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Piston in Liquid-Filled Cylinder 

Motion of piston in closed cylinder 

– Piston fills most of cylinder 

– Spring supports it against gravity 

– Viscous liquid fills open volume 

– Cylinder is transiently accelerated 

Develop ODE model for dynamics 

– Consider cylinder reference frame 

– Find liquid forces on piston 

– Quasi-steady approximation 

General approach is simplified here 

– Axisymmetric geometry 

– Motion only along axis 
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Rigorous Dynamics 

Liquid force on piston in cylinder can be found rigorously 

– Unsteady incompressible Navier-Stokes equations 

– Cylinder reference frame: acceleration acts like gravity 

– Subtract hydrostatic pressure: gravity/acceleration/buoyancy 

– Piston position and velocity both vary in time 

Liquid force is integral of stress tensor over piston surface 
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Quasi-Steady Approximation 

Find liquid-force expression for quasi-steady flow 

– Closed container has time scale to achieve steady flow 

– Piston position & velocity change little over this time scale 

Decompose flow field into sum of two contributions 

– Steady part (“0”, large) yields drag force  

– Unsteady part (“1”, small) yields added-mass force 
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Quasi-Steady Stokes Limit 

Expressions simplify considerably in Stokes limit 

– Navier-Stokes: 3 CFD solutions for each piston velocity 

• Drag coefficient & added mass depend on piston velocity 

– Stokes: only 1 CFD solution for all piston velocities 

• Drag coefficient & added mass are constants in this limit 

Added mass caused by change in liquid kinetic energy 

– Acceleration changes both piston & liquid kinetic energy 

– Liquid acts like flywheel storing kinetic energy 
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Piston-Cylinder Example 

Added mass is very large (Stokes below) 

– Liquid mass: 0.000516 kg (in passages) 

– Piston mass: 0.167 kg 

– Added mass: 2.350 kg (~14 × piston, ~4500 × liquid) 

At large piston velocities, added mass & drag coefficient 

depart from corresponding Stokes values 

Pressure Speed 

2.8 cm 

Stokes value 

Stokes value 



Response to Constant Force 

Compare to rigorous 

Navier-Stokes simulation 

– Apply constant force to 

piston (no spring) 

– Piston approaches 

terminal velocity 

– Added mass determines 

time scale of response 

Added mass is essential 

for accurate dynamics 
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Linear to Nonlinear Conditions 

Added mass produces accurate dynamics for all cases  

– From linear (Stokes) to very nonlinear (Navier-Stokes) 

Fapplied = 0.014 N 

linear 

10 Fapplied  

almost linear 

100 Fapplied  

nonlinear 

different time scale 

1000 Fapplied  

very nonlinear 



Viscous Added Mass 

Observed when piston accelerates in liquid-filled cylinder 

– In low-frequency limit, how liquid kinetic energy changes 

Can be accurately computed for complicated shapes 

– General approach based on standard CFD simulations 

Large for pistons with thin passages in closed cylinders 

– Relative to piston mass & liquid mass in piston passages 

Dynamically significant during transient acceleration 

– Must include it to agree with rigorous dynamics 

Enables rich dynamic behavior during vibration 

– Position dependence, interaction with gas pockets 
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