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Understanding the high temperature limits of THz QCLs

IQE Design Tool
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€ many materials (clothes, packaging materials) are transparent

€ chemical signatures (THz-fingerprints)
€ non-invasive, do not damage biological tissue
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Quantum Cascade Laser:
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"Engineered collection of quantum wells
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The path to room temperature....
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with discrete eigenstates"”

Kazarinov/Suris (1971)

(proposed amplification of light
through intersubband transitions)

4

Capasso et al. (1983)
(showed sequential resonant
tunneling through many quantum wells)

4

Faist et al. (1994)
(first QCL demonstration, 4 )

4

Koehler et al. (2002)

(first THz-QCL demonstration, 4.4 THz)
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But why?
Is there a

fundamental limit?
Thax S hv/kg?

Question from all potential sponsors:

“Can | get a room temperature THz QCL?”
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How do you ‘improve understanding’?
(and preferably in an efficient way)
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Maybe by comparing the different QCLs?
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= different depletion (BTC vs RP)
= different number of quantum wells (9 vs 3)
= different photon energy (12 vs 13 meV)

n ifferent wavefunctions.. :
different wavefunctio whole lot of ‘different’
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It would be really helpful,

if we could start with one difference first

e.g. the photon energy
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Start with one difference first

My

‘ Y mev
_N.j[f.ﬁ_

How do we do this?

‘Conventional way’ (trial and error) won’t work here.

We need a systematic approach.
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Wy,

YYY meV
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eigenstates can be
changed over
layer thickness
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How can we change
the photon energy???

20 nm GaAs ~ 50 nm GaAs
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External Control Panel: Layer Thicknesses [A]

This gives us a
number of 'knobs’:
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unit cell: repeat, repeat, repeat &R Sandia

ﬂ" National

Laboratories

2/6/12




ol (concept from Beere et al, 2007)

Uniform Thickness Transformation:
shrink or stretch whole structure

External:
Scaling Factor

External Control Panel: Layer Thicknesses [A]
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External:
Scaling Factor

+ 20%
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External:
Scaling Factor

+ 20%
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Scaling Factor

Scaling Factor
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changing ONE structure parameter
did not only change the photon energy
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Energy [meV]

Changing ONE structure parameter

changed ALL physical quantities !

REALLY? WHY? HOW?

| don't see it...

Well,
40| all the wavefunction shapes
all the separation energies
-80 | | | |
0 50 100 150 200 changed.
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And different wavefunction shapes means:

1 .
o diff. Coulomb matrix elements: Vi ° Tl / dz / dz’ ¢a(z)pp(2')de(2)Pa(z’) e 11>
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And different separation energies means:
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o diff. allowed transitions for cc-scattering: d(cax + b — €ckiq + €dx—q)

o diff. allowed transitions for cp-scattering: d(cax — €bktq =+ wro)
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Different wavefunction shapes

and different separation energies

=) very different carrier transport!

whole lot
of ‘different’
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How do we have to
change ALL structure
parameters
so that
only 'ONE' physical quantity
is changed???
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Evolutionary algorithm
coupled with

Schroedinger-Poisson-Solver:

find optimal configuration
for specific system
under specific constraints

2/6/12

Inverse Quantum Engineering (IQE)

Optimal Configuration: Layer Thicknesses [A]
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IQE Design Tool !!!

Optimal Configuration: Layer Thicknesses [A]
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Frequency Tuning with IQE
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Internal:
Change of Wi and E;j;

Optimal Configuration: Layer Thicknesses [A]

A B C D

E F G H
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Tuning the emission frequency of a THz QCL with IQE

1.69 THz 1.93 THz i 242 THz

N
$8 meV A

Energy [meV]
Energy [meV]
Energy [meV]
Energy [meV]

7 meV "~ 49 mev AL 10 meV. A

-2 N 1 -25 o N L L -25 PR N B T 1 Pl -25 o N L
20 40 60 80 100120 140 20 40 60 80 100 120 140 20 40 60 80 100 120 140 20 40 60 80 100 120 140
z[nm] z [nm] z [nm] z [nm]

2.66 THz M M 3.14 THz 3.38 THz

\

Al

Energy [meV]
Energy [meV]
Energy [meV]
Energy [meV]

)
¢11 meV. NAAL t12 meV. NAAL 13 meV NAAL 14 meV A

yava (R

5 L . A s . ) -25 . . ) , . . -25 L L J L . . . ‘ ) .
20 40 60 80 100 120 140 20 40 60 80 100 120 140 20 40 60 80 100 120 140 20 40 60 80 100 120 140
z[nm] z [nm] z[nm] z[nm]

u 3.63 THz 3.87 THz 4.11 THz i 4.35 THz

N

Energy [meV]
Energy [meV]
Energy [meV]
Energy [meV]

1 Y
15 meV NAAL ) 16 meV ANAA ¥ 17 meV NAAL

3

L ) 18 meV NAAL

25 R AU 1 25 A AL, T -25 P L -25 P— R
20 40 60 80 100 120 140 20 40 60 80 100 120 140 20 40 60 80 100 120 140 20 40 60 80 100 120 140
Z [nm] z [nm] z [nm] Z [nm]

“Inverse-Quantum-Engineering: a new methodology for designing
quantum cascade lasers”, IEEE JQE 46, 1414 (2010)
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And same wavefunction shapes means:

1 ; ;
o same Coulomb matrix elements: Vi*? Tyl / dz / dz’ ¢a(z) b (2 )pe(2)pa(z’) e ¥il===

@ same Froehlich matrix elements: gaP LA / dz ¢a(2)dp(z) €'9+7
Vi +at
And same separation energies means:

o same allowed transitions for cc-scattering: J(€ax + bk — €cktq — €dk'—q)

o same allowed transitions for cp-scattering: ([l — Lblitq £ h0LO)

ONE difference: photon energy (laser frequency!)




| Growth . .
Series of IQE-designed lasers
Fabrication .
- at 11 frequencies
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' Growth

Observed lasing at 7 frequencies
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IQE Design Tool !!!

Internal Control Panel D

Change of Wi and E;;

Optimal Configuration: Layer Thicknesses [A]
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But why?
Is there a

fundamental limit?
Thax S hv/kg?

Question from all potential sponsors:

“Can | get a room temperature THz QCL?”
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Tuning the emission frequency of a THz QCL with IQE
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“Inverse-Quantum-Engineering: a new methodology for designing
quantum cascade lasers”, IEEE JQE 46, 1414 (2010)

Energy [meV]

25 — A
20 40 60 80 100 120 140

4 3 (%) Sandia
@» { ﬁ\ﬁj | National

1.69 THz
to
4.6 THz

[

v 19 meV NAA

Z [nm]

e laboratories



| Growth 280

No room-temperature operation!

Fabrication
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“Index Tuning for Precise Frequency Selection of Terahertz Quantum Cascade Lasers”, IEEE
Photonics Technology Letters 23, 30 (2011)

2/6/12 “Optical bistability from domain formation in terahertz quantum cascade @ rh ﬁaaggir?al_
lasers”, IEEE JSTQE 17, 222 (2011) Laboratories
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Code

Needed:
Performance simulator to study 1/kT limit theoretically

2/6/12

1200 2500
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* Taken from: Appl. Phys. 42, 025101 (2009), PRB 81, 205311 (2010), JAP 103, 103113 (20

Variety of performance simulators described
in literature®
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o Status quo of Performance Simulators
? ? ? Literature results™:
I. rate equation model BILRA S e
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Taken from: Appl. Phys. 42, 025101 (2009), PRB 81, 205311 (2010), JAP 103, 103113 (20




Status quo~f Performance Simulators
Literature results*:

1200
— =~ Simulation
—— Measurement (1.2Q )
1000 = = =Measurement (1.2Q + 40 Q)
l. rate equatio 0

. (0 /’
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_% > " daio“E(t) + % > d
a#j aF#i

Sandia
8 B National
2/6/12 19 (200‘@ "1 Laboratories

* Taken from: Appl. Phys. 42, 025101 (2009), PRB 81, 205311 (2010), JAP 103, 103113




Needed: Performance simulator

"“‘

Code

without fit parameters !!!

Fully-microscopic, k-resolved,
quantum kinetic simulator
(for electrons and phonons):
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NeedediPerformance simulator

without fit parameters !!!
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Understanding the high temperature limits of THz QCLs
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Mﬁ kinetic performance simulator to investigate 1/kt
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Cannot “simply” simulate... can actually start understanding...



