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Outline
* Motivation
* Results
— tunneling in the 5/2 state in quantum point
contacts

— long coherent 5/2 edge state
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why quantum computer?

Modern encryption is based on the assumption that it is
impossible to prime-factorize a large digit number within a
reasonable time frame.

Classical computer: A 200-digit number was prime-factorized
after 170 CPU years.

Peter Shor in 1994
algorithm for prime factorization using a quantum computer

A 600-digit number can be prime-factorized in 6 CPU days!

35th Annual Symposium on
Foundations of Computer Science,
Santa Fe, NM, Nov. 20-22, 1994.
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topological qguantum computation (TQC)

 utilizing non-Abelian quantum
particles. SClENTIF

* global operation thus immune from
local disturbance processes.

e error rate < 10739,
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elementary particles
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Abelian particles
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non-Abelian particles
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‘braiding non-Abelian particles

(Kitaev, 1998)




TQC

Braid
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Bonesteel et al, PRL 2005
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topological robustness
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non-Abelian FQHE
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Quasiparticles of a special

R, (he’)

fractional quantum Hall effect

state, the so-called 5/2 state,

In a 2D electron system are

mx

believed to be non-Abelian
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2D electron system
in modulation-doped

E, =216V 156V Gaas GaAs/AlGaAs
AlGaAs l heterostructures
AlGaAs GaAs
GaAs
AlGaAs
E1 - E0 >> kT 3

z-motion quantized

two-dimensional electrons




mOoBility in modulation-doped material vs year
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modern transistors

VLA Socorro, New Mexico, USA
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Magneto
R =V /I

Edwin Hall
(1879)

AMERICAN

Journal of Mathematics

PURE AND APPLIED.

1879,
P\ Epiton 1x Cxmizr: J.J. SYLVESTER.
1

On a New Action of the Magnet on Electric Currents.
By E. H. Havy, Fellow of the Jokns Hopkins University. '

SoMETIME during the last University year, while I was reading Max-
well's Electricity and Magnetism’ in connection with Professor Rowland's
Jectures, my attention was particularly attracted by the following passagze in
Vol. II, p. 1#4:

«]t must be carefully remembered, theot *
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| E. H. Hall's Data from Nov. 12th 1878
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quantized Hall effect
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quantized R,, R,,=(h/e?)/v

V, Landau level filling factor
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K. von Klitzing
(1985 Physics Nobel Laureate)

Gate Gate

oxide terminal
Drain O O Source
terminal terminal
Metal
P Type

Si-MOSFET
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edge state
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skipping motion
at the edge

impurity does NOT

destroy the
skipping mode
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~““fractional quantum Hall effect

D.C. Tsui and H.L. Stormer
(1998 Physics Nobel Laureates)
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the 5/2 FQHE state
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project goal

To establish scientific foundation for

topological quantum computation




facilities
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e
tunneling in guantum point contacts —

non-Abelian physics

non-Abelian FQHE
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extremely long coherent 5/2 edge channel

it is very important to know the coherence length of the 5/2
edge state, i.e., how long it can travel before losing its non-

abelian properties?

Experimental results:
5/2 edge state can travel at least 1Tmm.

(from non-local transport measurements)
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local measurement

h7

current
e —

N




current

non-local measurement

RXxXx

{/‘ edge state motion




4 e 52

u

45 50 [ 55 60
MAGNETIC FIELD [T]

well developed 5/2 state
coherent edge channel > 1mm
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future direction

NOT GATE

This proposed anyonic NOT gate is based on a fractional quantum Hall state involving anyons
having one-quarter the charge of an electron. Electrodes induce twoislands on which anyons
can be trapped. Current flows along the boundary but under the right conditions can also
tunnel across the narrow isthmuses.

1 Initialize the gate by putting two anyons [blue) on one island and then applying voltages to
transfer one anyon to the otherisland. This pair of anyons represents the qubitin its initial
state, which can be determined by measuring the current flow along the neighboring boundary.
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2 To flip the qubit (the NOT operation), apply voltages toinduce ene anyon from the boundary
(green) totunnel across the device.
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3 The passage of this anyon changes the phase relation of the two anyons so that the qubit's
value is flipped to the opposite state [red).
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summary

* Our tunneling results in QPCs support that the
5/2 state being a non-Abelian state

 The 5/2 edge state can travel at least 1 mm
before losing its coherence.




Thank You !
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