D. J. Rader, and J. R. Torczynski (2000+)

- Transport rate more important than related spatial field
- Construct boundary conditions to give accurate rates in all regimes when used with Navier-Stokes equations
- Works well for energy, momentum, & mass transport between parallel plates (Fourier, Couette, Fickian flow)

Tube-Flow Application



Ideal Gas	Boundary Condition at $r=R$	$b_0 = \frac{16}{3\pi}, \quad b_1 = 0.15, \quad b_2 = \frac{0.7\alpha}{2-\alpha}$ $\delta = \frac{4}{3}(2-\alpha), \quad \kappa = \frac{\delta-1}{\delta} \frac{\alpha L}{D}, \quad \varepsilon = \frac{1+\kappa}{\delta+\kappa}$	Navier-Stokes
Mean Free Path	Mass Flow Rate, Pressure Profile	$\varpi[p_A, p_B] = \frac{2-\alpha}{\alpha} \left\{ 1 + b_1 \alpha + (\varepsilon b_0 - 1 - b_1 \alpha) \frac{b_2 p_\lambda}{p_A - p_B} \ln \left[\frac{p_A + b_2 p_\lambda}{p_B + b_2 p_\lambda} \right] \right\}$ $F = \frac{3\pi D}{32L} \left(1 + \frac{16p_\lambda}{q_1 + q_2} \left(\varpi[p_1, p_2] - \frac{3}{4} \right) \right), \quad q = p + 6p_\lambda$	$\frac{dp}{dz} = \frac{\mu}{r} \frac{\partial}{\partial r} \left(r \frac{\partial u}{\partial r} \right)$
Knudsen Number	$\frac{\dot{M}_C}{\dot{M}} = 1 + \frac{8p_\lambda}{p_m} \varpi[p_1, p_2], \quad \dot{M}_C = \frac{D^4 p_m (p_1 - p_2)}{16\mu c^2 L}$ $\frac{z}{L} = \frac{p_1^2 - p^2 + 16p_\lambda(p_1 - p)}{p_1^2 - p_2^2 + 16p_\lambda(p_1 - p_2)\varpi[p_1, p_2]}$	$q_1 = \sqrt{\frac{(1+F)q_{1\infty}^2 + Fq_{2\infty}^2}{1+2F}}, \quad q_2 = \sqrt{\frac{(1+F)q_{2\infty}^2 + Fq_{1\infty}^2}{1+2F}}$	

Boundary condition yields closed-form expressions for mass flow rate and pressure profile covering all regimes

- Parameters b_0, b_1, b_2 , and ε are specified to ensure accuracy in free-molecular, slip, and transition regimes
- Mass flow rate has Knudsen minimum: $\varepsilon b_0 > 1 + b_1 \alpha$

Mass Flow Rate Has Correct Limits

Approximate Closed-Form Expression

$$\dot{M} = \dot{M}_C \left(1 + \frac{8p_\lambda}{p_m} \varpi [p_A, p_B] \right), \quad \varpi [p_A, p_B] = \frac{2-\alpha}{\alpha} \left\{ 1 + b_1 \alpha + (\varepsilon b_0 - 1 - b_1 \alpha) \frac{b_2 p_\lambda}{p_A - p_B} \ln \left[\frac{p_A + b_2 p_\lambda}{p_B + b_2 p_\lambda} \right] \right\}$$

Continuum	Slip	Free-Molecular
$\dot{M}_C = \frac{D^4 p_m (p_1 - p_2)}{16 \mu c^2 L}$	$\dot{M}_S = \dot{M}_C \left(1 + \frac{8p_\lambda}{p_m} \varpi_S \right), \quad \varpi_S = \frac{2-\alpha}{\alpha} (1 + b_1 \alpha)$	$\dot{M}_F = \dot{M}_C \left(\frac{8p_\lambda}{p_m} \varpi_F \right), \quad \varpi_F = \frac{2-\alpha}{\alpha} \varepsilon b_0$
Continuum Orifice	Free-Molecular Orifice	Free-Molecular Short Tube
$\dot{M}_{OC} = \frac{R^3 \rho_{m\infty}}{3\mu} (p_{1\infty} - p_{2\infty})$	$\dot{M}_{OF} = \pi R^2 \frac{mc}{4} (n_{1\infty} - n_{2\infty})$	$\dot{M}_{TF} = \dot{M}_{OF} / (1 + (\alpha L/D)), \quad \alpha L/D \ll 1$

Expression reproduces known limits correctly

Continuum

Not affected by $\varepsilon, b_0, b_1, b_2$

Slip

Determined by b_1

Free-Molecular

Determined by ε, b_0

Orifice/Short-Tube

Determined by ε, b_0

How Parameters Are Specified

Approximate Closed-Form Expression

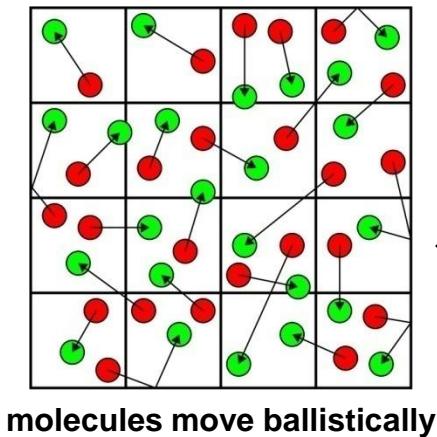
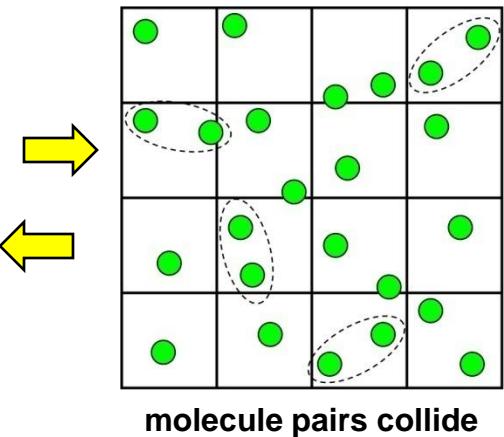
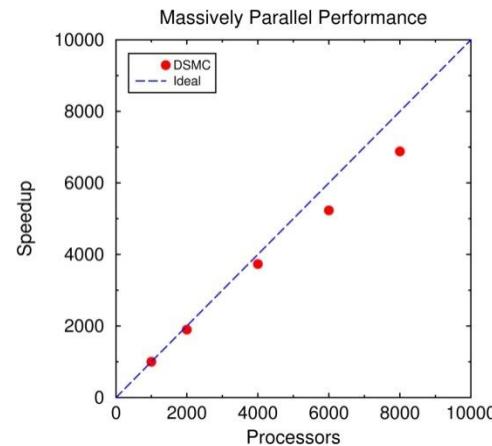
$$\dot{M} = \dot{M}_C \left(1 + \frac{8p_\lambda}{p_m} \varpi[p_1, p_2] \right), \quad \varpi[p_A, p_B] = \frac{2-\alpha}{\alpha} \left\{ 1 + b_1\alpha + (\varepsilon b_0 - 1 - b_1\alpha) \frac{b_2 p_\lambda}{p_A - p_B} \ln \left[\frac{p_A + b_2 p_\lambda}{p_B + b_2 p_\lambda} \right] \right\}$$

Mass flow rate and pressure profile contain 4 parameters

- Product εb_0 controls behavior in free-molecular regime
 - Choose $b_0 = 16/3\pi$ to match Knudsen-Smoluchowski formula
 - Choose ε to match Clausing-Kennard inlet-outlet resistances
- Parameter b_1 controls behavior in slip regime
 - Loyalka, Siewert, and coworkers suggested $(1 + b_1\alpha)$ form
 - Gallis and coworkers showed common gases have $b_1 \approx 0.15$
- Parameter b_2 controls behavior in transition regime
 - Cannot be determined from above known limits
 - May depend on accommodation coefficient

Determine b_2 using molecular-gas-dynamics simulations

Molecular-Gas-Dynamics Simulations



Direct Simulation Monte Carlo (DSMC) method of Bird uses computational molecules to simulate gas flows

- Each computational molecule ('simulator') represents a very large number of real molecules
- Simulators move, reflect from boundaries, and collide with each other so as to reproduce statistics of real molecules
- Flow field is found by averaging the (stationary) properties of the simulators in each cell over many time steps

DSMC scales well on massively parallel computers

- Essential for simulations in slip regime

Simulation Conditions

DSMC simulation parameters

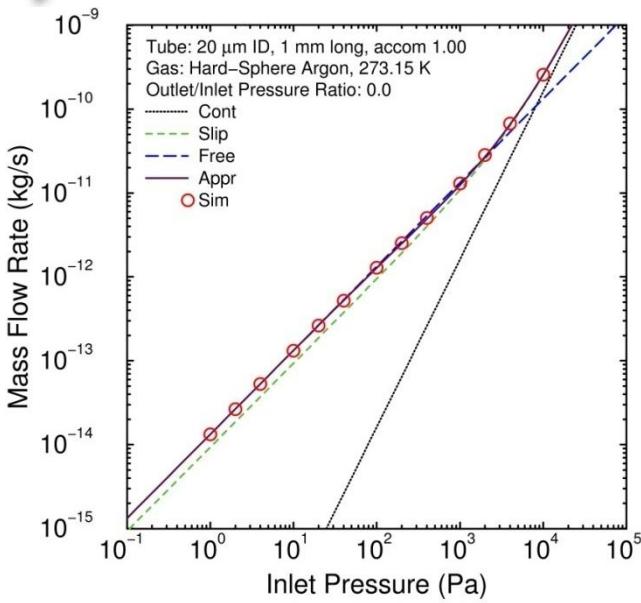
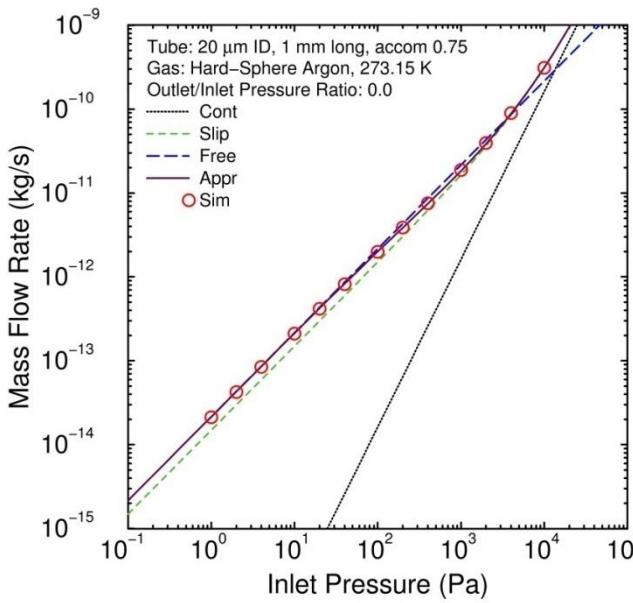
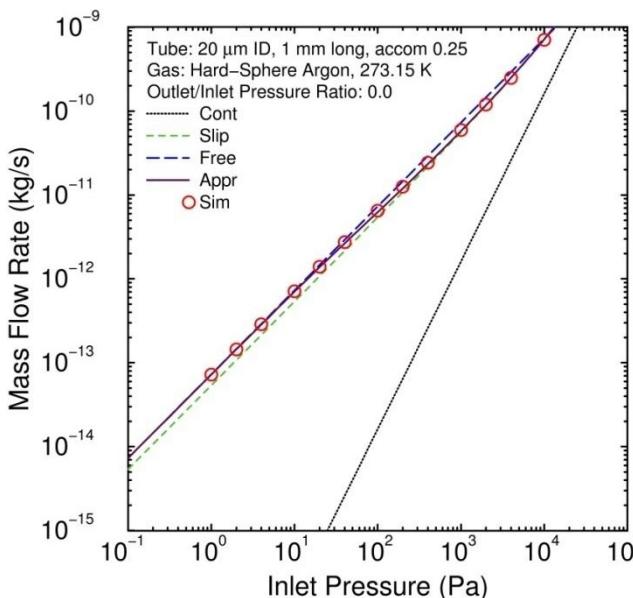
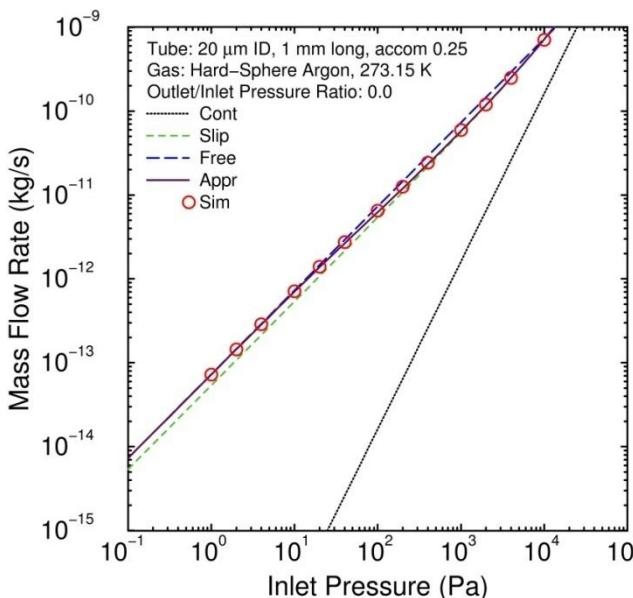
- Tube radius: 10 μm
- Tube length: 10 and 1 mm
 - Length/radius = 1000 and 100, **long and short**
- Accom: 1.00, 0.75, 0.50, 0.25
 - Most gases/surfaces are ~ 0.8 , but helium/metal can be ~ 0.4
- Inlet pressure: 1-10,000 Pa
 - Free-molecular to slip regime
 - $\text{Kn} = 1$ at $p = p_\lambda = 316.4 \text{ Pa}$
- Outlet pressure: (0.0-0.5) inlet
 - 0.5 is **weak** gradient;
 - 0.0 is **strong** gradient

Mass flow rate uncertainty ~1%

Quantity	Symbol	Value
Boltzmann constant	k_B	$1.380658 \times 10^{-23} \text{ J/K}$
Gas, interaction	Ar, HS	Argon, hard-sphere
Mass, molecular	m	$6.63 \times 10^{-26} \text{ kg}$
Temperature, wall	T	273.15 K
Viscosity	μ	$2.117 \times 10^{-5} \text{ Pa} \cdot \text{s}$
Pressure, inlet	p_1	10^0 - 10^4 Pa
Pressure, outlet	p_2	(0-0.5) p_1
Mean molecular speed	c	380.6 m/s
Mean free path	λ	$0.6328 \mu\text{m}$ at 10^4 Pa
Radius, tube	R	$10 \mu\text{m}$
Length, tube	L	1 or 10 mm
Square side, plenum	S	$50 \mu\text{m}$
Accommodation	α	1.00, 0.75, 0.50, 0.25
Pressure, Knudsen	p_λ	316.4 Pa
Time step	Δt	0.5 ns
Cell size, radial	Δr	$0.2 \mu\text{m}$
Cell size, axial	Δz	$L/500 = (10-100) \Delta r$
Cell size, plenum	Δs	$1 \mu\text{m}$
Molecules per cell	N_s	30 (average)
Time step, normalized	$c\Delta t/\lambda$	≤ 0.30
Cell size, normalized	$\Delta r/\lambda$	≤ 0.32

Simulations take
~1 processor-year
on a massively
parallel computer

Mass Flow Rate: Short Tube



Conditions

- $L/R = 100$ (short)
- $p_2/p_1 = 0.0$ (strong)

Expression agrees well with simulations

- All inlet pressures p_1
- All accom. coeffs. α

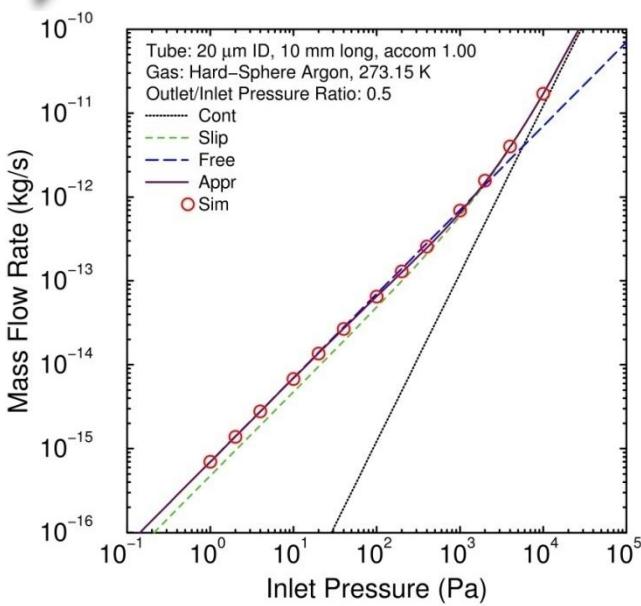
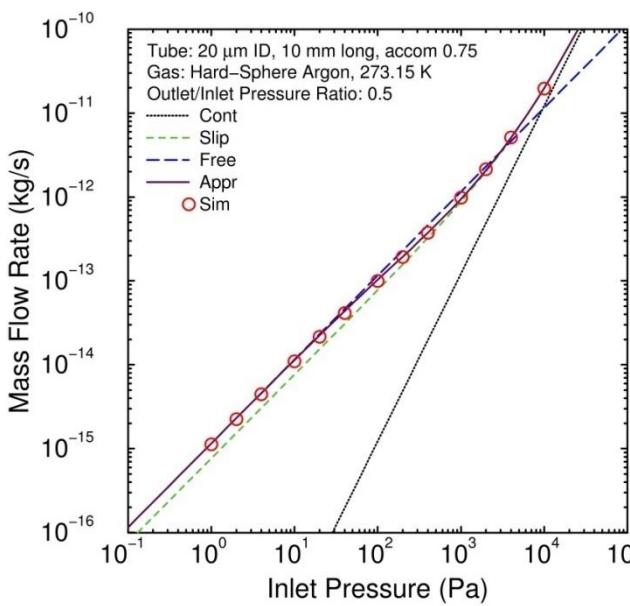
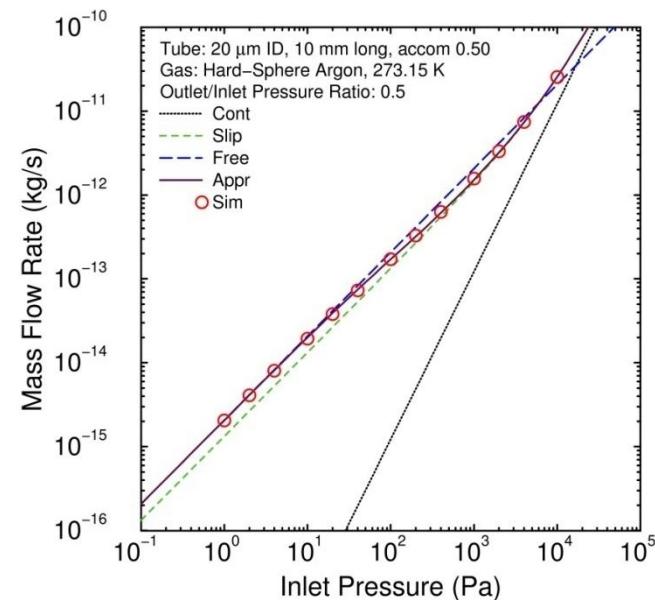
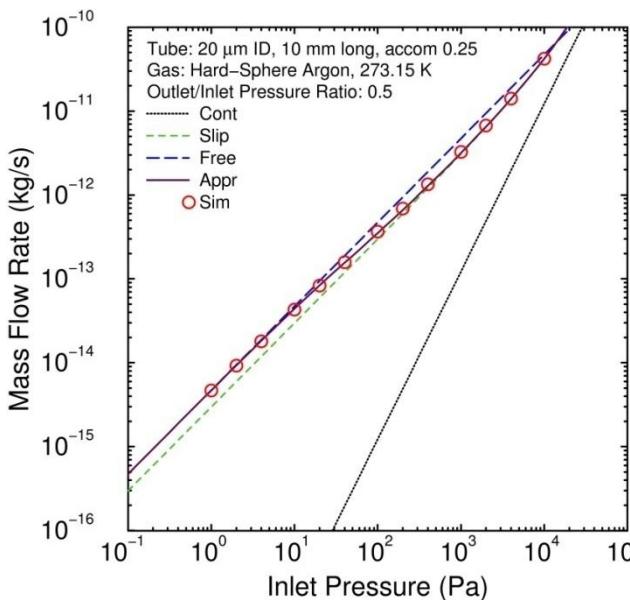
Expected behavior is observed in known limits

- FM at low pressures
- Slip at high pressures

Expression & simulations have Knudsen minimum

- Accurate depth, breadth
- Reasonable $\varepsilon, b_0, b_1, b_2$

Mass Flow Rate: Long Tube



Conditions

- $L/R = 1000$ (long)
- $p_2/p_1 = 0.5$ (weak)

Expression agrees well with simulations

- All inlet pressures p_1
- All accom. coeffs. α

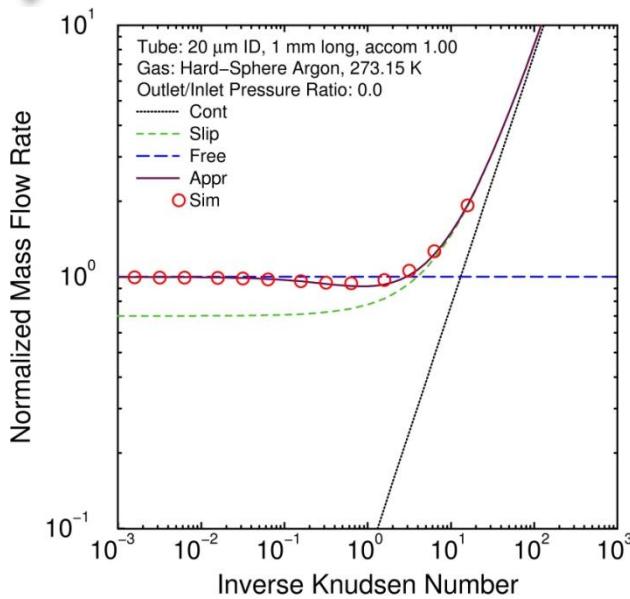
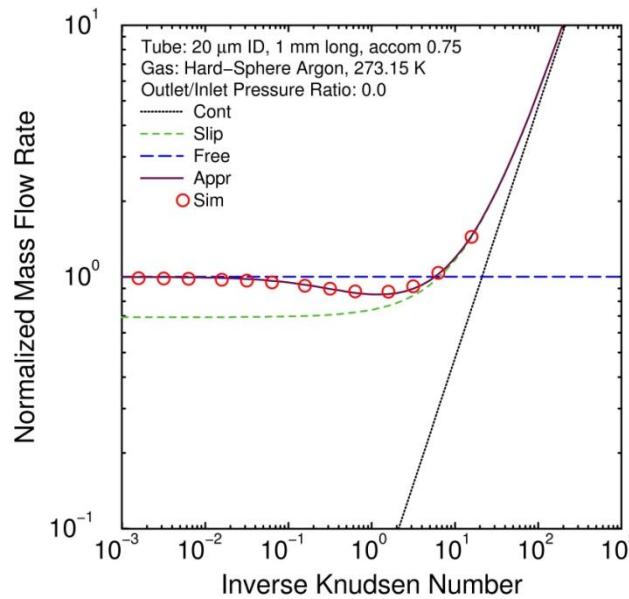
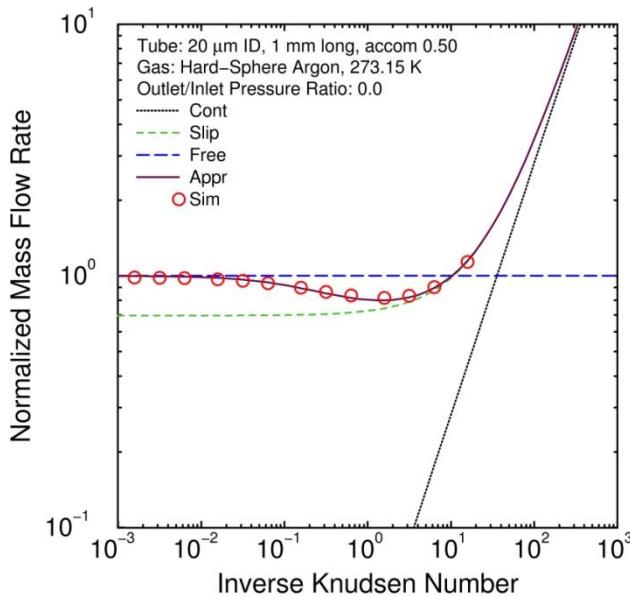
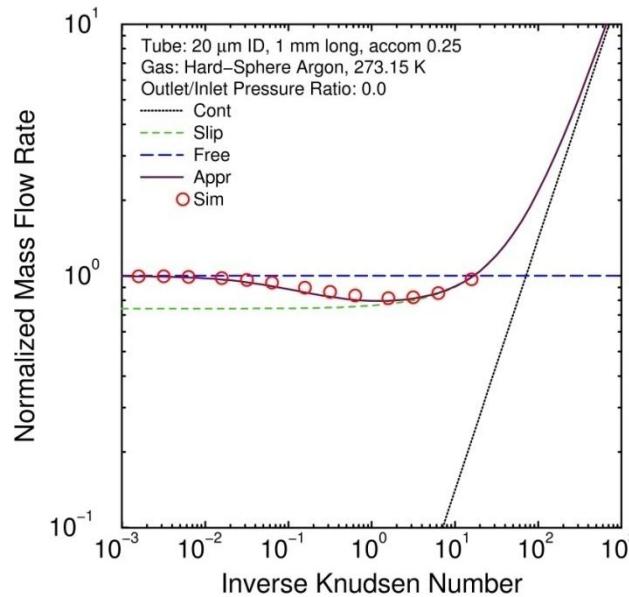
Expected behavior is observed in known limits

- FM at low pressures
- Slip at high pressures

Expression & simulations have Knudsen minimum

- Accurate depth, breadth
- Reasonable $\varepsilon, b_0, b_1, b_2$

Normalized Mass Flow Rate: Short Tube



Conditions

- $L/R = 100$ (short)
- $p_2/p_1 = 0.5$ (strong)

Expression agrees well with simulations

- All inlet pressures p_1
- All accom. coeffs. α

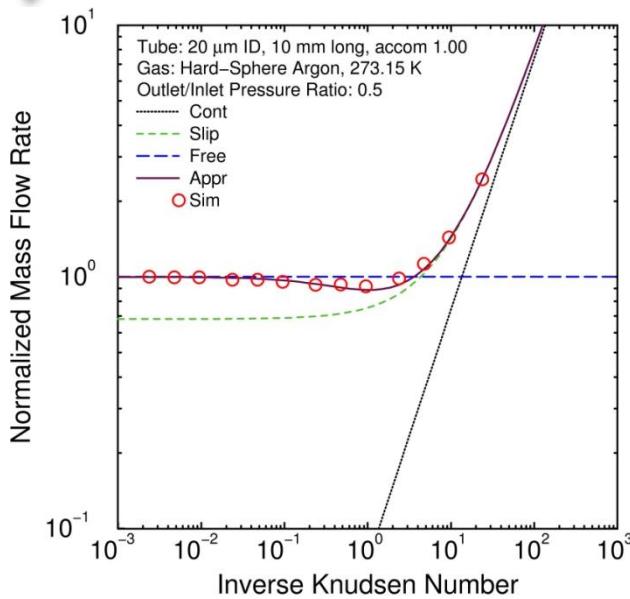
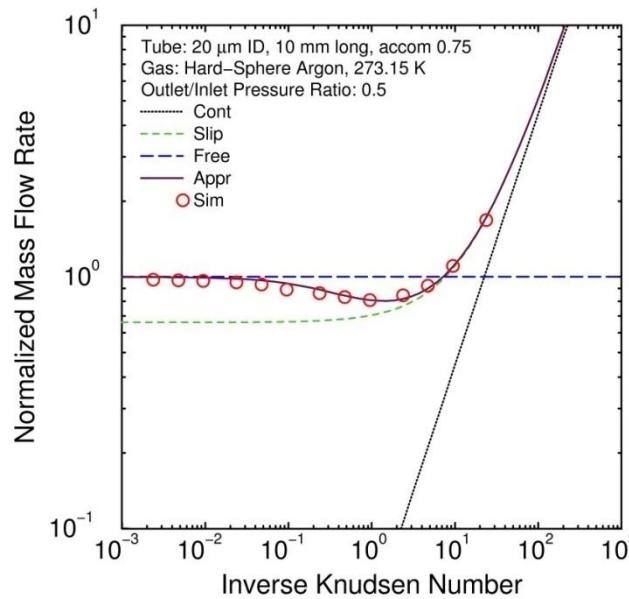
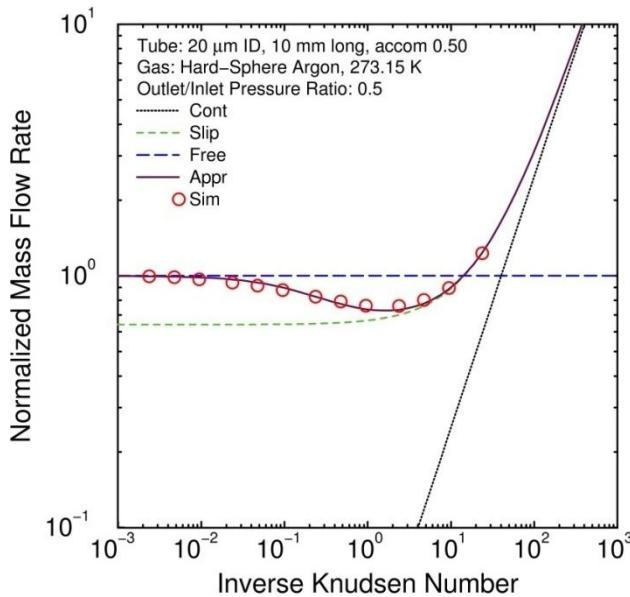
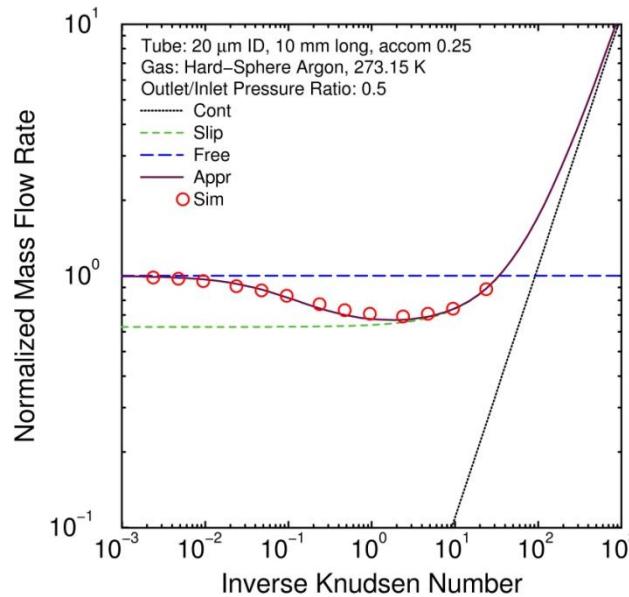
Normalized quantities facilitate comparison

- \dot{M}/\dot{M}_F , free-molecular
- $1/Kn_m = (p_1 + p_2)/2p_\lambda$

Expression & simulations have Knudsen minimum

- Accurate depth, breadth
- Reasonable $\varepsilon, b_0, b_1, b_2$

Normalized Mass Flow Rate: Long Tube



Conditions

- $L/R = 1000$ (long)
- $p_2/p_1 = 0.5$ (weak)

Expression agrees well with simulations

- All inlet pressures p_1
- All accom. coeffs. α

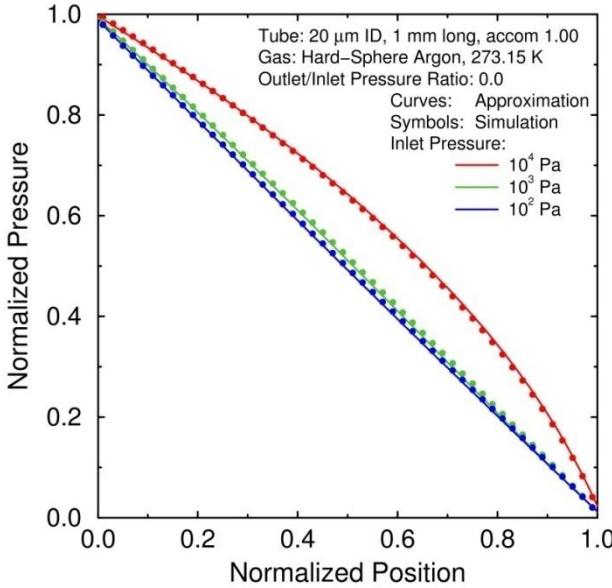
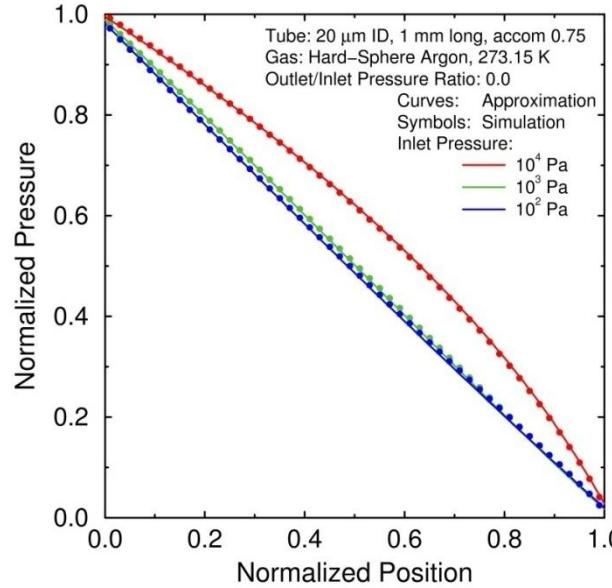
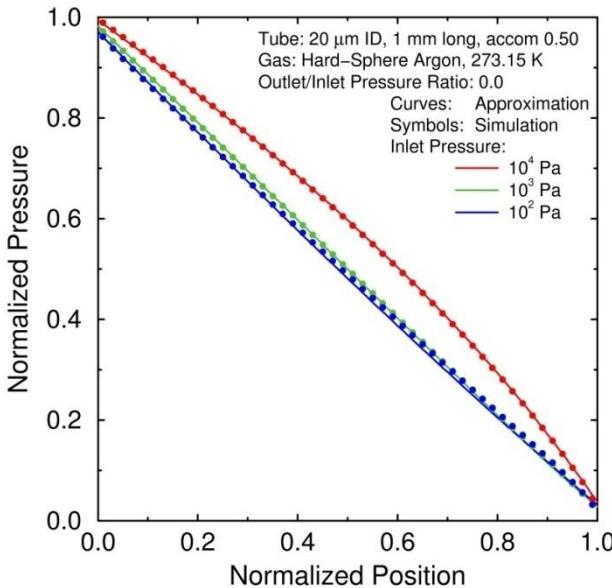
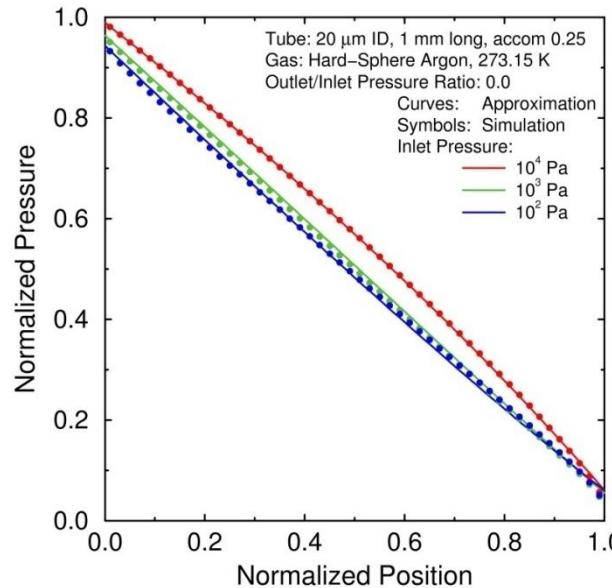
Normalized quantities facilitate comparison

- \dot{M}/\dot{M}_F , free-molecular
- $1/Kn_m = (p_1 + p_2)/2p_\lambda$

Expression & simulations have Knudsen minimum

- Accurate depth, breadth
- Reasonable $\varepsilon, b_0, b_1, b_2$

Normalized Pressure Profiles: Short Tube



Conditions

- $L/R = 100$ (short)
- $p_2/p_1 = 0.0$ (strong)

Expression agrees well with simulations

- All inlet pressures p_1
- All accom. coeffs. α

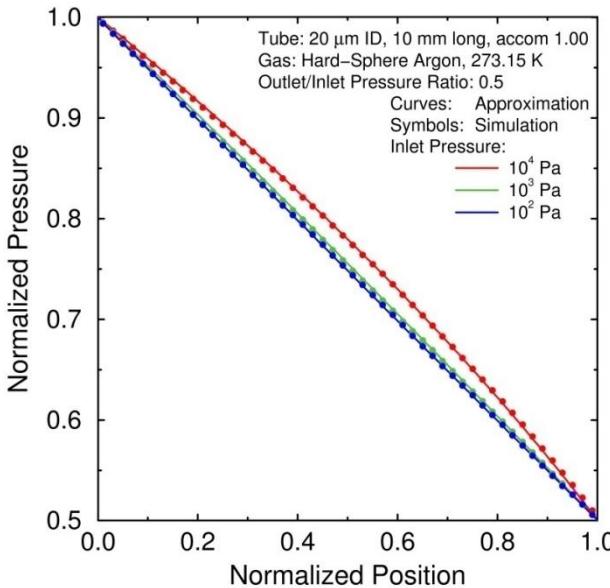
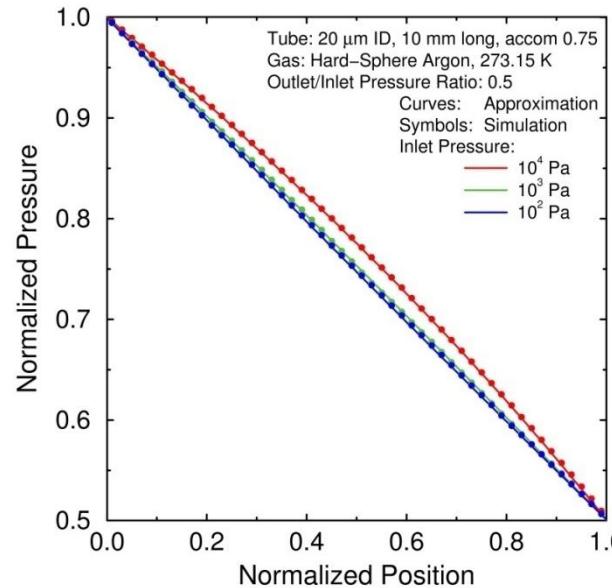
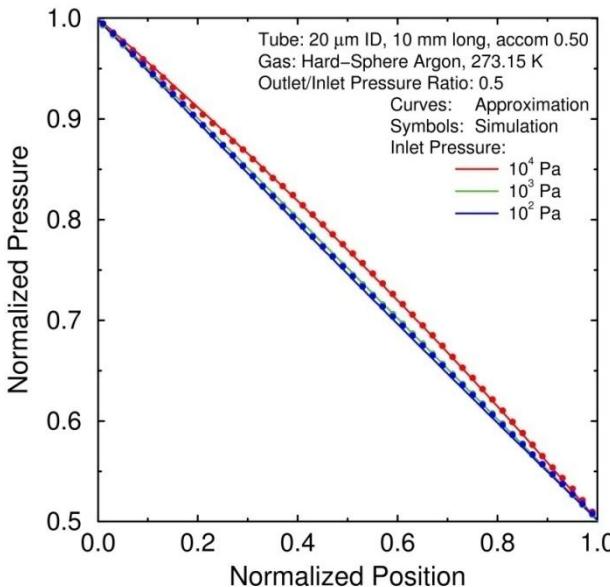
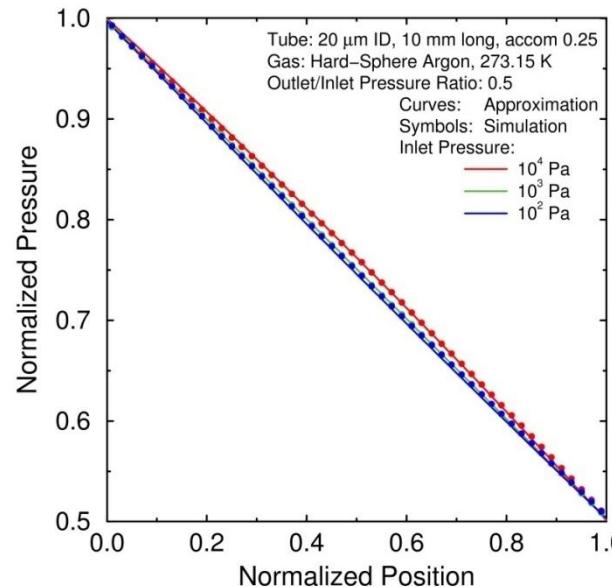
Normalized quantities facilitate comparison

- Pressure: $0 \leq p/p_1 \leq 1$
- Position: $0 \leq z/L \leq 1$

Profiles have rather small discontinuities

- At inlet and at outlet
- Increase as p_1 & α are decreased

Normalized Pressure Profiles: Long Tube



Conditions

- $L/R = 1000$ (long)
- $p_2/p_1 = 0.5$ (weak)

Expression agrees well with simulations

- All inlet pressures p_1
- All accom. coeffs. α

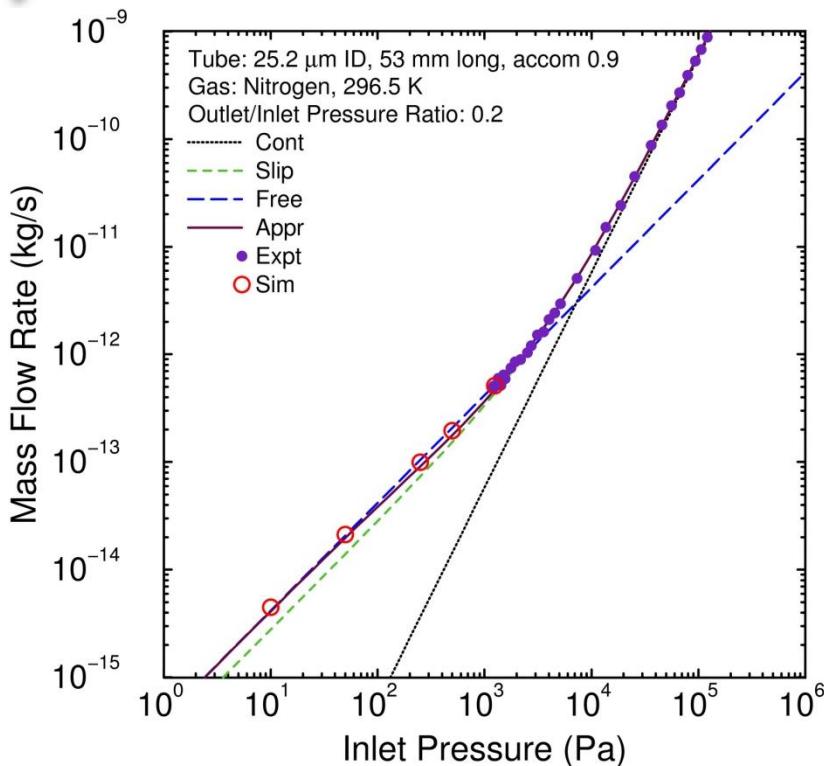
Normalized quantities facilitate comparison

- Pressure: $0 \leq p/p_1 \leq 1$
- Position: $0 \leq z/L \leq 1$

Profiles have rather small discontinuities

- At inlet and at outlet
- Increase as p_1 & α are decreased

Ewart et al. (2006) Tube Experiments



Tube Mass Flow Rate

$$\dot{M} = \dot{M}_C \left(1 + \frac{8p_\lambda}{p_m} \varpi[p_1, p_2] \right), \quad \dot{M}_C = \frac{D^4}{16} \frac{p_m(p_1 - p_2)}{\mu c^2 L}$$

$$\varpi[p_A, p_B] = \frac{2-\alpha}{\alpha} \left\{ 1 + b_1\alpha + (\varepsilon b_0 - 1 - b_1\alpha) \frac{b_2 p_\lambda}{p_A - p_B} \ln \left[\frac{p_A + b_2 p_\lambda}{p_B + b_2 p_\lambda} \right] \right\}$$

$$\rho = \frac{mp}{k_B T}, \quad \mu = \mu[T], \quad c = \sqrt{\frac{8k_B T}{\pi m}}, \quad \lambda = \frac{2\mu}{\rho c}, \quad p_\lambda = \frac{p\lambda}{D}, \quad p_m = \frac{p_1 + p_2}{2}, \quad \text{Kn}_m = \frac{p_\lambda}{p_m}$$

$$\frac{\alpha L}{D} > 10^3, \quad \varepsilon \rightarrow 1, \quad p_1 \rightarrow p_{1\infty}, \quad p_2 \rightarrow p_{2\infty}; \quad b_0 = \frac{16}{3\pi}, \quad b_1 = 0.15, \quad b_2 = \frac{0.7\alpha}{2-\alpha}$$

Same values of ε , b_0 , b_1 , b_2 used for all circular tubes

- Values are unchanged from previous cases (no adjusting)
- Relative to diameter, this tube length is essentially infinite

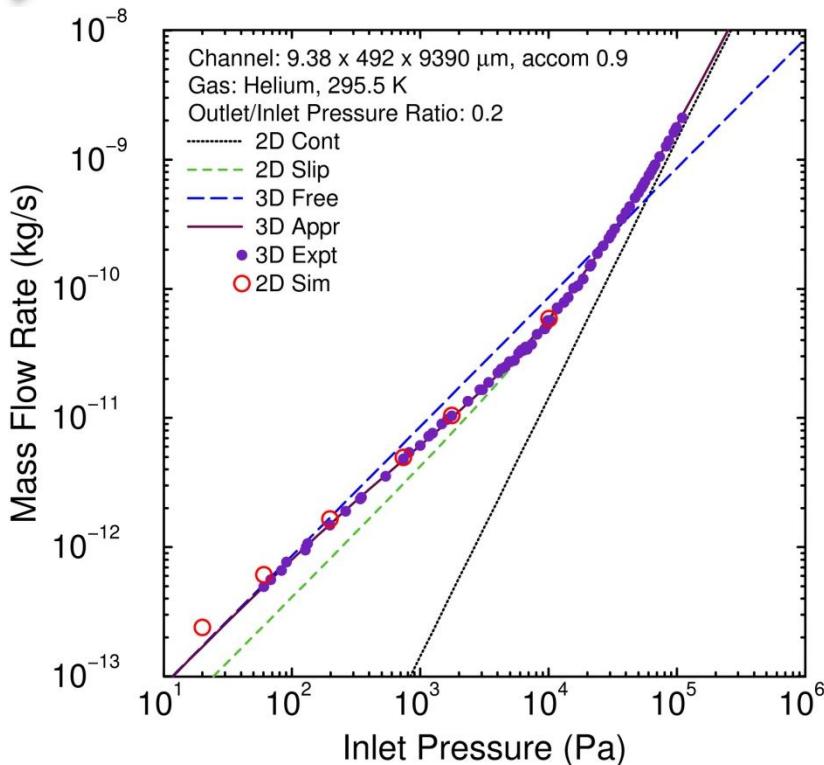
Mass flow rate measured for silica microscale tube

– $D = 25.2 \mu\text{m}$, $L = 53 \text{ mm}$, $\alpha = 0.9$, N_2 , $T = 296.5 \text{ K}$, $p_2/p_1 = 0.2$

Expression and simulations agree well with experiment

- Lowest experiment pressure is above Knudsen minimum
- Highest simulation pressure reaches experiment

Ewart et al. (2007) Channel Experiments



Channel Mass Flow Rate

$$\dot{M} = \dot{M}_c \left(1 + \frac{6p_\lambda}{p_m} \varpi[p_1, p_2] \right), \quad \dot{M}_c = \frac{2WH^3}{3\pi} \frac{p_m(p_1 - p_2)}{\mu c^2 L}$$

$$\varpi[p_A, p_B] = \frac{2-\alpha}{\alpha} \left\{ 1 + b_1\alpha + (\varepsilon b_0 - 1 - b_1\alpha) \frac{b_2 p_\lambda}{p_A - p_B} \ln \left[\frac{p_A + b_2 p_\lambda}{p_B + b_2 p_\lambda} \right] \right\}$$

$$\rho = \frac{mp}{k_B T}, \quad \mu = \mu[T], \quad c = \sqrt{\frac{8k_B T}{\pi m}}, \quad \lambda = \frac{2\mu}{\rho c}, \quad p_\lambda = \frac{p\lambda}{H}, \quad p_m = \frac{p_1 + p_2}{2}, \quad \text{Kn}_m = \frac{p_\lambda}{p_m}$$

$$b_0 = 3.28457, \quad b_1 = 0.15, \quad b_2 = 0.194, \quad \varepsilon = 0.725$$

Channel-flow expression correlates experiment values well

- Derived for $L \times W \times H$ rectangular channel just like for tube
- b_0 from Kennard infinite-length free-molecular flow
- $b_1 = 0.15$ as before to match slip regime for most gases
- b_2 and ε selected to match transition regime: $L/W = 19.1$

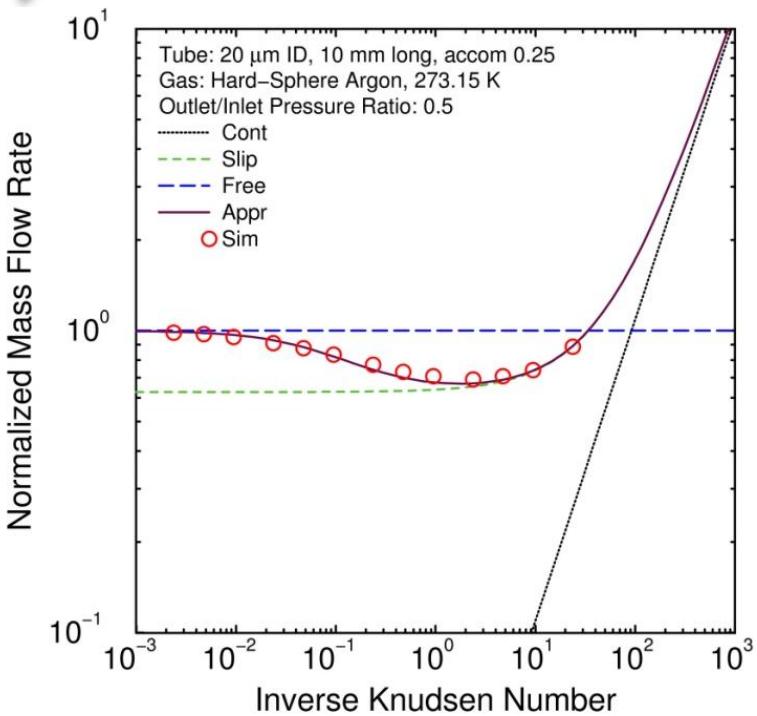
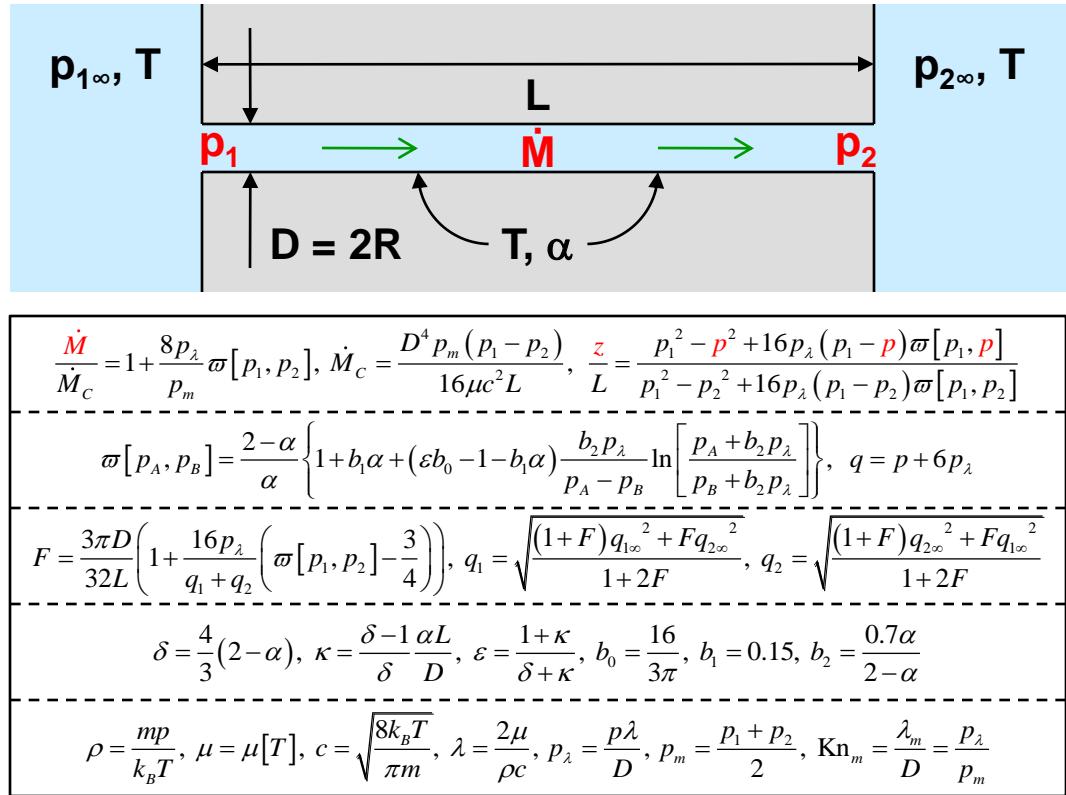
Mass flow rate measured for silicon microscale channel

– $H, W, L = 9.38, 492, 9390 \mu\text{m}$, $\alpha = 0.9$, He, $T = 295.5 \text{ K}$, $p_2/p_1 = 0.2$

Expression and simulations agree with experiment

- 2D simulation overpredicts 3D experiment at low pressures
- b_2 and ε in channel expression are fit to experiment

Conclusions



Expressions for mass flow rate & pressure profile developed for isothermal steady flow in microscale tubes & channels

- Covers free-molecular, transition, slip, & continuum regimes
- Treats all accommodation coefficients & tube aspect ratios

Expression agrees with simulations & experiments