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}J Piston in Liquid-Filled Cylinder

Motion of piston in closed cylinder
— Piston fills most of cylinder
— Spring supports it against gravity
— Viscous liquid fills open volume
— Cylinder is transiently accelerated
Develop ODE model for dynamics
— Consider cylinder reference frame
— Find liquid forces on piston
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— Quasi-steady approximation
General approach is simplified here

— Axisymmetric geometry

— Motion only along axis
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Rigorous Dynamics
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spring gravity/acceleration/buoyancy  liquid

Liquid force on piston in cylinder can be found rigorously
— Unsteady incompressible Navier-Stokes equations
— Cylinder reference frame: acceleration acts like gravity
— Subtract hydrostatic pressure: gravity/acceleration/buoyancy
— Piston position and velocity both vary in time

Liquid force is integral of stress tensor over piston surface
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} Quasi-Steady Approximation

Steady: Drag

i-u0=0
OX

u, =€,U, on piston

oL (uuy) =2
“ox 0 ax

u, =0 on cylinder

Oy :_poI"',UL(

I:LO

oy ou, '
OX  OX

|. & 6,-Ads=-5U,

Unsteady: Added Mass
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Find liquid-force expression for quasi-steady flow
— Closed container has time scale to achieve steady flow
— Piston position & velocity change little over this time scale

Decompose flow field into sum of two contributions
— Steady part (“0”, large) yields drag force

— Unsteady part (“1”, small) yields added-mass force Sandia
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%‘ Quasi-Steady Stokes Limit
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Expressions simplify considerably in Stokes limit
— Navier-Stokes: 3 CFD solutions for each piston velocity

— Stokes: only 1 CFD solution for all piston velocities

Drag coefficient & added mass depend on piston velocity

Drag coefficient & added mass are constants in this limit

Added mass caused by change in liquid kinetic energy
— Acceleration changes both piston & liquid kinetic energy

— Liquid acts like flywheel storing kinetic energy

)
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}i Piston-Cylinder Example

1 3
10 : 10
OValue OValue
Fit Fit
-~~~ Constant -~~~ Constant
Cylinder: 2.800 cm ID, 4.200 cm long — Cylinder: 2.800 cm ID, 4.200 cm long
Piston: 2.772 cm OD, 2.800 cm long ) Piston: 2.772 cm OD, 2.800 cm long
Hole: 0.280 cm ID, 2.800 cm long = Hole: 0.280 cm ID, 2.800 cm long
S Piston: 10000 kg/m’ E Piston: 10000 kg/m°
< Oil: 1000 kg/m®, 0.020 Pa*s > Oil: 1000 kg/m®, 0.020 Pa*s
» Passage Mass: 0.000516 kg St Passage Mass: 0.000516 kg
n Piston Mass: 0.167 kg < Piston Mass: 0.167 kg
‘E“ Added Mass: 2.350 kg (low-speed) @ Added Mass: 2.350 kg (low-speed)
o
O =
@ Stokes value ]
O T oO066600a (@)
< See =
@ Z
D <)
coco0eea0® . Stokes value
D
0 2
Pressure Speed 10° L - = » 10° L - = »
10 10 10 10 10 10 10 10
Piston Velocity (m/s) Piston Velocity (m/s)

2.8cm

Added mass is very large (Stokes below)
— Liquid mass: 0.000516 kg (in passages)
— Piston mass: 0.167 kg
— Added mass: 2.350 kg (~14 x piston, ~4500 x liquid)

At large piston velocities, added mass & drag coefficient
depart from corresponding Stokes values @Sandia

National _
Laboratories




_
p‘ Response to Constant Force
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// No added mass
[ ' (green curve)

Added mass (blue curve)
Simulation (red symbols)

Force Applied: 0.014 N = 1.427 gram-force

Cylinder: 2.800 cm ID, 4.200 cm lo

ng

Piston: 2.772 cm OD, 2.800 cm long

Hole: 0.280 cm ID, 2.800 cm long

Piston: 10000 kg/m’ average

Oil: 1000 kg/m’, 0.020 Pa*s

Passage Mass: 0.000516 kg

Piston Mass: 0.167 kg

Added Mass: 2.350 kg (low-speed
O Simulation

)

—— Approximation With Added Mass
-~~~ Approximation Without Added Mass

0.00

Time (s)

0.02 0.04 0.06 0.08

0.10

Compare to rigorous
Navier-Stokes simulation
— Apply constant force to
piston (no spring)
— Piston approaches
terminal velocity

— Added mass determines
time scale of response

Added mass is essential
for accurate dynamics
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Added mass produces accurate dynamics for all cases
— From linear (Stokes) to very nonlinear (Navier-Stokes)

1.0

Piston Velocity (mm/s)

Linear to Nonlinear Conditions

0.10 T T r .

0.08 i

0.04

0.02

0.00

Piston Velocity (mm/s)

0.06 |

Fapplies = 0.014 N

linear

Force Applied: 0.014 N = 1.427 gram-force
Cylinder: 2.800 cm ID, 4.200 cm long
Piston: 2.772 cm OD, 2.800 cm long
Hole: 0.280 cm ID, 2.800 cm long
Piston: 10000 kg/m’ average
Oil: 1000 kg/m’, 0.020 Pa*s
Passage Mass: 0.000516 kg
Piston Mass: 0.167 kg
Added Mass: 2.350 kg (low-speed)
O Simulation
—— Approximation With Added Mass
-~~~ Approximation Without Added Mass

0.00 0.02 0.04 0.06 0.08
Time (s)

0.10

10 T

100 I:applied
8 | nonlinear

Force Applied: 1.4 N = 142.7 gram-force
Cylinder: 2.800 cm ID, 4.200 cm long
Piston: 2.772 cm OD, 2.800 cm long
Hole: 0.280 cm ID, 2.800 cm long
Piston: 10000 kg/m’ average
Qil: 1000 kg/ma, 0.020 Pa*s
Passage Mass: 0.000516 kg
2 Piston Mass: 0.167 kg
Added Mass: 2.350 kg (low-speed)

O Simulation
—— Approximation With Added Mass
-~~~ Approximation Without Added Mass
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0.2

Piston Velocity (mm/s)

0.6

0.4

10 I:applied
almost linear

Force Applied: 0.14 N = 14.27 gram—force
Cylinder: 2.800 cm ID, 4.200 cm long
Piston: 2.772 cm OD, 2.800 cm long
Hole: 0.280 cm ID, 2.800 cm long
Piston: 10000 kg/m’ average
Oil: 1000 kg/ma, 0.020 Pa*s
Passage Mass: 0.000516 kg
Piston Mass: 0.167 kg
Added Mass: 2.350 kg (low-speed)
O Simulation
—— Approximation With Added Mass
-~~~ Approximation Without Added Mass
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Time (s)
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1000 Fyppiied
very nonlinear

<+— different time scale

Force Applied: 14 N = 1427 gram-force
Cylinder: 2.800 cm ID, 4.200 cm long
Piston: 2.772 cm OD, 2.800 cm long
Hole: 0.280 cm ID, 2.800 cm long
Piston: 10000 kg/m" average
Oil: 1000 kg/ma, 0.020 Pa*s
Passage Mass: 0.000516 kg
Piston Mass: 0.167 kg
Added Mass: 2.350 kg (low-speed)

O Simulation
—— Approximation With Added Mass
-~~~ Approximation Without Added Mass

0.02 0.04 0.06 0.08
Time (s)

0.10
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Viscous Added Mass

added mass drag coefficient

=U,, (MP +MA[UP])%:_ﬂD [UP]UP

_Mp(l_(pL/pP))(g"‘Ac)_Ks (ZP _Zs)

gravity/acceleration/buoyancy spring force

;21

Kinetic Energy
piston ~ cord
liquid ~ rotor

Observed when piston accelerates in liquid-filled cylinder
— In low-frequency limit, how liquid kinetic energy changes
Can be accurately computed for complicated shapes
— General approach based on standard CFD simulations
Large for pistons with thin passages in closed cylinders
— Relative to piston mass & liquid mass in piston passages
Dynamically significant during transient acceleration

— Must include it to agree with rigorous dynamics

Enables rich dynamic behavior during vibration
— Position dependence, interaction with gas pockets
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