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why quantum computer?

Peter Shor

 

in 1994
algorithm for prime factorization using a quantum computer

A 600-digit number can be prime-factorized in 6 CPU days!

Modern encryption is based on the assumption that it is 
impossible to prime-factorize a large digit number within a 
reasonable time frame. 

Classical computer:  A 200-digit number was prime-factorized 
after 170 CPU years. 

35th Annual Symposium on 
Foundations of Computer Science, 
Santa Fe, NM, Nov. 20-22, 1994. 



topological quantum computation (TQC)

•
 

utilizing non‐Abelian quantum 
 particles. 

•
 

global operation thus immune from 
 local disturbance processes. 

•
 

error rate < 10‐30.



elementary particles
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fractional quantum Hall  effect



Abelian particles
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non‐Abelian particles
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braiding non‐Abelian particles

qubit 0 qubit 1

braiding = qubit

(Kitaev, 1998)



TQC

TimeTime

Bonesteel

 

et al, PRL 2005
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topological robustness

TimeTime



non‐Abelian FQHE

Quasiparticles of a special 

fractional quantum Hall effect 

state, the so-called 5/2 state, 

in a 2D electron system are 

believed to be non-Abelian 

particles!
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2D electron system 
 in modulation‐doped 

 GaAs/AlGaAs 
 heterostructures

1.5 eVEg ~ 2.1eV GaAs

AlGaAs

GaAs

AlGaAs

2DES

AlGaAs GaAs

E0
E1E1 -

 
E0 >> kB

 

T
z-motion quantized
two-dimensional electrons
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year



modern transistors

Source Drain

Gate
AlGaAs
GaAs

H(igh) E(lectron) M(obility) T(ransistor)

HEMT

VLA Socorro, New Mexico, USA

Cellular phone base station
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So ugly and yet so preciseSo ugly and yet so precise

Resistance quantized to a few parts in 108Resistance quantized to a few parts in 109



B ≠
 

0

skipping motion
at the edge

impurity does NOT
destroy the 
skipping mode 

edge state



fractional quantum Hall effect

D.C. Tsui and H.L. Stormer
(1998 Physics Nobel Laureates)
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the 5/2 FQHE state
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pairing

Condensate
CF

“Fermi liquid”
CF



project goal

To establish scientific foundation for 

topological quantum computation



facilities

MESA
Dilution 
Refrigerator

MBE

< 10 mK!



tunneling in quantum point contacts –
 non‐Abelian physics 

non-Abelian FQHE 

e* = e/4
g = 1/2



characterization of QPC



tunneling at 5/2 
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extremely long coherent 5/2 edge channel

it is very important to know the coherence length of the 5/2 
edge state, i.e., how long it can travel before losing its non-

 abelian properties?

Experimental results:
5/2 edge state can travel at least 1mm.

(from non-local transport measurements)



local measurement
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non‐local measurement
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well developed 5/2 state 
coherent edge channel  > 1mm

5/2



future direction

Das Sarma-Freedman-Nayak

 

non-Abelian qubit



summary

•
 

Our tunneling results in QPCs support that the 
 5/2 state being a non‐Abelian state

•
 

The 5/2 edge state can travel at least 1 mm 
 before losing its coherence. 



Thank You !
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