SAND2020- 10762

SAND2020-AAAA

National
Printed September, 2020

Laboratories

SANDIA REPORT @ Sandia

TChem v2.0 - A Software Toolkit for the
Analysis of Complex Kinetic Models

Kyungjoo Kim, Oscar Diaz-Ibarra, Cosmin Safta, Habib N. Najm

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports @osti.gov

Online ordering: http://www.osti.gov/scitech
Auvailable to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders @ntis.gov

Online order: https://classic.ntis.gov/help/order-methods

NS

MNational Nyclear Security Admrinisiration

ACKNOWLEDGMENT

This work is supported as part of the Computational Chemical Sciences Program funded by the
U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences,
Geosciences and Biosciences Division. Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract DE-NA0003525.

CONTENTS

ul

ing

em

2.2. Building Libraries and Configuring TChem/.

2.2.1. Kokkos|

4. Thermodynamic Properties

4.7

Equation of State

4.3.

Gas-Phase Species Properties

44.

Examples

45.

Surface Species Properties

224, TCheml

3. Input Files

emistry

5.1.2. Concentration of the “Third-Body™],

5.1.3. Pressure-dependent Reactions]ot iiinenennn..

5.1.5. Example

5.2. Surface Chemistry

5.2.2. Sticking Coefficients

5.2.3. Note on Units for surface productionratescoivuvenon..

5.2.4. Example

6. Reactors

6.1.

Time Integrator

6.1.1.

Timestep Adaptivity|

6.1.2.

Interface to Time Integrator

11
11
12
12
12
13
13

14

16
16
17
17
18
18

20
20
20
21
21
23
23
23
24
24
23
25

6.2. Homogenous Batch Reactors. i

unning the gnition UtLIEY| oo

K)Z 3. lgmtlon Delay [ime Parameter Stuay for lsoUctana

6.3. Plug Flow Reactor (PFR) Problem with Gas and Surfaces Reactiong

llIll’llIlgt e Plug Flow Reactor wit urface Reactions Utlity

7. Application Programming Interface

7.1. Thermodynamic Properties

7.1.1. SpecificHeatCapacityPerMass,

/.1.2. EnthalpyMass|.
/.1.3. InternalEnergyMass
/.1.4. EntropyMass

8. Summary

References)

LIST OF FIGURES

Figure 4-1. Specific enthalpy % and heat capacity ¢, for a mixture of 53 species (the set of |

\ species in the GRI-Mech v3.0 model).. 19
igure 6-1. Left frame: Temperature an 4, Oy, ass Fractions; Right frame: Tem-
\ perature and OH, H, H2 Mass Fractionsoiiiiiiiinenennn... 37

Figure 6-2. Ignition delay times [s] at P=1 atm for several CHy/air equivalence ratio ¢ and |
\ initial temperature values. Results are based on the GRI-Mech v3.0 kinetic model] 38
Figure 6-3. Ignition delay times [s] at 10atm (left frame) and 16atm (right frame) for several \
\ equivalence ratio (vertical axes) and temperature (horizontal axes) values for \

iSO- NE/AIE MIXEUTES.). . . oo vttt e et et e e e e 39
Figure 6-4. Ignition delay times [s] at 34atm (left frame) and 45atm (right frame) for several \
\ equivalence ratio (vertical axes) and temperature (horizontal axes) values for \

1S0-Octane/air MIXIUIES.). « . . o\ vttt ettt 40
Figure 6-5. Gas Temperature (left axis), velocity and density (both on right axis) along the \
\ BPHIR L o v s s s e coimmmmmmmmsns s b s s st mmnmmsm s s 8 a6 hoem o mw s 8 e s 43
Figure 6-6. Gas-phase species mass fractions and surface species site fractions. 44
Figure 6-7. Temperature, gas-phase species mass fractions, and surface species site frac- |
\ tions for the example parametric study.c it 47
Figure 6-8. Site fractions for X (empty space), OX and COX. We start this simulation with \
\ anempty surface (X = 1) ...t e 48

LIST OF TABLES

Table 5-1. Gas-phase reaction tYPeS. . .. oo vttt et et et et e e 20
lable 5-2. Expressions for computing Fi.oouiiiiiin it ie e, 22

1. INTRODUCTION

TChem is an open source software library for solving complex computational chemistry problems

and analyzing detailed chemical kinetic models. The software provides support for
complex kinetic models for gas-phase and surface chemistry,

thermodynamic properties based on NASA polynomials,

species production/consumption rates,

stable time integrator for solving stiff time ordinary differential equations,

reactor models such as homogenous gas-phase ignition (with analytical Jacobian matrices),
continuously stirred tank reactor, plug-flow reactor.

This toolkit builds upon earlier versions that were written in C and featured tools for gas-phase
chemistry only. The current version of the software was completely refactored in C++, uses an
object-oriented programming model, and adopts Kokkos [2, 6] as its portability layer to make it
ready for the next generation computing architectures i.e., multi/many core computing platforms
with GPU accelerators. We have expanded the range of kinetic models to include surface
chemistry and have added examples pertaining to Continuously Stirred Tank Reactors (CSTR)
and Plug Flow Reactor (PFR) models to complement the homogenous ignition examples present
in the earlier versions. To exploit the massive parallelism available from modern computing
platforms, the current software interface is designed to evaluate samples in parallel, which
enables large scale parametric studies, e.g. for sensitivity analysis and model calibration.

1.1. Nomenclature

In the table below, ro stands for reaction order, for the forward and reverse paths, respectively.

Notation Description Units
Nspec number of species -
Nivee number of gas-phase species -
N number of surface species -
Nspec number of surface species in phase n -
Nyzge number of reactions -
P gas-phase density kg/m?
P thermodynamic pressure Pa
T temperature K
Cp mixture heat capacity at constant pressure J/(K.kmol)
Cox for species k J/(K.kmol)
Cp specific J/(K.kg)

C .k
H
H
hyp
h bk
S
Sk
A
Sk
G
Gy
8
8k
Yy
Xk
Z
z"
Xy
r,
oy (n)
W
Wi
R
ki
kri
qi
Yi
Wy
Sk

specific, for species k
mixture molar enthalpy

for species k

specific

specific, for species k
mixture molar entropy

for species k

specific

specific, for species k
Gibbs free energy for the mixture

for species k

specific

specific, for species k
mass fraction of species k
mole fraction of species k
site fraction of species k

for species k in phase n
molar concentration of species k
surface site density of phase n

site occupancy by species k in phase n

mixture molecular weight
for species k
universal gas constant

forward rate constant of reaction i

reverse rate constant of reaction i
rate of progress of reaction i

sticking coefficient for reaction i
molar production rate of species k

J/I(K.kg)
J/kmol
J/kmol
J/kg

J/kg
J/(kmol.K)
J/(K.kmol)
J/(K.kg)
J/(K.kg)
J/kmol
J/kmol
J/kg

kmol/m?
kmol/m?

kg/kmol
kg/kmol
J/(kmol.K)

(kmol/m?3)1—70)
S
(kmol/m?)(1-70)

S
kmol/(m3.s)
(kmol/m?)1—70)

S
kmol/(m3.s)

surface molar production rate of species k kmol/(m?.s)

10

2. BUILDING TCHEM

TChem is designed and implemented using Kokkos (a performance portable parallel
programming model) and it requires Kokkos and KokkosKernels. For testing, we use the GTEST
infrastructure. Additionally, it can use OpenBLAS or Intel MKL (more precisely we use CBLAS
and LAPACK interface from those libraries).

For convenience, we explain how to build TChem using the following set of environment
variables that users can modify according to their working environments.

/// repositories

export TCHEM_REPOSITORY_PATH=/where/you/clone/tchem/git/repo

export KOKKOS_REPOSITORY_PATH=/where/you/clone/kokkos/git/repo

export KOKKOSKERNELS_REPOSITORY_PATH=/where/you/clone/kokkoskernels/git/repo
export GTEST_REPOSITORY_PATH=/where/you/clone/gtest/git/repo

/// build directories

export TCHEM_BUILD_PATH=/where/you/build/tchem

export KOKKOS_BUILD_PATH=/where/you/build/kokkos

export KOKKOSKERNELS_BUILD_PATH=/where/you/build/kokkoskernels
export GTEST_BUILD_PATH=/where/you/build/gtest

/// install directories

export TCHEM_INSTALL_PATH=/where/you/install/tchem

export KOKKOS_INSTALL_PATH=/where/you/install/kokkos

export KOKKOSKERNELS_INSTALL_PATH=/where/you/install/kokkoskernels
export GTEST_INSTALL_PATH=/where/you/install/gtest

export OPENBLAS_INSTALL_PATH=/where/you/install/openblas

export LAPACKE_INSTALL_PATH=/where/you/install/lapacke

2.1. Download Libraries

Clone Kokkos, KokkosKernels and TChem repositories. Note that we use the develop branch of
Kokkos and KokkosKernels.

git clone https://path.to.tchem/TChem ${TCHEM_REPOSITORY_PATH}

git clone https://github.com/kokkos/kokkos.git ${KOKKOS_REPOSITORY_PATH}

cd ${KOKKOS_REPOSITORY_PATH}; git checkout -- track origin/develop

git clone https://github.com/kokkos/kokkos—kernels.git ${KOKKOSKERNELS_REPOSITORY_PATH}
cd ${KOKKOSKERNELS_REPOSITORY_PATH}; git checkout --track origin/develop

git clone https://github.com/google/googletest.git ${GTEST_REPOSITORY_PATH}

Here, we compile and install the TPLs separately; TChem will then be built against these TPLs.
11

2.2 Building Libraries and Configuring TChem

2.2.1. Kokkos

The example below builds Kokkos on Intel Sandybridge architectures and installs it to
S {KOKKOS_INSTALIL_PATH}. For more details, see [2].

cd ${KOKKOS_BUILD_PATH}
cmake \
-D CMAKE_INSTALL_PREFIX="${KOKKOS_INSTALL_PATH}" \
-D CMAKE_CXX_COMPILER="S${CXX}" \
-D Kokkos_ENABLE_SERIAL=ON \
-D Kokkos_ENABLE_OPENMP=ON \
-D Kokkos_ENABLE_DEPRECATED_CODE=0OFF \
-D Kokkos_ARCH_SNB=ON \
$ {KOKKOS_REPOSITORY_PATH}
make -j install

To compile for NVIDIA GPUs, one can customize the following cmake script. Note that, for this
case, we use the nvcc_wrapper compiler. The architecture flag indicates that the host
architecture is Intel SandyBridge and the GPU architecture is a Volta 70 generation. With Kokkos
3.1, the CUDA architecture flag is optional (the script automatically detects the correct CUDA
arch flag).

cd ${KOKKOS_BUILD_PATH}
cmake \
-D CMAKE_INSTALL_PREFIX="${KOKKOS_INSTALL_PATH}" \
-D CMAKE_CXX_COMPILER="${KOKKOS_REPOSITORY_PATH}/bin/nvcc_wrapper" \
-D Kokkos_ENABLE_SERIAL=ON \
-D Kokkos_ENABLE_OPENMP=ON \
-D Kokkos_ENABLE_CUDA:BOOL=ON \
-D Kokkos_ENABLE_CUDA_UVM:BOOL=0OFF \
-D Kokkos_ENABLE_CUDA_LAMBDA:BOOL=ON \
-D Kokkos_ENABLE_DEPRECATED_CODE=OFF \
-D Kokkos_ARCH_VOLTA70=ON \
-D Kokkos_ARCH_SNB=ON \
$ {KOKKOS_REPOSITORY_PATH}
make —-j install

2.2.2. KokkosKernels

Compiling KokkosKernels follows the Kokkos configuration information now available under
${KOKKOS_INSTALL_PATH}. Please note that, on Max OSX, “1ib64” will need to be replaced
by “lib”.
cd ${KOKKOSKERNELS_BUILD_PATH}
cmake \

-D CMAKE_INSTALL_PREFIX="${KOKKOSKERNELS_INSTALL_PATH}" \

-D CMAKE_CXX_COMPILER="${CXX}" \

-D CMAKE_CXX_FLAGS="-g" \

-D KokkosKernels_INST_LAYOUTRIGHT:BOOL=ON \

-D Kokkos_DIR="${KOKKOS_INSTALL_PATH}/1ib64/cmake/Kokkos" \

-D KokkosKernels_ENABLE_TPL_LAPACKE:BOOL=0N \

-D KokkosKernels_ENABLE_TPL_CBLAS:BOOL=ON \

-D CBLAS_INCLUDE_DIRS="/opt/local/include" \

$ {KOKKOSKERNELS_REPOSITORY_PATH}
make —-j install

12

The CXX environment variable needs to be set to the C++ compiler of choice. For GPUs, the
compiler is changed to nvcc_wrapper by adding

-D CMAKE_CXX_COMPILER="${KOKKOS_INSTALL_PATH}/bin/nvcc_wrapper"

2.2.3. GTEST

We use GTEST [1] as our testing infrastructure. GTEST can be configured and installed with the
following cmake script.

cd ${GTEST_BUILD_PATH}

cmake \
-D CMAKE_INSTALL_PREFIX="${GTEST_INSTALL_PATH}" \
-D CMAKE_CXX_COMPILER="S${CXX}" \
S{GTEST_REPOSITORY_PATH}

make —-j install

2.2.4. TChem

The following example cmake script compiles TChem on for host computations, linking with the
libraries described in the above e.g., kokkos, kokkoskernels, gtest and openblas. The openblas
and lapacke libraries are required on a host device, providing an optimized version of dense linear
algebra library. With an Intel compiler, one can replace these libraries with Intel MKL by adding
an option TCHEM_ENABLE_MKL=O0N instead of using openblas and lapacke. On Mac OSX, we
use the openblas library managed by macports. This version of openblas has different header
names and we need to distinguish this version of the code from others that are typically used on
Linux distributions. To discern the two version of the code, cmake looks for
cblas_openblas.h to check whether the installed version is from macports. This mechanism
can be broken if macports openblas is changed later. The macports openblas version includes the
lapacke interface and one can remove LAPACKE_INSTALL_PATH from the configure script.

cd ${TCHEM_BUILD_PATH}
cmake \
-D CMAKE_INSTALL_PREFIX="${TCHEM_ INSTALL_PATH}" \
—-D CMAKE_CXX_COMPILER="${CXX}" \
-D CMAKE_BUILD_TYPE=RELEASE \
-D TCHEM_ENABLE_VERBOSE=0OFF \
-D TCHEM_ENABLE_KOKKOS=0ON \
-D TCHEM_ENABLE_KOKKOSKERNELS=ON \
-D TCHEM_ENABLE_TEST=ON \
-D TCHEM_ENABLE_EXAMPLE=ON \
—-D KOKKOS_INSTALL_PATH="${KOKKOS_INSTALL_PATH}" \
-D KOKKOSKERNELS_INSTALL_PATH="${KOKKOSKERNELS_INSTALL_PATH}" \
-D OPENBLAS_INSTALL_PATH="${OPENBLAS_INSTALL_PATH}!" \
-D LAPACKE_INSTALL_PATH="${LAPACKE_INSTALL_PATH}" \
-D GTEST_INSTALL_PATH="${GTEST_INSTALL_PATH}" \
${TCHEM_SRC_PATH}
make —-j install

For GPUs, we can use the above cmake script and replace the compiler choice by
-D CMAKE_CXX_COMPILER="S${KOKKOS_INSTALIL_PATH}/bin/nvcc_wrapper".

13

3. INPUT FILES

TChem requires several input files to prescribe the modeling choices. For a gas-phase system the
user provides (1) the reaction mechanisms and (2) thermal properties. Alternatively, these can be
provided inside the same file with appropriate keyword selection. For the homogenous 0D
ignition utility an additional file specifies the input state vectors and other modeling choices. For
surface chemistry calculations, the surface chemistry model and the corresponding thermal
properties can be specified in separate files or, similarly to the gas-phase chemistry case, in the
same file, with appropriate keywords. Three more files are needed for the model problems with
both gas and surface interface. In additional to the surface chemistry and thermodynamic
properties’ files, the parameters that specify the model problem are provided in a separate file.

1. Reaction Mechanism Input File

TChem uses input files that follow the Chemkin Software syntax. A complete description
can be found in Kee et al. [10]

2. Thermal Property Data

TChem currently employs the 7-coefficient NASA polynomials. The format for the data
input follows specifications in Table I of McBride et al. [11]. Support for 9-coefficient
NASA polynomials is expected in the next TChem release.

3. Input State Vectors

The format of the sample.dat file is:

T P SPECIES_NAME1l SPECIES_NAME2 ... SPECIES_NAMEN
T#1 P#1 Y1#1 Y2#1 ... YN#1 (sample #1)
T#2 P#2 Y1#2 Y2#2 ... YN#2 (sample #2)
T#M P#M Y1#M Y2#M ... YN#M (sample #M)

Here T is the temperature [K], P is the pressure [Pa] and SPECIES_NAMEI] is the name of
the first gas species from the reaction mechanism input file. Y 1#1 is the mass fraction of
SPECIES_NAMEI in sample #1. The sum of the mass fractions on each row has to be
equal to one since TChem does not normalize mass fractions. New samples can be created
by adding rows to the input file. The excerpt below illustrates a setup for an example with 8
samples using a mixture of CHy, O, N3, and Ar:

T P CH4 02 N2 AR
800 101325 1.48e-01 1.97e-01 6.43e-01 1.14e-02
800 101325 2.82e-02 2.25e-01 7.34e-01 1.30e-02
800 4559625 1.48e-01 1.97e-01 6.43e-01 1.14e-02
800 4559625 2.82e-02 2.25e-01 7.34e-01 1.30e-02
1250 101325 1.48e-01 1.97e-01 6.43e-01 1.14e-02

14

12500 1013256 2.82e~02 2.25e-01 7.34e-01 1.30e-02
1250 4559625 1.48e-01 1.97e-01 6.43e-01 1.14e-02
1250 4559625 2.82e-02 2.25e-01 7.34e-01 1.30e-02

The eight samples in the above example correspond to the corners of a cube in a 3D
parameter space with temperatures between 800 K and 1250 K, pressures between 1 atm to
45 atm, and equivalence ratios (¢) for methane/air mixtures between 0.5 to 3.

. Surface Reaction Mechanism Input File and Thermal Property Data

TChem uses a the specifications in Coltrin et al. [5] for the input file for the surface reaction
mechanism and the corresponding thermodynamic properties for the surface species.

. Input site fractions

The format of the inputSurf.dat file is:

SURF_SPECIES_NAME1l SURF_SPECIES_NAME2 ... SURF_SPECIES_NAMEN
Z1#1 Z2#1 ... ZN#1 (sample #1)
Z1#2 Z2#2 ... ZN#2 (sample #2)
Z1#M Z2#M ... ZN#M (sample #M)

where SURF_SPECIES_NAMEI is the name of the first surface species in the surface
mechanism file and Z1#1 is the site fraction of this species for sample #1, and so forth.

15

4. THERMODYNAMIC PROPERTIES

We first present conversion formulas and the gas-phase equation of state, followed by a
description of molar and mass-based expression for several thermodynamic properties.

4.1. Mass-Molar Conversions

The molar mass of the mixture, W, is computed as

B Nspec B Nspec Yk
w=Y XxxW,=1 Y — 4.1.1)
k=1 =1 Wk

where X} and Y} are the mole and mass fractions, respectively, of species k, and W is the
molecular weight of species k. It is assumed (TChem does not check this), that mole and mass

fractions sum up to one
vaec N.Ypec

Y k=) v=1 (4.1.2)
k=1 k=1

Mass and mole fractions can be computed from each other as
Xe = YW /Wy, Y = X Wi /W (4.1.3)

The the molar concentration of species k is given by X; = pY; /Wy = pXi/W, and the molar
concentration of the mixture is given by

N, spec

Y Xi=p/W (4.1.4)
k=1

For problems that include heterogenous chemistry, the site fractions Z; describe the composition
of species on the surface. The number of surface phases is denoted by N, and the site fractions
are normalized with respect to each phase.

S,
Ns})ec

Yz =1, forn=1,... Nyhase- (4.1.5)
k=1

Here, Nypec is the number of species on surface phase n. TChem currently handles 1 surface phase
only, Npypase = 1. The surface concentration of surface species k is given by

%, =2"T, /oi(n) (4.1.6)

where I, is the surface site density of surface phase n and oy (n) is the site occupancy number for
species k. 0y (n) represents the number of sites in phase n occupied by species k.

16

4.2, Equation of State

The ideal gas equation of state is used throughout the library,

N, N.
R spec Yk R spec
P=p——T7T=0pR T = p T = Xy | RT 4.2.1)
ZvaeL Xka (kgl Wk) (/;l

where P is the thermodynamic pressure, W and W, are the molecular weights of the mixture and
of species k, respectively, T is the temperature, and X, is the molar concentration of species k.

4.3. Gas-Phase Species Properties

The standard-state thermodynamic properties for a thermally perfect gas are computed based on
NASA polynomials [11]. The molar heat capacity at constant pressure for species k is computed
as

Cpk
% =aox+T (a1, +T(a+T (a3 +a4sT))) (4.3.1)
where R is the universal gas constant. The molar enthalpy is computed as

Hj 4 apk
F = " vade +Hk7TO =T <a07k +T (—

: +T(%+T <@+—T)>>) tasy (432)

3 4 3

The molar entropy is given by

0
Sc _ [T Cok
R n T

as k as k a4 k
dT +Siy = apenT+T (ar+T (24T (FE4+227))) +ass 433)

The temperature units are Kelvin in the polynomial expressions above. Other thermodynamics
properties are computed based on the polynomial fits above. The molar heat capacity at constant
volume C,, the internal energy Uy, and the Gibbs free energy Gy are given by

Cox=Cpx—R, Uy =H—RT, G} = H; TS (4.3.4)

The mixture properties in molar units are given by

p Nspec Nspec Nspec
Z XiCpir Cv="Y, XiCos, H="Y XiHy, U=Y XUy (4.3.5)
k=1 k=1 k=1 k=1

where X} the mole fraction of species k. The entropy and Gibbs free energy for species k account
for the entropy of mixing and thermodynamic pressure

P
Sk =S —RIn (Xk

arm

> y Gr =S8k — TS (4.3.6)

17

The mixture values for these properties are computed as above

Nype(: Nspec
S=Y XS, G=) XGi (4.3.7)
k=1 k=1

The specific thermodynamic properties in mass units are obtained by dividing the above
expression by the species molecular weight, Wy,

cpik = Cpi/Wey o = Cot/ Wi, i = Hy /Wi, ug = U /Wi, s =S/ Wi, gb = Gy/Wi (4.3.8)

and
Sk = Si/ Wk, gk = Gi/Wx (4.3.9)

For the thermodynamic properties in mass units the mixture properties are given by

Nspec Nspec vpec Nspec Nrpa vaec
ex= Y, Yitpp, Cv= Z YiCyky, h= Z Yihp, u= Z Yieug, s = Z YiSk, 8 = Z Yi8k
k=1

(4.3.10)
where Y} is the mass fraction of species k.

The mixture properties in mass units can also be evaluated from the equivalent molar properties
as
cp=Cp/W, c,=C,/W, t =H/W, u=U/W, s=S/W, g=G/W (4.3.11)

where W is the molecular weight of the mixture.

44. Examples

A example to compute the specific heat at constant pressure ¢, and the specific enthalpy 7 is
provided in example/TChem_ThermalProperties.cpp. Sections7.1.2) and [7.1.1)
present more details on the top-level function calls employed in this example. This example can
be used in batch mode, and several samples are computed simultaneously. The next figure was
constructed based on 4 x 10° samples spanning several temperature and equivalent ratio values
for methane/air mixtures.

4.5. Surface Species Properties

The thermal properties of the surface species are computed with the same type of expressions
used by the gas-phase species described above.

18

Equivalence ratio ¢

N

=

1000
800 g
=
600 _E
@©
<
+J
400 §
&
]
200 X
=
0

800

1000 1100 1200
Temperature [K]

900

iy
@
o
o

]

ty [J/kg K

1600

N
paci

fic Heat Ca

1400

Equivalence ratio ¢

._.
ture Spec

1200

IX

M

800 900 1000 1100 1200
Temperature [K]

Figure 4-1. Specific enthalpy » and heat capacity ¢, for a mixture of 53
species (the set of species in the GRI-Mech v3.0 model).

19

5. REACTION RATES

In this chapter we present reaction rate expressions for gas-phase reactions in Section 5.1 and for
surface species or between surface and gas-phase species in Section 5.2.

5.1. Gas-Phase Chemistry

The production rate for species k in molar units is written as

Nre(tc " ’
O =Y. Viidis Vi = Vi — Viis (5.1.1)
i=1

where N4 is the number of reactions and v,’d and v,’c’l are the stoichiometric coefficients of species
k in reaction i for the reactant and product side of the reaction, respectively. The rate-of-progress
of reaction i is g; = ¢;%;, with 6; corresponding to different reaction types shown in Table 5-1

;i Reaction Type
1 basic reaction
Xi 3-rd body enhanced, no pressure dependence

1 rpirl i unimolecular/recombination fall-off reactions
1
H_lpr.l i Chelllically activated bimolecular reactions
L

Table 5-1. Gas-phase reaction types.

and %; given by
Nspec Nspec

B =ky, H1 X ke HI X (5.1.2)
J= J=

The above expressions are presented below.

5.1.1. Forward and Reverse Rate Constants

The evaluation of the forward rate constant typically follows an Arrhenius expression,

: E;
ke, = ATP exp (—ﬁ) , (5.1.3)

20

where A;, B;, and E; are the pre-exponential factor, temperature exponent, and activation energy,
respectively, for reaction i. For reactions with reverse Arrhenius parameters specified, the reverse
rate constant k;; is computed similar to k. If the reverse Arrhenius parameters are not specified,
k,; is computed as

ki :kfl'/Kcia (3.1.4)

where K; is the equilibrium constant (in concentration units) for reaction i

Pim ZkNiliec Vii Nspec S, H
KCi = (RT) Kpi and Kpi = exXp k;l Vii (E — ﬁ) . (515)

When computing the equilibrium constant, the atmospheric pressure, P, = latm, and the
universal gas constant R are converted to cgs units, dynes/cm” and erg/(mol.K), respectively.

If a reaction is irreversible, its reverse rate constant is set to zero, k, = 0.

5.1.2. Concentration of the “Third-Body”’

If the expression “+M” is present in the reaction string, some of the species might have custom
efficiencies for their contribution in the mixture. For these reactions, the mixture concentration is

computed as
vaec

=) ok, (5.1.6)
=]

where «;; is the efficiency of species j in reaction i and X; is the concentration of species j.
Coefficients @;; are set to 1 unless specified on auxiliary lines corresponding to specific
reactions.

5.1.3. Pressure-dependent Reactions

If expression “(+M)” is used to describe a reaction, then the reduced pressure Pr, shown in the
expressions presented in Table 5-1is computed as

ko;
pr, — N0i 5. 5.1.7
I; - ()

where X; is the mixture concentration, possibly enhanced with specific species efficiences for
reaction i.

For reactions that contain expressions like "(+Y,,)", where Y, is the name of species m, the
reduced pressure is computed as

Pr; = @%m (5.1.8)
koo

21

F; Reaction Type
1 Lindemann reaction

1/(14+(A/B)?)

Eov Troe reaction
dT* (a exp (—%) +exp (— %))X SRI reaction

Table 5-2. Expressions for computing F;.

e For unimolecular/recombination fall-off reactions the Arrhenius parameters for the
high-pressure limit rate constant, k.., are provided on the reaction line, while the parameters
for the low-pressure limit rate constant &k are given on the auxiliary reaction line that
contains the keyword LOW.

e For chemically activated bimolecular reactions the parameters for ky are given on the
reaction line while the parameters for k.. are given on the auxiliary reaction line that
contains the keyword HIGH.

Table 5-2 shows the expressions for F; (see also Table 5-1)

e For the Troe form, F..,;, A, and B are

T T T**
Feenr = (1 —a)exp (— T***) +aexp (_F) +exp (— =) : (5.1.9)
A =log;oPr; —0.6710g;o Feens — 0.4, B=0.806—1.176210g¢ Frens — 0.1410g;o Pr;
(5.1.10)

Parameters a, T***, T*, and T** are provided (in this order) in the kinetic model description
for each Troe-type reaction. If 7** is omitted, only the first two terms are used to compute
Fcent *

e For the SRI form exponent X is computed as

o —1
X = <1-|— (logloPr) > ; (5.1.11)

Parameters a, b, ¢, d, and e are provided in the kinetic model description for each SRI-type
reaction. If d and e are omitted, these parameters are settod = 1 and e = 0.

Miller [7] has developed an alternative expression for the pressure dependence for fall-off
reactions that cannot be fitted with a single Arrhenius rate expression. This approach employs
several Arhenius expressions
k fA TP B (5.1.12)
— . e PR «1.
Il = L,j Xp RT

22

corresponding to a pressure p; in a specified set {py, p2,... pn}. The rate constant at an arbitrary
pressure p, p; <= p < p;41, is computed by linear interpolation of logk as a function of log p

logky,41(T) —logkys,(T)
log p1+1 —logpy

For p < pj the Arrhenius rate is set to ky = ky 1, and similar for p > py, ky = k7 n, where N is the
number of pressures for which the Arrhenius factors are provided, for a specific reaction. This
formulation can be combined with 3™-body information, e.g. €; = ¥; for a specific reaction i.

logks(T,p) =logkys;(T)+ (log p —log p;) (5.1.13)

5.1.4. Note on Units for Reaction Rates

In most cases, the kinetic models input files contain parameters that are based on calories, cm,
moles, kelvin, seconds. The mixture temperature and species molar concentrations are necessary
to compute the reaction rates and the species production rates. Molar concentrations computed as
illustrated in Section 4.1 are in [kmol/m?]. For the purpose of reaction rates evaluation, the
concentrations are transformed to [mol/cm?]. The resulting reaction rates and species production
rates are in [mol/(cm?.s)]. In the last step these are converted to SI units [kg/(m3.s)] (in molar
units) and [kg/(m3.s)] (in mass units).

5.1.5. Example

The production rate for species k in mole units @y [kmol/m3/s] is computed via the function call
shown in Section)) and in mass units @ W; [kg/m3/s] via the function call shown in
Section [7.2.1. The example provided in
src/example/TChem_NetProductionRatesPerMass.cpp computes the production
rate in mass units for gas-phase species.

5.2. Surface Chemistry

The production rate for gas and surface species k in molar units is written as

Nre
. reac . o ; 591
Sk =Y Vkidi» Vi = Vi — Viis (5.2.1)
i=1

where N, is the number of reactions on the surface phase and v,ﬁi and v,’(’l are the stoichiometric
coefficients of species k in reaction i for the reactant and product side of the reaction,
respectively.

The rate of progress g; of the ith surface reaction is equal to:

N; pec / Ng pec "

gi=kp, [1 %7 —ke [] X (5.2.2)
=1 j=1

23

Where X is the concentration of the species j. If the species j is a gas species, this is the molar
concentration, X; =Y;p / W;. If, on the other hand, species j is a surface species, it surface molar
concentration is computed by Eq. (4.1.6).

5.2.1. Forward and Reverse Rate Constants

The forward rate for surface reactions are computed as described in the gas phase. If parameters
are not specified, the reverse rate is computed via the equilibrium constant as:

kri=kgi/Ke,i (5.2.3)

The equilibrium constant for the surface reaction i is computed as

8
NG L.
Kei=Kpi(20) [T oy, (5.2
RT bl
Here, N5pec and Nipe. represent the number of gas-phase and surface species, respectively, and

p° = latm. TChem currently assumes the surface site density I',, for all phases to be constant.
The equilibrium constant in pressure units is computed as

AS? AH?) (5.2.5)

K”?’:GXP< R RT

based on entropy and enthalpy changes from reactants to products (including gas-phase and
surface species). The net change for surface of the site occupancy number for phase n for reaction
i is given by

Nypec

Aon,i) =Y Viiok(n) (5.2.6)
k=1

522 Sticking Coefficients

The reaction rate for some surface reactions are described in terms of the probability that a
collision results in a reaction. For these reaction, the forward rate is computed as

Y RT
kpi= 4] — 5277
M=\ 2w @-2.7)

where ¥ is the sticking coefficient, W is the molecular weight of the gas-phase mixture, R is the
universal gas constant, I';; is the total surface site concentration over all phases, and m is the sum
of stoichiometric coefficients for all surface species in reaction i.

24

5.2.3. Note on Units for surface production rates

The units of the surface and gas species concentration presented above are in units of kmol/m?
(surface species) or kmol/m> (gas species). To match the units of the kinetic model and compute
the rate constants, we transformed the concentration units to mol/cm3 or mol/cm?. The resulting
rate constant has units of mol/cm?. In the last step these are converted to SI units [kg/(m?.s)].

5.24. Example

The production rate for species k in in molar units s; [kmole/m?/s] is computed through the

function call listed in Sec. and in mass units s§;W; [kg/m?/s] via the function call listed in

Sec. [7.2.4). The example provided in
src/example/TChem_NetProductionSurfacePerMass.cpp

computes the production rates for gas-phase and surface species in mass units.

25

6. REACTORS

We present the setup for canonical examples that are available through TChem. All models
presented in this section are setup to be run in parallel, possibly exploiting several layers of
parallelism available on the platform of choice. We start with a description of a 2-nd order
backward differentiation formula (BDF2) time stepping algorithm in Section [6.1. BDF2 was
implemented via Kokkos and takes advantage of parallel threads available through the Kokkos
interface. We then present results for homogenous batch reactors in Section 6.2, and the plug-flow
reactor, in Section [6.3].

6.1. Time Integrator

When solving a system of stiff ordinary differential equations (ODEs), the time step size is
limited by a stability condition rather than a truncation error. To obtain a reliable solution, we rely
on the 2nd order Trapezoidal Backward Difference Formula (TrBDF2)[3]. The TrBDF2 scheme
is a composite single step method, and is 2nd order accurate and L-stable.

Consider a following system of ODEs.

du,-

dt :ﬁ(u7t>7 izl?"'7N (6.1.1)

As its name states, the method advances the solution from ¢, to an intermediate time
thyy = tn + YAt by applying the trapezoidal rule.

At At
Unty — sznﬂ/ = Up+ Yzfn (6.1.2)
Next, it uses BDF2 to march the solution from #,,y to 11 = 1, + At as follows.

1 — 1 1 —17y)?
Upt1 — —yAfan = U=y

——Uppy— —— Uy 6.1.3
2—y -9 2= (612

We solve the above non-linear equations iteratively using the Newton method. The Newton
equation of the first trapezoidal step is given by:

A/0 (k) A
[_h <a_£)] 8ut) = —(ul)y —) + Yo (i +) (6.1.4)

26

This step is followed by Newton iterations to solve the BDF2 step

1-— Y 8f (&) (k) .

i (6.1.5)
(k) 1 (1—-7)) 1—7.
—u) | = ———tpry+ "ty | + —ALf,
<”“ y2—1) " 2 —y) 2—y T

Here, we denote a Jacobian as J = d f / du. The modified Jacobian’s used for solving the Newton
equations of the above trapezoidal rule and the BDF2 are given as follows

At

Alr = I - ')/7]

1~y (6.1.6)
Apgr=1——=AtJ
bdf 21—y
while their right hand sides are defined as
k At 1k
by = —(”r(zJZy —Up) + Y? <fr5+)y+fn>

(6.1.7)

) 1 (1—17)) -7, ®
bpgr=—u i ———upiv+ Up | +——Atf,
u <”+1 Y-y " v2—7) 2y e

In this way, a Newton solver can iteratively solves a problem A(u)du = b(u) followed by the
solution update u = u+ du.

The timestep size Ar can be adapted within a range (At,;,, Aty) using a local error estimator.

1

1 1 —3y +d4y-2
error = 2k At | —fn— —forv+ —/n) where ky=——1—"—
! (Y Y=y =y 7

12(2=7) (6.1.8)

This error is minimized when usinga y =2 — V2.

6.1.1. Timestep Adaptivity

TChem uses weighted root-mean-square (WRMS) norms to estimate the time stepping error. The
same approach is used in Sundial package[8]. A weighting factor is computed as

w; = 1/ (rtoli|u,~| + atol,-) (6.1.9)

and the normalized error norm is computed as follows

norm = (i (errori*wi)2> /m (6.1.10)

i

where error; is given by Eq. (6.1.8). An error norm value close to 1 is considered small and the
time step size is increased. If the error norm is bigger than 10, the time step size decreases by
half.

27

6.1.2. Interface to Time Integrator

Our time integrator advances each sample in time independently in a parallel for. A namespace
“Impl” is used to define a code interface for an individual sample.

TChem: : Impl::TimeIntegrator::team_invoke_detail (
/// kokkos team thread communicator
const MemberType& member,
/// abstract problem generator computing J_{prob} and f
const ProblemType& problem,
/// control parameters
const ordinal_type& max_num_newton_iterations,
const ordinal_type& max_num_time_iterations,
/// absolute and relative tolerence size 2 array
const RealTypelDViewType& tol_newton,
/// a vector of absolute and relative tolerence size Nspec x 2
const RealType2DViewType& tol_time,
/// \Delta t input, min, max
const real_typeé& dt_in,
const real_typeé& dt_min,
const real_typeé& dt_max,
/// time begin and end
const real_type& t_beg,
const real_typeé& t_end,
/// input state vector at time begin
const RealTypelDViewType& vals,
/// output for a restarting purpose: time, delta t, state vector
const RealTypeODViewType& t_out,
const RealTypeODViewType& dt_out,
const RealTypelDViewType& vals_out,
const WorkViewTypeé& work) {
/// A pseudo code is illustrated here to describe the workflow

/// This object is used to estimate the local errors

TrBDF2<problem_type> trbdf2 (problem) ;

/// A_{tr} and b_{tr} are computed using the problem provided J_{prob} and f
TrBDF2_Partl<problem_type> trbdf2_partl (problem) ;

/// A_{bdf} and b_{bdf} are computed using the problem provided J_{prob} and f
TrBDF2_Part2<problem_type> trbdf2_part2 (problem);

for (ordinal_type iter=0;iter<max_num_time_iterations && dt != zero;++iter) {
/// evaluate function f_n
problem.computeFunction (member, u_n, f_n);

/// trbdf_partl provides A_{tr} and b_{tr} solving A_{tr} du = b_{tr}
/// and update u_gamma += du iteratively until it converges
TChem: : Impl: :NewtonSolver (member, trbdf_partl, u_gamma, du);

/// evaluate function f_gamma
problem.computeFunction (member, u_gamma, f_gamma);

/// trbdf_part2 provides A _{bdf} and b_{bdf} solving A _{bdf} du = b_{bdf}
/// and update u_np += du iteratively until it converges
TChem: : Impl: :NewtonSolver (member, trbdf_part2, u_np, du);

/// evaluate function f_np
problem.computeFunction (member, u_np, f_np);

/// adjust time step

trbdf2.computeTimeStepSize (member,
dt_min, dt_max, tol_time, f_n, f_gamma, f_np, /// input for error evaluation
dt); /// output

/// account for the time end
dt = ((t + dt) > t_end) ? t_end - t : dt;

28

/// store current time step and state vectors for a restarting purpose

This “Timelntegrator” code requires the user to define a problem object. A problem class should
include the following interface in order to be used with the time integrator.

template<typename KineticModelConstDataType>
struct MyProblem {
ordinal_type getNumberOfTimeODEs () ;
ordinal_type getNumberOfConstraints();

/// the number of equations should be sum of number of time ODEs and number of constraints

ordinal_type getNumberOfEquations () ;

/// temporal workspace necessary for this problem class
ordinal_type getWorkSpaceSize();

/// x 1s initialized in the first Newton iteration
void computeInitValues (const MemberType& member,

const RealTypelDViewType& x) const;

/// compute f(x)
void computeFunction (const MemberType& member,

const RealTypelDViewTypeé& X,

const RealTypelDViewType& £f) const;
/// compute J_{prob} at x
void computeJacobian (const MemberType& member,

const RealTypelDViewType& X,

const RealType2DViewType& J) const;

6.2. Homogenous Batch Reactors

In this example we consider a transient zero-dimensional constant-pressure problem where
temperature 7" and species mass fractions for N;,.. gas-phase species are resolved in a batch
reactor. In this problem an initial condition is set and a time integration solver will evolve the
solution until a time provided by the user.

For an open batch reactor the system of ODEs solved by TChem are given by:

Energy equation

Species equation

N
dT 1 &°
—_— = —— o Wi hy, = St
dt pep k;l

Y,

1,
W = Ekak = Sy,, k= L...Nspec

where p is the density, ¢, is the specific heat at constant pressure for the mixture, wy is the molar
production rate of species k, Wy is its molecular weight, and 4 is the specific enthalpy.

29

6.2.1. Jacobian Formulation

Efficient integration and accurate analysis of the stiff system of ODEs shown above requires the
Jacobian matrix of the rhs vector. In this section we will derive the Jacobian matrix
components.

Let
q): {T3Y13Y27""YNspec}T

by the denote the variables in the /As of the 0D system and let
= T
P = {p’P7T7Y17Y27‘-' 7YN5peC}
be the extended state vector. The OD system can be written in compact form as

O = (@) and 7 = f@)

where f = {Sr,Sy,, .. 'SYNspec}T and f = {SpaSPaSTast---SYNspeC}T- The thermodynamic
pressure P was introduced for completeness. For open batch reactors P is constant and Sp = 0.
The source term S, is computed considering the ideal gas equation of state

Y;
P=pR) —T
PRY 3
with P=const and using the expressions above for S7 and Sy,,

N; pec N, spec

Sp=-WY o+—) oWy
k=1 cpT (=

Let J and J be the Jacobian matrices corresponding to f(®) and f(®), respectively. Chain-rule
differentiation leads to _ _

O _ 2% 2Judp

dv dv dp dv

Note that each component u of ® is also a component of ® and the corresponding rhs
components are also the same, f,(®) = f,(P).

Evaluation of / components

We first identify the dependencies on the elements of ® for each of the components of f
o fi= Sp. We postpone the discussion for this component.
° fz =85p=0
30

o 3=

N; pec

Cp = Z Ykak(T),]’lk:hk(T>, and (Dk
k=1

(Dk(T %la%% ,%

where X is the molar concentration of species k, X; = pYi/W;.

. dfs 1 ag day\ -
J3,1_$_p—cpzhk (F_ﬁ 7‘13,2_07
& af_g 1 dc a(l)k
J3,3=ﬁ c2 dY{)Z k k__Z Cpp Ok — Z T
~ 8f3 1 . W .
373+j: a—YJ :p—CI%ijthwk—p—cthka—Yj,] = 1727"'7N5pec
® f3+k:SYk
3+4k,1 ap p ap p y J34+k2 aP =Y,
J :@:%@ 7 .:@:%@ k=172
3+k,3 aT) aTJ 3+k,3+) an P aY17 Js g Logie s

The values for heat capacities and their derivatives are computed based on the NASA

polynomial fits as

9¢p
oYy

9¢p
oT

depy depy
dr ’ dT

:ZY

= Cppo

The partial derivatives of the species production rates, @y (7, X, X2, ..

Nspec

_ 'y ooz
=1 8%1 ap

da
dp

T 99,
0

8a)k oT
oT Y,

\/

0

20
JY;

B vaec a(l)k a%l
« 9%, 0Y;

p.T.Yzj

day IT | day dp _
ap dp {5
~—~

Nspec
0
day dp
p aY
~

W&%

The steps for the calculation of % and 3—;‘;’; are itemized below

e Derivatives of production rate @y of species k

Nreac
wy = Viiqi =
i=1

NIE(IC

dqi

0y,
V’“ oT’

9T
31

Nreac

dq;

awk Vi, ———
£ klaxl

X,

spec)

aNspec

i 9y
W, 0%,

P d ay,

St. St is defined above. Here we highlight its dependencies on the elements of ®

(6.2.1)

(6.2.2)

(6.2.3)

(6.2.4)

(6.2.5)

=Ry <a17k +T (2a27k +T (3a3’k + 4a47kT)))

.), are computed as as

(6.2.6)

(6.2.7)

e Derivatives of rate-of-progress variable g; of reaction i

dg; JC; 0%; dqi IJC; 0%,
i =CH > — = —X+C; = K+ Ci——
G = S = g 9E, o aE
e Derivatives of &
— Basic reactions 6; = 1: aa(?’ = 3_% =0
— 3-rd body-enhanced reactions %; = X;: %(i' =0, g;fl =y
— Unimolecular/recombination fall-off reactions ¢; = %Fi
0%; 1 d Pr; Pr; JF
- Wikl Wi (6.2.8)
oT (1+4Pr;) oT 1+Pr; 0T
0%; 1 d Pr; Pr; OF;
= SALLY RN L A (6.2.9)
20X (1+Pri) dX; 1+Pr; 0%,
; ; _ kpkeoi—koiks; ' i
* Pr; = ,’%36,- = % — —O'kgo—_o%,-, %_l;r[, = %(Xﬂ.
. k()i 8Pr,- k(,)ikooi_kﬂik;i (:)Pr,' _ kOi .
* Pri =t Xy = 57t = 2 —— X, o= Eslm’ where 9y, is Kroenecker
delta symbol. I
. oF, _ J0F, _
x For Lindemann form F; =1 = T = 9%, = 0.
* For Troe form
% — aE aF},‘el’ll aE aPrl', (6.2.10)
0T OF.n OT dPr; dT
8F, B aF, aFcem oFi 8Pr,- . 8Fl 8Pr,- (62 11)
836, N aFcem 836, 8Pr,- 8361 N 8PI‘,‘ 836, o
0
JoF; F 2A\ ArB—BrA
S = ~ — FInFeen <ﬁ> e il (6.2.12)
o Fe (14 3)°) (1+3))
JoF; 2A\ Ap:B— BpA
L S P By = | S T (6.2.13)
8Pr,- B3 1 A2 2
(+(3))
where
0A 0.67 0B 1.1762
AF = = — 5 F = = — (6.2.14)
aFcent Fcent ln 10 aFcent Fcent ln 10
dA 1 0B 0.14
Ap. — — Boee — —— 6.2.15
T 9P Prlnl0’ " 9Pr; Prinl0 ()

or 7o P\ T | TSP\ T | Tz P\ T

(6.2.16)

* For SRI form

OF, (e 0X dPr, b T
or —\T "apy ot "\“P\TT) TP

b 1 T
42 ex ~exp(—=<
+XT2 P() c p(Tc) (6.2.17)
aexp (—7) +exp(—¢)
8F b T 0X 8Pr,~
=F1 —— —— — 6.2.18
836, n(aexp(T) -|—exp(C)) 8Pr,~ 8:{] ()
0X ,2log; OPr;
__x 6.2.19
0 Pr; Pr;In10 ()
— Chemically activated bimolecular reactions: %; = %Pr,»Fi
d%; 1 0 Pr; 1 OF
=— F; — 6.2.20
o~ (Iipy? 0T T 1tPnaT .
0%, 1 d Pr; 1 OF
=— F+ 6.2.21
83€1 (1 +Pri)2 8%1 S| + Pr; 8%1 ()
Partial derivatives of Pr; and F; are computed similar to the ones above.
e Derivatives of %;
a Nspec ; Nspec Vl-/-
— /l Ji
= K}, H %; H1 x; (6.2.22)
J:
NS nec i NS ec 1
0% krvill " X,) kv I X 7 6.2.23)
FETRE S % -

- kp, = A, Thiexp <——> Ajexp (B, InT — ﬂ) where T,;; = E;/R. The derivative

ok
with respect to temperature can be calculated as &/ = i (,B, ‘”)

— if reverse Arrhenius parameters are provided, &}.; is computed similar to above. If k;; is
computed based on k¢; and the equilibrium constant K,;, then its derivative is
computed as

kri
_ ks i — Ky Kei — kyikKei _=z <ﬁ’) ki K

Kci o Kcl'z Kci Kcz Kcz
1 Ty K.
S N I - ST I 6.2.24
r,<T(ﬁ,+T) - 6224)
) ZNspecv
Since K;; = (2g2)~= ™exp (Zk”’f‘ vk,gk) ol Zk”’f‘ Viigy- It follows that

, 1 Nspec
K=k | 7 () Z Viig)

33

where g; is computed based on NASA polynomial fits as

1 as g aip k a i az g a4k
/ .
=— 7 +—+T<—'+T(—+—T)>
8k T<" T) 2 3 4 5

Efficient evaluation of the J terms

e Step 1:
j3+k,2 = 0, (6225)
/
- Weday, W |y 0 (5 Nreqe k k; j
Foipq =k Tk % Ry Lo, T
WIT 9T T p [Z ki aT< 1~ ”)+ZV’” Tk, ™ ks) |

(6.2.26)

1% aw aw W, reac an Nreac %ka %,. Vlil
e k[o (2 =2) + Y w6~ J%i —,

Forn W00 We
3+k,3+i) aYl axl m kj ax =
i=1,2,... ,Nypec (6.2.27)

Here % and %, ; are the forward and reverse parts, respectively of Z;:

N; pec N; pec

—kf,I_Ich ‘@rf—kr/H%”

e Step 2: Once J3;4 3.; are evaluated for all i, then J3, 1 is computed as

i di, @ w, [@, N 9a 1 Wy e
Sk = <a—pk——k)=—k< — o Z k) (—];)k+ZYiJ3+k,3+i)

P P P =~

e Step 3:
Ny . . N,
» 1 spec (Di 8(1),' 1 spec
J3.1 = —_— Wh(———) = —— h.]3 il J32—O (6.2.28)
TPy Zl “\p dp ¢p 2 Z i
- 1 [1 9c, Noree Nepee] e dw;
Jiz=— | —=L Y Whiao— Y Wic,.@| ——— Y Wihi=—
0=y o 37 L e B e T vy
1 i 1 c NS[)L’C NX‘[)EC NS‘[)EC
S _Tp Y, Wihioi— Y. Wicp, Z hiJ3yi3 (6.2.29)
PCp [Cp L o i=1 Cp =

34

Evaluation of 7 components

o Temperature equation

- O - . d
Ji1=733 +J3,1—p, Ji11k =334k +J3,1—p

aT Yy
e Species equations
- - d
T = Firia+ i1 g0 (6.2.30)
. _adp
Ji71—|—k = Ji—|—1,3+k +Ji+1’la—Yk, k = 1,2, cee 7Nspec (6231)
For P = const density is a dependent variable, calculated based on the ideal gas equation of
state:
p= P
RT Y,

The partial derivaties of density with respect to the independent variables are computed as

dp_p 9p_ p dp _ pW
oP P aT T’ oY, 7

6.2.2. Running the 0D Ignition Utility

The executable to run this example is installed at TCHEM_INSTALL_PATH/example/, and
the inputs parameters are (. /TChem_IgnitionZeroDSA.x —-help):

options:
—--OnlyComputeIgnDelayTime bool If true, simulation will end when Temperature is equal
to T_threshold
(default: --OnlyComputeIgnDelayTime=false)
—--T_threshold double Temp threshold in ignition delay time
(default: —-T_threshold=1.5e+03)
——atol-newton double Absolute tolerence used in newton solver
(default: —-—-atol-newton=1.0e-10)
——-chemfile string Chem file name e.g., chem.inp
(default: —--chemfile=chem.inp)
——dtmax double Maximum time step size
(default: —--dtmax=1.00e-01)
——dtmin double Minimum time step size
(default: —--dtmin=1.00e-08)
——echo-command-line bool Echo the command-line but continue as normal
—-—help bool Print this help message
——inputsPath string path to input files e.g., data/inputs
(default: —--inputsPath=data/ignition-zero-d/C0O/)
—--max—-newton-iterations int Maximum number of newton iterations
(default: —-—-max—newton—-iterations=100)
--max-time—-iterations int Maximum number of time iterations
(default: —-—max-time—-iterations=1000)
—--output_frequency int save data at this iterations
(default: —--output_frequency=-1)
—--rtol-newton double Relative tolerance used in newton solver
(default: —--rtol-newton=1.0e-06)
——-samplefile string Input state file name e.g.,input.dat

35

(default: —--samplefile=sample.dat)

——tbeg double Time begin
(default: —--tbeg=0.0)
——team-size it User defined team size
(default: —--team-size=-1)
——tend double Time end
(default: —--tend=1.0)
——thermfile string Therm file namee.g., therm.dat
(default: —--thermfile=therm.dat)
——time-iterations-per-interval int Number of time iterations per interval to store goi
(default: —--time-iterations-per-interval=10)
——tol-time double Tolerance used for adaptive time stepping
(default: —-tol-time=1.0e-04)
—-use_prefixPath bool If true, input file are at the prefix path
(default: —--use_prefixPath=true)
--vector-size int User defined vector size
(default: —--vector-size=-1)
-—-verbose bool If true, printout the first Jacobian values
(default: —--verbose=true)
Description:

This example computes the solution of an ignition problem

GRIMech 3.0 model

We can create a bash scripts to provide inputs to TChem. For example the following script runs an
ignition problem with the GRIMech 3.0 model [14]:

exec=$TCHEM_INSTALL_PATH/TChem_IgnitionZeroDSA.x
inputs=$TCHEM_INSTALL_PATH/data/ignition-zero-d/gri3.0/
save=1

dtmin=1le-8

dtmax=1le-3

tend=2

max_time_iterations=260

max_newton_iterations=20

atol_newton=le-12

rtol_newton=le-6

tol_time=le-6

$exec —-inputsPath=$inputs --tol-time=$tol_time --atol-newton=$atol_newton —--rtol-newton=
$Srtol_newton —--dtmin=$dtmin --max-newton-iterations=$max_newton_iterations --output_~frequency
=$save —--dtmax=$dtmax --tend=S$tend --max-time-iterations=S$max_time_iterations

In the above bash script the “inputs” variables is the path to where the inputs files are located in
this case (TCHEM_INSTALL_PATH/example/data/ignition-zero—-d/gri3.0).In
this directory, the gas reaction mechanism is defined in “chem.inp” and the thermal properties in
“therm.dat”. Additionally, “sample.dat” contains the initial conditions for the simulation.

The parameters “dtmin” and “dtmax” control the size of the time steps in the solver. The decision
on increase or decrease time step depends on the parameter “tol_time”. This parameter controls
the error in each time iteration, thus, a bigger value will allow the solver to increase the time step
while a smaller value will result in smaller time steps. The time-stepping will end when the time
reaches “tend”. The simulation will also end when the number of time steps reache
“max_time_iterations”. The absolute and relative tolerances in the Newton solver in each
iteration are set with “atol_newton” and “rtol_newton”, respectively, and the maximum number of
Newton solver iterations is set with “max_newton_iterations”.

36

The user can specify how often a solution is saved with the parameter “save”. Thus, a solution
will be saved at every iteration for this case. The default value of this input is —1, which means
no output will be saved. The simulation results are saved in “IgnSolution.dat”, with the following
format:

iter t dt Densitylkg/m3] Pressure[Pascal] Temperature[K] MF_SPECIES1 ... MF_SPECIESN

where MF_SPECIES1 respresents the mass fraction of species #1, and so forth. Finally, we
provide two methods to compute the ignition delay time. In the first approach, we save the time
where the gas temperature reaches a threshold temperature. This temperature is set by default to
1500K. In the second approach, save the location of the inflection point for the temperature
profile as a function of time, also equivalent to the time when the second derivative of temperature
with respect to time is zero. The result of these two methods are saved in files
“IgnitionDelayTimeTthreshold.dat” and “IgnitionDelayTime.dat”, respectively.

GRIMech 3.0 results

The results presented below are obtained by running
TCHEM_INSTALL_PATH/example/TChem_IgnitionZeroDSA.x with an initial
temperature of 1000K, pressure of 1atm and a stoichiometric equivalence ratio (¢) for
methane/air mixtures. The input files are located at
TCHEM_INSTALL_PATH/example/data/ignition-zero-d/gri3.0/ and selected
parameters were presented above. The outputs of the simulation were saved every iteration in
“IgnSolution.dat”. Time profiles for temperature and mass fractions for selected species are
presented in Figs. 6-1.

2500 i
\ 0.20 2500 0.010

g g Z 0.008 <
© 2000 Temperature 0.15.43 20001 \ _L_D
2 — Ch4 © 3 0.006 &

—
e — 02 010- O =
o w 5 —— Temperature m
ot — Co ‘ : n o — OH 0.004 7
51500- 1.099 1.100 1.101 1.102 s £ 15001 : . H 2

= § o . .) .

d 0.05 i 1.099 1.100 1.101 1.102 o B
1000 0.00 1000 < 0.000
0.6 0.8 1.0 1.2 1.4 1.6 07 08 09 10 11 12 13 14 15
Time [s] Time [s]

Figure 6-1. Left frame: Temperature and CH,;, O,, CO Mass Fractions; Right
frame: Temperature and OH, H, H2 Mass Fractions

The ignition delay time values based on the two alternative computations discussed above are
1.100791s and 1.100854s, respectively. The scripts to setup and run this example and the
jupyter-notebook used to create these figures can be found under
TCHEM_INSTALL_PATH/example/runs/gri3.0_IgnitionZeroD.

37

GRIMech 3.0 results parametric study

Fig. 6-2 shows the ignition delay time as a function of the initial temperature and equivalence
ratio values. These results are based on settings provided in
TCHEM_INSTALL_PATH/example/runs/gri3.0_IgnDelay and correspond to 100
samples. “TChem_IgnitionZeroDSA.x” runs these samples in parallel. The wall-time is between
200 —300s on a 3.1GHz Intel Core 17 cpu. We also provide a jupyter-notebook to produce the

Ignition delay time [s] at P=1atm

3 102
€
5
©
-
= 10t M
o ©
® 2 w
©
0] (0]
g 100 ¢
) -
g &
3 S
i 107t 5
1 =
o
=)
-2
0.8 0.9 1.0 11 1.2 0

1000/T

Figure 6-2. Ignition delay times [s] at P=1 atm for several CH,/air equivalence
ratio ¢ and initial temperature values. Results are based on the GRI-Mech
v3.0 kinetic model.

sample file “sample.dat” and to generate the figure presented above.

6.2.3. Ignition Delay Time Parameter Study for IsoOctane

We present a parameter study for several equivalence ratio, pressure, and initial temperature
values for iso-Octane/air mixtures. The iso-Octane reaction mechanism used in this study consists
of 874 species and 3796 elementary reactions [12]. We selected four pressure values,
{10,16,34,45} [atm]. For each case we ran a number of simulations that span a grid of 30 initial
conditions each for the equivalence ratio and temperature resulting in 900 samples for each
pressure value. Each sample was run on a test bed with a Dual-Socket Intel Xeon Platinum
architecture.

The data produced by this example is located at
TCHEM_INSTALL_PATH/example/runs/isoOctane_IgnDelay. Because of the time
to produce a result we save the data in a hdf5 format in 1soOctaneIgnDelayBlake.hdf5.
Figs. 6-3 and 6-4 show ignition delay times results for the conditions specified above. These
figures were generated with the jupyter notebook shared in the results directory.

38

Ignition delay time [s] at P=16atm

Ignition delay time [s] at P=10atm

3 10° 3 10°
= 107t o~ 107t
° °
®2 ® 2
g 1072 g 1072
Q Q
s g
i} 1073 i) 1073

1 1 :

10~ ‘ th‘4
0.8 0.9 1.0 1.1 1.2 1072 0.8 0.9 1.0 1.1 1.2 1072
1000/T 1000/T
Figure 6-3. Ignition delay times [s] at 10atm (left frame) and 16atm (right
frame) for several equivalence ratio (vertical axes) and temperature (hori-
zontal axes) values for iso-Octane/air mixtures.
6.3. Plug Flow Reactor (PFR) Problem with Gas and Surfaces Reactions

6.3.1. Problem Definition

The plug flow reactor (PFR) example employs both gas-phase and surface species. The PFR is
assumed to be in steady state, therefore a system of differential-algebraic equations (DAE) must
be resolved. The ODE part of the problem correspond to the solution of energy, momentum, total
mass and species mass balance. The algebraic constraint arises from the assumption that the PFR

problem is a steady-state problem. Thus, the surface composition on the wall must be

stationary.

The equations for the species mass fractions Yz, temperature 7, axial velocity u, and continuity
(represented by density p) resolved by TChem were derived from Ref. [9].

ay, 1
dz Wk

!N
dYy 1 P g
— = — Wi+ $iW, — —2-Y, s
Iz pukk Ackk Ack];]

N§ ! N§
dT 1 spec P spec
—=— Wi hy, — A SWichy
dz pucy k; pPuAccy k; k
’ Ng N¢

du B R ,1dT i
—=— siWe——(=—+4T
dz ypAC 1;1 k um(W dz ,;1
dp P, Nipee pdu
oy oW, — 227
dz uA. kgl Sk udz

39

)

(6.3.1)

(6.3.2)

(6.3.3)

(6.3.4)

Ignition delay time [s] at P=34atm Ignition delay time [s] at P=45atm

3 10° 3 100
s 1ot s 1071
o o
®2 ® 2
3 102 3 102
(=t [=
o g
© ©
> >
2 £
g 10-3 g 10-3

1 1

l10-4 10~4
-5 =5
0.8 0.9 1.0 [1.2 T 0.8 0.9 1.0 o 1.2 10
1000/T 1000/T

Figure 6-4. Ignition delay times [s] at 34atm (left frame) and 45atm (right
frame) for several equivalence ratio (vertical axes) and temperature (hori-
zontal axes) values for iso-Octane/air mixtures.

1+
where y= —2- m=1-— #, A is the surface area, P,’ is the surface chemistry parameter. In the
=3

1—
pu
equations above s; represents the surface chemistry production rate for a gas-phase species k.

Algebraic constraint
si=0 k=1,...,N;

spec*

. :
Here N;,,. represent all surface species.

The number of ODEs is equal to the number of gas-phases species with three additional equations
for thermodynamic temperature, continuity and momentum. The number of constraints is equal to
the number of surfaces species. This PFR formulation assumes that surface reactions are taking
place on the channel wall and gas-phase reactions inside the channel. Wall friction and heat
transfer at the wall are neglected in this example.

6.3.2. Jacobian Formulation

The current implementation uses a numerical jacobian based on forward finite differences [13].

6.3.3. Running the Plug Flow Reactor with Surface Reactions Utility

The executable for this example is installed under TCHEM_INSTALL_PATH/example/. The
inputs for this example are obtained through

./TChem_PlugFlowReactor.x ——help

40

Usage: ./TChem_PlugFlowReactor.x [options]

options:
——Area double Cross—sectional Area
(default: --Area=5.3e-04)
——Pcat double Chemically active perimeter,
(default: —--Pcat=2.6e-02)
—-—atol-newton double Absolute tolerance used in newton solver
(default: —-—-atol-newton=l.e-12)
—-batchsize int Batchsize the same state vector described in state file
is cloned
(default: --batchsize=1)
——chemSurffile string Chem file name e.g., chemSurf.inp
(default: —--chemSurffile=chemSurf.inp)
——chemfile string Chem file name e.g., chem.inp
(default: —--chemfile=chem.inp)
——dzmax double Maximum dz step size
(default: —--dzmax=1.0e-06)
——dzmin double Minimum dz step size
(default: —--dzmin=1.0e-10)
——echo-command-line bool Echo the command-line but continue as normal
—--help bool Print this help message
——initial_condition bool If true, use a newton solver to obtain initial
condition of the constraint
(default: —--initial_condition=True)
——inputSurffile string Input state file name e.g., inputSurfGas.dat
(default: —--inputSurffile=inputSurf.dat)
—-—inputVelocityfile string Input state file name e.g., inputVelocity.dat
(default: —--inputVelocityfile=inputVelocity.dat)
—--max-newton-iterations int Maximum number of newton iterations
(default: —--max—-newton-iterations=100)
—--max—-z-iterations int Maximum number of z iterations
(default: --max-z-iterations=4000)
——output_frequency int save data at this iterations
(default: —--output_frequency=-1)
——-prefixPath string prefixPath e.g.,inputs/
(default: —--prefixPath=data/plug-flow-reactor/X/)
—--rtol-newton double Relative tolerance used in newton solver
(default: —--rtol-newton=1.0e-06)
—--samplefile string Input state file name e.g., input.dat
(default: --samplefile=sample.dat)
—--zbeg double Position begin
(default: --zbeg=0)
—-—team-size int User defined team size
(default: --team-size=-1)
——zend double Position end
(default: --zend=2.5e-02)
——thermSurffile string Therm file name e.g.,thermSurf.dat
(default: —--thermSurffile=thermSurf.dat)
——thermfile string Therm file name e.g., therm.dat
(default: —--thermfile=therm.dat)
——time-iterations-per-intervalint Number of time iterations per interval to store goi
(default: --time-iterations-per-interval=10)
--tol-z double Tolerance used for adaptive z stepping
(default: —-tol-z=1.0e-04)
——transient_initial_condition bool If true, use a transient solver to obtain initial
condition of the constraint
(default: —--transient_initial_condition=false)
—-use_prefixPath bool If true, input file are at the prefix path
(default: --use_prefixPath=true)
—--vector-size int User defined vector size
(default: —--vector-size=-1)
—-—verbose bool If true, printout the first Jacobian values
(default: --verbose=true)
Description:
This example computes Temperature, density, mass fraction and site fraction for a plug flow
reactor

41

The following shell script sets the input parameters and runs the PFR example

exec=$TCHEM_INSTALL_PATH/example/TChem_PlugFlowReactor.x
inputs=$TCHEM_INSTALL_PATH/example/data/plug-flow-reactor/CH4-PTnogas/
Area=0.00053

Pcat=0.025977239243415308

dzmin=1le-12

dzmax=le-5

zend=0.025

tol_z=1le-8

max_z_iterations=310

max_newton_iterations=20

atol_newton=le-12

rtol_newton=1le-8

save=1

transient_initial_ condition=false

initial_condition=true

Sexec —-prefixPath=$inputs -—-initial_condition=$initial_condition --transient_initial_condition=
Stransient_initial_condition --Area=$Area --Pcat=$Pcat --tol-z=$tol_z --atol-newton=
$atol_newton —--rtol-newton=$rtol_newton —--dzmin=$dzmin —--max—-newton-iterations=
Smax_newton_iterations —--output_frequency=$save —--dzmax=S$dzmax --zend=S$zend --max-time-
iterations=$max_z_iterations

We ran the example in the install directory
TCHEM_INSTALL_PATH/example/runs/PlugFlowReactor/CH4-PTnogas

Thus, all the paths are relative to this directory. This script will run the executable
TCHEM_INSTALL_PATH/example/TChem_PlugFlowReactor.x

with the input files located at
TCHEM_INSTALL_PATH/example/data/plug-flow-reactor/CH4-PTnogas/.

These files correspond to the gas-phase and surface reaction mechanisms (“‘chem.inp” and
“chemSurf.inp”’) and their corresponding thermo files (“therm.dat” and “thermSurf.dat”). The
operating condition at the inlet of the reactor, i.e. the gas composition, in “sample.dat”, and the
initial guess for the site fractions, in “inputSurf.dat”, are also required. The format and
description of these files are presented in Section 3. The gas velocity at the inlet is provided in
“inputVelocity.dat”.

The “Area” [m?] is the cross area of the channel and “Pcat” [m] is the chemical active perimeter
of the PFR. The step size is controled by “dzmin”, “dzmax”, and “tol_z”, the simulation will end
with the “z”(position) is equal to “zend” or when it reaches the “max_z_iterations’. The relative
and absolute tolerance in the Newton solver are set through “atol_newton” and “rtol_newton”.
The description of the integration method can be found in Section [6.1. The “save” parameter sets
the output frequency, in this case equal to 1, which means the information will be saved every
stepin “PFRSolution.dat”. The following header is saved in the output file

iter t dt Density[kg/m3] Pressure[Pascal] Temperature[K] SPECIES1 (Mass Fraction) ... SPECIESN (
Mass Fraction) SURFACE_SPECIES1 (Site Fraction) ... SURFACE_SPECIESN (Site Fraction) Velocity
[m/s]

The inputs “transient_initial_condition” and “initial_condition” allow us to pick a method to
compute an initial condition that satisfies the system of DAE equation as described in

Section 6.3.4. In this case, the simulation will use a Newton solver to find an initial surface site
fraction to meet the constraint presented above.

42

Results

The gas-phase and surface mechanisms used in this example represents the catalytic combustion
of methane on platinum and was developed by Blondal and co-workers [4]. These mechanisms
have 15 gas species, 20 surface species, 47 surface reactions and no gas-phase reactions. The total
number of ODEs is 18 and there are 20 constrains. One simulation took about 12s to complete on
a MacBook Pro with a 3.1GHz Intel Core 17 processor. Time profiles for temperature, density,
velocity, mass fractions and site fractions for selected species are presented in Figs 6-5, 6-6.
Scripts and jupyter notebooks for this example are located under
TCHEM_INSTALL_PATH/example/runs/PlugFlowReactor/CH4-PTnogas

1600 ; T0.40

T 1400} +035Y%
& £
% s
g 1200 +—— Temperature 10302
g — Density E’
= — Velocity =
1000 | 0.25

0.65 0.70 075

0.2
800 -0 0

0.0 0.5 1.0 1.5 2.0 2.5
Position [m]x1le-2

Figure 6-5. Gas Temperature (left axis), velocity and density (both on right
axis) along the PFR.

Parametric Study

The executable
TCHEM_INSTALL_PATH/example/TChem_PlugFlowReactor.x

can be also used with more than one sample. In this example, we ran it with eight samples. The
inputs for this run are located at
TCHEM_INSTALL_PATH/example/data/plug-flow-reactor/CH4-PTnogas_SA.

A script and a jupyter-notebook to reproduce this example are placed under
TCHEM_INSTALL_PATH/example/runs/PlugFlowReactor/CH4-PTnogas_SA.

These samples correspond to combination of values for the molar fraction of CHy, {0.04,0.08},
inlet gas temperature, {800,9000} [K], and velocity, {0.0019,0.0038} [m/s]. The bash script to
run this problem is listed below

43

0.025
—— CH4 x1
—— OH x0.01
0.020 4 — CO x0.05
: (
£ 0.015 1
1%}
@©
e
A
o 0.010
=
0.005 4
0.000 T T T T 7 7 7
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Position [m] x1e-2
0.8
7
@ (— Xx1
0.6 - —— OCX x0.0001
—— CX x5e-08
§ 051
S
@
= 0.4 A
]
»n 0.31
0.2 A
0.1+ \L
0.0 = T T
0.0 0.5 1.0 1.5 2.0

Position [m] x1e-2

2.5

0.200

0.175 1

0.150 1

0.125 4

0.100 1

Mass Fraction

0.075 4

0.050 +

0.025 4

0.000

— 02 x1
—— H2 x5e-06
—— HO2 x5e-06

1

0.00 0.2

5 050 0.75 1.00 1.25 1.50 1.75 2.00

Position [m] x1e-2

1.0

0.8 1

0.6 1

Site Fraction

0.4

0.2 A

— OXx1
—— HOX x5e-05
—— CH4X x0.005

0.0 T
0.00 0.2

5 050 0.75 1.00 1.25 1.50 1.75
Position [m] x1e-2

Figure 6-6. Gas-phase species mass fractions and surface species site frac-

tions.

exec=$TCHEM_INSTALL_ PATH/example/TChem_ PlugFlowReactor.x

use_prefixPath=false

inputs=$TCHEM_INSTALL_PATH/example/data/plug-flow-reactor/CH4-PTnogas/

inputs_conditions=inputs/

chemfile=$inputs"chem.inp"
thermfile=S$inputs"therm.dat"

chemSurffile=$inputs"chemSurf.inp"
thermSurffile=$inputs"thermSurf.dat"
samplefile=$inputs_conditions"sample.dat"
inputSurffile=$inputs_conditions"inputSurf.dat"
inputVelocityfile=$inputs_conditions"inputVelocity.dat"

save=1

dzmin=1le-12

dzmax=le-5

zend=0.025
max_newton_iterations=100
max_z_iterations=2000
atol_newton=le-12
rtol_newton=le-8
tol_z=1le-8

Area=0.00053
Pcat=0.025977239243415308

transient_initial_condition=true

44

2.00

initial_condition=false

Sexec —-use_prefixPath=%use_prefixPath --chemfile=S$chemfile —-thermfile=$thermfile —--chemSurffile
=$chemSurffile —--thermSurffile=$thermSurffile --samplefile=$samplefile --inputSurffile=
$SinputSurffile —-inputVelocityfile=$inputVelocityfile —--initial_condition=$initial_condition
——transient_initial_condition=$transient_initial_condition --Area=$Area --Pcat=$Pcat --tol-z
=$tol_z —-—atol-newton=$atol_newton —--rtol-newton=$rtol_newton —--dzmin=$dzmin —--max—-newton-—
iterations=$max_newton_iterations --output_frequency=$save --dzmax=$dzmax —-zend=$zend --max-—
time-iterations=$max_gz_iterations

In the above script we did not use a prefix path (“use_prefixPath=false”) instead we provided the
name of the inputs files: “chemfile”, “thermfile”, “chemSurffile”, “thermSurffile”, “samplefile”,
“inputSurffile”, “inputVelocityfile”. The files for the reaction mechanism (“chem.inp” and
“chemSurf.inp”) and the thermo files (“therm.dat” and “thermSurf.dat”) are located under

TCHEM_INSTALL_PATH/example/data/plug-flow-reactor/CH4-PTnogas/

29 ¢¢

The files with the inlet conditions (“sample.dat”, “inputSurf.dat” and“inputVelocity.dat”) are
located in the “input” directory, located under the run directory. One can set a different path for
the input files with the command-line option “use_prefixPath”. Additionally, one can also use the
option “transient_initial_condition=true”, to activate the transient solver to find initial condition
for the PFR 6.3.4.

Fig. 6-7 shows temperature, gas-phase species mass fractions and surface species site fractions
corresponding to the example presented above

6.3.4. Initial Condition for PFR Problem

The initial condition for the PFR problem must satisfy the algebraic constraint in the DAE
system. Thus, an appropriate initial condition must be provided. To solve this problem, TChem
first solves a system that accounts for the constraint only. The gas-phase species mass fractions
and temperature are kept constant. The constraint component can be solved either by evolving an
equivalent time-dependent formulation to steady-state or by directly solving the non-linear
problem directly. a steady state or a time dependent formulation. In one method, the following
equation is resolved in time until the system reaches stable state. In the second method, a newton
solver is used to directly resolver the constraint part(s; = 0).

dz, '
d—tk = ka k correspond to surfaces species (6.3.5)

In the first method, the ODE system is solved until reaches steady state. This is presented at
TCHEM_REPOSITORY_PATH/src/example/TChem_SimpleSurface.cpp. The
Fig. 6-8 shows three surface species, the other species have values lower than 1e-4. This result
shows the time to reach stable state is only of le-4 s. In the PFR example presented above, this
option can be used setting “transient_initial_condition=true” and “initial_condition=false”.

The example produces an output file (“InitialConditionPFR.dat”) with the last iteration. This file
can be used in the PFR problem as the “inputSurf.dat” file. The inputs for this example are
located at TCHEM_INSTALIL_PATH/example/runs/InitialConditionPFR.

45

In the second method, we used a newton solver to find a solution to the constraint. One code
example of this alternative is presented at
TCHEM_REPOSITORY_PATH/src/example/TChem_InitialCondSurface.cpp. In
the PFR example presented above, the default option is “initial_condition=true”, if both option
are set true, the code will execute the transient initial condition first and then the newton initial
condition.

46

Mass Fraction OH Mass Fraction CH, Temperature [K]

Site Fraction OX

2400 -
0.175 A
2200 A
0.150 A
2000 A
S 0.125 A
1800 c
2
- b=
1600 -0 % 0.100 1
01 e
1400 i 2 ﬁ 0.075
;3 s
1200 1 14 0.050 4
15
1000 1 6 0.025 1
800 HA
I T T T T T - : 0.000 T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Position [m]x1e2 Position [m]x1e2
:0 0.014
0.04 1
’ — Nex2 0.012 1
—_— 13
o 14 1
0.03 4 8 0.010
—_— H) =
—) -% 0.008 - —— No: 0
— X © —— .
0.02 7Tl 8 No: 1
@ 0.006 - — No: 2
g — No: 3
0.01 4 0.004 4 —— No: 4
—— No: 5
0.002 4 —— No: 6
0.00 —— No: 7
T T T T T T T 0.000 T T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.5 1.0 1.5 2.0
Position [m]x1e2 Position [m]x1e2
1.0
0.0035 - (
0.8 A
0.0030 -
—— No: 0 (
0.0025 — No:1 | %
— No: 2 S 0.6
0.0020 - — No: 3 B — No: 0
—— No: 4 uE: — Nzl
0.0015 A —— No: 5 o 0.4 1 — No: 2
—— No: 6 [—— No: 3
0.0010 A . —— No: 4
No: 7 o:
0.2 1 — No:'5
0.0005 - No: 6
0.0000 I L 0.0 — No:7
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Position [m]x1e2 Position [m]x1e2
1.0 — No: 0 0.005 —— No: 0
—— No: 1 — Noil
—— No: 2 — No: 2
0.8 4 d
— No: 3 0.004 — No: 3
— No: 4 o —— No: 4
061 — No:5 5 6.003 — No: 5
—— No: 6 5 ~—— No: 6
— No: 7 s —— No:7
0.4 4 = 0.002
8
£
0.2 A L\ 0.001 4
0.0 4 0.000 A
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Position [m]x1e2

Figure 6-7. Temperature, gas-phase species mass fractions, and surface

species site fractions for the example parametric study.

47

Position [m]x1e2

1.0

0.8 A

o
o
!

s— QX X1
—_— X x1
—— COX x0.005

o
>
L

Site Fraction

0.2 1

0.0 -r T T g T T T
10-1% 102 10~°® 107" 10°° ‘10=* 104

time [s]

Figure 6-8. Site fractions for X (empty space), OX and COX. We start this
simulation with an empty surface (X =1)

48

7. APPLICATION PROGRAMMING INTERFACE

TChem provides two types of interfaces called runHostBatch and runDeviceBatch,
respectively, to run multiple samples on either the host or the device. The runHostBatch uses
the “Kokkos::DefaultHostExecutionSpace” with data residing in the host memory. On the other
hand, “runDeviceBatch” dispatches the work to “Kokkos::DefaultExecutionSpace” which is
configured via Kokkos. In general, the default execution space is configured as OpenMP or Cuda,
when GPUs are available. When the device is configured to Cuda, data should be transferred to
the device memory using Kokkos: : deep_copy. The code snippet below illustrates the
computation of species production rates for a number of samples in parallel. It reads the kinetic
model data and a collection of input state vectors. The input data is then copied to the device
memory. After requisite computations are done, the results are copied from the device memory
back to the host memory.

#include "TChem_Util.hpp"
#include "TChem_ReactionRates.hpp"
#include "TChem KineticModelData.hpp"

using ordinal_type = TChem::ordinal_type;

using real_type = TChem::real_type;

using real_type_1ld_view = TChem::real_type_1ld_view;
using real_type_2d_view = TChem::real type_2d view;

int main() {
std::string chemFile ("chem.inp");
std::string thermFile ("therm.dat");
std::string periodictableFile ("periodictable.dat");
std::string inputFile ("input.dat");
std::string outputFile ("omega.dat");

Kokkos::initialize (argc, argv);

{
/// kinetic model is constructed and an object is constructed on host
TChem: :KineticModelData kmd(chemFile, thermFile, periodictableFile);

/// kinetic model data is transferred to the device memory
const auto kmcd = kmd.createConstData<TChem: :exec_space>();

/// input file includes the number of samples and the size of the state vector
ordinal_type nBatch, stateVectorSize;
TChem: : readNumberOfSamplesAndStateVectorSize (inputFile, nBatch, stateVectorSize);

/// create a 2d array storing the state vectors
real_type_2d_view state("StateVector", nBatch, stateVectorSize);
auto state_host = Kokkos::create_mirror_view (state);

/// read the input file and store them into the host array

TChem: :readStateVectors (inputFile, state_host);

/// if execution space is host execution space, this deep copy is a soft copy
Kokkos::deep_copy (state, state_host);

/// output: reaction rates (omega)
real_type_2d_view omega ("ReactionRates", nBatch, kmcd.nSpec);

49

/// create a parallel policy with workspace
/// for better performance, team size must be tuned instead of using AUTO
Kokkos::TeamPolicy<TChem: :exec_space>

policy (TChem: :exec_space (), nBatch, Kokkos::AUTO());
const ordinal_type level = 1;
const ordinal_type per_team_extent = TChem::ReactionRates::getWorkSpaceSize (kmcd);

const ordinal_type per_team_scratch =
TChem: : Scratch<real_type_1ld_view>::shmem_size (per_team_extent);
policy.set_scratch_size(level, Kokkos::PerTeam(per_team_scratch));

/// computes reaction rates
TChem: :ReactionRates: :runDeviceBatch (policy, state, omega, kmcd);
TChem: :exec_space () .fence () ;

/// optionally, one can move the production rate to host memory
auto omega_host = Kokkos::create_mirror_view (omega);
Kokkos: :deep_copy (omega_host, omega);

/// print omega_host to std::out
for (ordinal_type s=0;s<nBatch;++s) {
std::cout << "Sample ID = " << s << std::endl;
for (ordinal_type k=0; k<kmcd.nSpec;++k)
std::cout << omega_host (s, k) << std::endl;
}
}

Kokkos::finalize();

return 0;

This workflow pattern can be applied for the other similar functions, presented in Section 7.1}, [7.2,
and (7.4.

The homogenous batch reactor and the other examples described in Section 6 require a different
workflow from the above example. For this example category the user needs to specify a time
advance object including the range of time integration, time step sizes, Newton solver tolerances,
etc. The following example corresponds to the homogenous batch reactor example.

#include "TChem_Util.hpp"
#include "TChem_KineticModelData.hpp"
#include "TChem_IgnitionZeroD.hpp"

using ordinal_type = TChem::ordinal_type;
using real_type = TChem::real_type;
using time_advance_type = TChem::time_advance_type;

using real_type_0d_view = TChem::real_type_0d_view;
using real_type_1ld_view = TChem::real_type_1ld_view;
using real_type_2d_view = TChem::real_ type_2d_view;

using time_advance_type_0d_view = TChem::time_advance_type_0d_view;
using time_advance_type_1d _view = TChem::time_advance_type_1ld_view;

using real_type_0d_view_host TChem: :real_type_0d_view_host;
using real_type_1ld_view_host TChem: :real_type_1d_view_host;
using real_type_2d_view_host = TChem::real_type_2d_view_host;

using time_advance_type_0d_view_host = TChem::time_advance_type_0d_view_host;
using time_advance_type_1d_view_host = TChem::time_advance_type_1d view_host;
int main(int argc, char xargv[]) {

/// input files

std::string chemFile ("chem.inp");

std::string thermFile ("therm.dat");

std::string periodictableFile ("periodictable.dat");

50

std::string inputFile ("input.dat");

/// time stepping parameters

/// the range of time begin and end

real_type tbeg(0), tend(l);

/// min and max time step size

real_type dtmin(le-11), dtmax(le-6);

/// maximum number of time iterations computed in a single kernels launch
ordinal_type num_time_iterations_per_ interval(l);

/// adaptive time stepping tolerance which is compared with the error estimator
real_type tol_time (le-8);

/// new ton solver absolute and relative tolerence

real_type atol_newton(le-8), rtol_newton(le-5);

/// max number of newton iterations

ordinal_Type max_num_newton_iterations (100);

/// max number of time ODE kernel launch

ordinal_type max_num_time_iterations (le3);

Kokkos::initialize (argc, argv);

{
/// kinetic model is constructed and an object is constructed on host
TChem: :KineticModelData kmd(chemFile, thermFile, periodictableFile);

/// kinetic model data is transferred to the device memory
const auto kmcd = kmd.createConstData<TChem: :exec_space>();

/// input file includes the number of samples and the size of the state vector
ordinal_type nBatch, stateVectorSize;
TChem: : readNumberOfSamplesAndStateVectorSize (inputFile, nBatch, stateVectorSize);

/// create a 2d array storing the state vectors
real_type_2d_view state("StateVector", nBatch, stateVectorSize);
auto state_host = Kokkos::create_mirror_view(state);

/// read the input file and store them into the host array

TChem: : readStateVectors (inputFile, state_host);

/// if execution space is host execution space, this deep copy is a soft copy
Kokkos: :deep_copy(state, state_host);

/// create time advance objects
time_advance_type tadv_default;
tadv_default._tbeg = tbeg;
tadv_default._tend = tend;
tadv_default._dt = dtmin;
tadv_default._dtmin = dtmin;
tadv_default._dtmax = dtmax;
tadv_default._tol_time = tol_time;
tadv_default._atol_newton = atol_newton;

tadv_default._rtol_newton = rtol_newton;
tadv_default._max_num_newton_iterations = max_num_newton_iterations;
tadv_default._num_time_iterations_per_interval = num_time_iterations_per_interval;

/// each sample is time-integrated independently
time_advance_type_1ld _view tadv("tadv", nBatch);
Kokkos: :deep_copy (tadv, tadv_default);

/// for print the time evolution of species, we need a host mirror view
auto tadv_host = Kokkos::create_mirror_view (tadv);
auto state_host = Kokkos::create_mirror_view (state);

/// create a parallel execution policy with workspace
Kokkos::TeamPolicy<TChem: :exec_space>

policy (TChem: :exec_space (), nBatch, Kokkos::AUTO());
const ordinal_type level = 1;
const ordinal_type per_team_extent = TChem::IgnitionZeroD::getWorkSpaceSize (kmcd);
const ordinal_type per_team scratch =

TChem: : Scratch<real_type_1ld_view>::shmem_size (per_team_extent);
policy.set_scratch_size(level, Kokkos::PerTeam(per_team_scratch));

51

for (; iter < max_num_time_iterations && tsum <= tend; ++iter) {
/// in each kernel launch, it computes the number of time iterations per
/// interval
TChem: : IgnitionZeroD: :runDeviceBatch
(policy,
tadv, state, /// input
t, dt, state, /// output
kmcd) ;
Kokkos::fence();

/// terminate this loop when all samples reach the time end
tsum = zero;
Kokkos: :parallel_reduce (
Kokkos: :RangePolicy<TChem: :exec_space> (0, nBatch),
KOKKOS_LAMBDA (const ordinal_type &i, real_type &update) {
tadv (i) ._tbeg = t(i);
tadv (i) ._dt = dt(i);
update += t(i);
}l
tsum) ;
Kokkos::fence();
tsum /= nBatch;

(1
(1

/// to store or print the state vectors, the data must be transferred to
/// host memory
Kokkos: :deep_copy (tadv_host, tadv);
Kokkos: :deep_copy (state_host, state);
UserDefinedPrintStateVector (tadv_host, state_host);
}
}

Kokkos::finalize();

Funcions pertaining to several reactor models are provided in Section [7.3.

7.1. Thermodynamic Properties

This section lists all top-level function interface for thermodynamic properties. These functions
are launching a parallel kernel with a given parallel execution policy.

7.1.1. SpecificHeatCapacityPerMass

/// Specific heat capacity per mass

/17

/77 [in] policy - Kokkos parallel execution policy; league size must be nBatch
/17 [in] state - rank 2d array sized by nBatch x stateVectorSize

/17 [out] CpMass - rank 2d array sized by nBatch x nSpec storing Cp per species
/17 [out] CpMixMass - rank 1ld array sized by nBatch

/// [in] kmcd - a const object of kinetic model storing in device memory

#inclue "TChem_SpecificHeatCapacityPerMass.hpp"
TChem: :SpecificHeatCapacityPerMass: :runDeviceBatch
(const team_policy_type &policy,
const real_type_2d_view &state,
const real_type_2d_view &CpMass,
const real_type_1ld _view &CpMixMass,
cosnt KineticModelConstDataDevice &kmcd);

52

7.1.2. EnthalpyMass

/// Enthalpy per mass

177/

/17 [in] policy - Kokkos parallel execution policy; league size must be nBatch

/// [in] state - rank 2d array sized by nBatch x stateVectorSize

/// [out] EnthalpyMass - rank 2d array sized by nBatch x nSpec storing enthalpy per species
/17 [out] EnthalpyMixMass - rank 1ld array sized by nBatch

/// [in] kmcd - a const object of kinetic model storing in device memory

#inclue "TChem_EnthalpyMass.hpp"

TChem: :EnthalpyMass: :runDeviceBatch
(const team_policy_type &policy,
const real_type_2d_view &state,
const real_type_2d_view &EnthalpyMass,
const real_type_1ld_view &EnthalpyMixMass,
cosnt KineticModelConstDataDevice &kmcd);

7.1.3. InternalEnergyMass

/// Internal Energy per mass

/17

Ia7 [in] policy - Kokkos parallel execution policy; league size must be nBatch

/17 [in] state - rank 2d array sized by nBatch x stateVectorSize

/77 [out] InternalEnergyMass - rank 2d array sized by nBatch x nSpec storing enthalpy per
species

/// [out] InternalEnergyMixMass - rank 1ld array sized by nBatch

/17 [in] kmecd - a const object of kinetic model storing in device memory

#inclue "TChem_InternalEnergyMass.hpp"

TChem: : InternalEnergyMass: :runDeviceBatch
(const team_policy_type &policy,
const real_type_2d_view &state,
const real_type_2d_view &InternalEnergyMass,
const real_type_1ld_view &InternalEnergyMixMass,
cosnt KineticModelConstDataDevice &kmecd) ;

7.1.4. EntropyMass

/// Entropy per mass

/117 =

/// [in] policy - Kokkos parallel execution policy; league size must be nBatch

/17 [in] state - rank 2d array sized by nBatch x stateVectorSize

Vo [out] EntropyMass - rank 2d array sized by nBatch x nSpec storing enthalpy per species
/17 [out] EntropyMixMass - rank 1d array sized by nBatch

/// [in] kmcd - a const object of kinetic model storing in device memory

#inclue "TChem_EntropyMass.hpp"

TChem: :EntropyMass: :runDeviceBatch
(const team_policy_type &policy,
const real_type_2d_view &state,
const real_type_2d_view &EntropyMass,
const real_type_1ld _view &EntropyMixMass,
cosnt KineticModelConstDataDevice &kmcd);

7.2. Chemical Source Terms

This section lists all top-level function interface for the computation of species production rates.
These functions are launching a parallel kernel with a given parallel execution policy.

53

7.2.1. NetProductionRatesPerMass

/// Net Production Rates per mass

[/] s=========c===

/// [in] policy - Kokkos parallel execution policy; league size must be nBatch
/17 [in] state - rank 2d array sized by nBatch x stateVectorSize

/// [out] omega - rank 2d array sized by nBatch x nSpec storing reaction rates
/17 [in] kmcd - a const object of kinetic model storing in device memory

#inclue "TChem NetProductionRatePerMass.hpp"
TChem: :NetProductionRatePerMass: :runDeviceBatch
(const team_policy_type &policy,
const real_type_2d_view &state,
const real_type_2d_view &omega,
const KineticModelConstDataDevice &kmcd) ;

7.2.2. NetProductionRatesPerMole

/// Net Production Rates per mole

/// ==============

/// [in] policy - Kokkos parallel execution policy; league size must be nBatch
/17 [in] state - rank 2d array sized by nBatch x stateVectorSize

/// [out] omega - rank 2d array sized by nBatch x nSpec storing reaction rates
/17 [in] kmcd - a const object of kinetic model storing in device memory

#inclue "TChem_NetProductionRatePerMole.hpp"
TChem: :NetProductionRatePerMole: : runDeviceBatch
(const team_policy_type &policy,
const real_type_2d_view &state,
const real_type_2d_view &omega,
cosnt KineticModelConstDataDevice &kmcd);

7.2.3. NetProductionRateSurfacePerMole

/// Net Production Rates Surface per mole

/// ==============

/17 [in] policy - Kokkos parallel execution policy; league size must be nBatch

/1] [in] state - rank 2d array sized by nBatch x stateVectorSize

/// [in] zSurf - rank 2d array sized by nBatch x nSpec(Surface)

/17 [out] omega - rank 2d array sized by nBatch x nSpec(Gas) storing reaction rates gas species

/// [out] omegaSurf - rank 2d array sized by nBatch x nSpec(Surface) storing reaction rates
surface species

/77 [in] kmcd - a const object of kinetic model storing in device memory (gas phase)

/17 [in] kmcdSurf - a const object of kinetic model storing in device memory (Surface phase)

TChem: :NetProductionRateSurfacePerMole: : runDeviceBatch
(const real_type_2d_view &state,
const real_type_2d_view &zSurf,
const real_type_2d_view &omega,
const real_type_2d_view &omegaSurf,
const KineticModelConstDataDevice &kmcd,
const KineticSurfModelConstDataDevice &kmcdSurf) ;

7.2.4. NetProductionRateSurfacePerMass

/// Net Production Rates Surface per mass

It ==============

/17 [in] policy - Kokkos parallel execution policy; league size must be nBatch

/// [in] state - rank 2d array sized by nBatch x stateVectorSize

/// [in] zSurf - rank 2d array sized by nBatch x nSpec(Surface)

/77 [out] omega — rank 2d array sized by nBatch x nSpec(Gas) storing reaction rates gas species

/// [out] omegaSurf - rank 2d array sized by nBatch x nSpec(Surface) storing reaction rates
surface species

/] [in] kmcd - a const object of kinetic model storing in device memory (gas phase)

/17 [in] kmcdSurf - a const object of kinetic model storing in device memory (Surface phase)

TChem: :NetProductionRateSurfacePerMass: :runDeviceBatch

54

(const real_type_2d_view &state,

const real_type_2d_view &zSurf,

const real_type_2d_view &omega,

const real_type_2d_view &omegaSurf,

const KineticModelConstDataDevice &kmcd,

const KineticSurfModelConstDataDevice &kmcdSurf);

7.3. Reactor Models

This section lists all top-level function interfaces for the reactor examples.

7.3.1. Ignition 0D

/// Ignition 0D

/) ===========

/17 [in] policy - Kokkos parallel execution policy; league size must be nBatch

/// [in] tadv - rank 1d array sized by nBatch storing time stepping data structure

/17 [in] state - rank 2d array sized by nBatch x stateVectorSize

/17 [out] t_out - rank 1d array sized by nBatch storing time when exiting the function

/17 [out] dt_out - rank 1d array sized by nBatch storing time step size when exiting the
function

/17 [out] state_out - rank 2d array sized by nBatch x stateVectorSize storing updated state
vectors

147 [in] kmcd - a const object of kinetic model storing in device memory

#inclue "TChem_IgnitionZeroD.hpp"
TChem: : IgnitionZeroD: : runDeviceBatch
(const team_policy_type &policy,
const time_advance_type_1d_view &tadv,
const real_type_2d_view &state,
const real_type_ld_view &t_out,
const real_type_1d_view &dt_out,
const real_type_2d_view &state_out,
cosnt KineticModelConstDataDevice &kmcd);

7.3.2. SourceTerm

/// SourceTerm

117/

/17 [in] nBatch - number of samples

/// [in] state - rank 2d array sized by nBatch x stateVectorSize

/17 [out] SourceTerm - rank2d array by nBatch x number of species + 1 (temperature)
/17 [in] kmcd - a const object of kinetic model storing in device memory

#include "TChem_SourceTerm.hpp"
TChem: : SourceTerm: : runDeviceBatch
(const ordinal_type nBatch,
const real_type_2d_view& state,
const real_type_2d_view& SourceTerm,
const KineticModelConstDataDevice& kmcd) ;

7.3.3. PlugFlowReactor

/// Plug Flow Reactor

/17

/77 [in] policy - Kokkos parallel execution policy; league size must be nBatch

/// [in] tadv - rank 1d array sized by nBatch storing time stepping data structure

/1] [in] state - rank 2d array sized by nBatch x stateVectorSize

/// [in] zSurf - rank2d array by nBatch x number of surface specues

/17 [in] velociy -rankld array by nBatch

/17 [out] t_out - rank 1d array sized by nBatch storing time when exiting the function

55

/// [out] dt_out - rank 1ld array sized by nBatch storing time step size when exiting the
function

/17 [out] state_out - rank 2d array sized by nBatch x stateVectorSize storing updated state
vectors

/17 [out] z_out - rank2d array by nBatch x number of surface specues

/17 [out] velocity_out -rankld array by nBatch

/17 [in] kmcd - a const object of kinetic model storing in device memory

/// [in] kmcdSurf - a const object of surface kinetic model storing in device memory

/// [in] area - cross-sectional area

/// [in] pcat - chemically active perimeter

#inclue "TChem_PlugFlowReactor.hpp"
TChem: :PlugFlowReactor: :runDeviceBatch

(const
const
const
const
const
const
const
const
const
const
cosnt
const
const
const

7.3.4.

team_policy_type &policy,
time_advance_type_1d_view &tadv,
real_type_2d_view &state,
real_type_2d_view &z_surf,
real_type_1d_view &velocity,
real_type_ld_view &t_out,
real_type_1d_view &dt_out,
real_type_2d_view &state_out,
real_type_2d_view &z_out,
real_type_1ld_view &velocity_out,
KineticModelConstDataDevice &kmcd,
KineticSurfModelConstDataDevice &kmcdSurf,
real_type area,

real_type pcat);

PlugFlowReactorRHS

/// Plug Flow Reactor RHS

/17
/17
/17
/17
/17
/17
/17

[in]
[in]
[in]
[in]
[in]
[in]

nBatch - number of samples

state - rank 2d array sized by nBatch x stateVectorSize

zSurf - rank 2d array by nBatch x number of surface species

velocity - rank 2d array sized by nBatch x stateVectorSize

kmcd - a const object of kinetic model storing in device memory

kmcdSurf - a const object of surface kinetic model storing in device memory

#include "TChem PlugFlowReactorRHS.hpp"
:PlugFlowReactorRHS: : runDeviceBatch
ordinal_type nBatch,

real_type_2d_view& state,
real_type_2d_view& zSurf,
real_type_2d_viewé& velocity,
real_type_2d_viewé& rhs,
KineticModelConstDataDevice& kmcd,
KineticSurfModelConstDataDevice& kmcdSurf);

TChem:
(const
const
const
const
const
const
const

7.3.5.

JacobianReduced

/// JacobianReduced

/] ===

s
/17
/17
/77

[in]
[in]
[out]
[in]

nBatch - number of samples

state - rank 2d array sized by nBatch x stateVectorSize
Jacobian - rank 3d array by nBatch x number of species + 1 x number of species + 1
kmcd - a const object of kinetic model storing in device memory

#include "TChem_JacobianReduced.hpp"
TChem: : JacobianReduced: : runDeviceBatch
(const ordinal_type nBatch,

const real_type_2d_view& state,

const real_type_3d_view& Jacobian,

const KineticModelConstDataDevice& kmcd) ;

7.3.6.

IgnitionZeroDNumdJacobian

56

/// IgnitionZeroDNumJacobian

/17

/17 [in] nBatch - number of samples

/17 [in] state - rank 2d array sized by nBatch x stateVectorSize

/// [out] Jjac - rank 3d array by nBatch x number of species + 1 x number of species + 1
/17 [out] fac - rank 2d array by nBatch x number of species + 1

/17 [in] kmcd - a const object of kinetic model storing in device memory

#include "TChem_IgnitionZeroDNumJacobian.hpp"

TChem: :IgnitionZeroDNumJacobian: :runDeviceBatch
(const ordinal_type nBatch,
const real_type_2d_view& state,
const real_type_3d_view& jac,
const real_type_2d_view& fac,
const KineticModelConstDataDevice& kmcd) ;

7.3.7. InitialConditionSurface

/// InitialConditionSurface

177/

/// [in] policy - Kokkos parallel execution policy; league size must be nBatch

/17 [in] state - rank 2d array sized by nBatch x stateVectorSize

[e¥i [in] siteFraction - rank2d array by nBatch x number of surface species

Ll [out] siteFraction_out - rank2d array by nBatch x number of surface species

/17 [in] kmcd - a const object of kinetic model storing in device memory

/17 [in] kmcdSurf - a const object of surface kinetic model storing in device memory
#include "TChem_InitialCondSurface.hpp"

TChem: :InitialCondSurface: :runDeviceBatch
(const team_policy_type &policy,
const real_type_2d_view &state,
const real_type_2d_view &siteFraction,
const real type_ 2d_view &siteFraction_out,
const KineticModelConstDataDevice &kmcd,
const KineticSurfModelConstDataDevice &kmcdSurf);

7.3.8. SimpleSurface

/// Simple surface

/17

/17 [in] policy - Kokkos parallel execution policy; league size must be nBatch

/17 [in] tadv - rank 1d array sized by nBatch storing time stepping data structure

/17 [in] state - rank 2d array sized by nBatch x stateVectorSize

/// [in] siteFraction - rank2d array by nBatch x number of surface species

/17 [out] t - rank 1d array sized by nBatch storing time when exiting the function

/17 [out] dt - rank 1d array sized by nBatch storing time step size when exiting the function
/77 [out] siteFraction_out - rank2d array by nBatch x number of surface species

/1] [in] kmcd - a const object of kinetic model storing in device memory

/// [in] kmcdSurf - a const object of surface kinetic model storing in device memory

#include "TChem_SimpleSurface.hpp"

TChem: :SimpleSurface: :runDeviceBatch

(const team_policy_type &policy,

const time_advance_type_1ld_view &tadv,
const real_type_2d_view &state,

const real_type_2d_view &siteFraction,
const real_type_1ld_view &t,

const real_type_1ld_view &dt,

const real_ type_2d_view &siteFraction_out,
const KineticModelConstDataDevice &kmcd,
const KineticSurfModelConstDataDevice &kmcdSurf);

7.4. Kinetic Model - Other Interfaces

This section lists top-level function interfaces for properties derived from the kinetic model
specifications.

57

7.4.1.

/// S Ma
/1]

Smatrix

rds

/77 [i
/17 [i
/17 [o

n] nBatch - number of samples

n] state - rank 2d array sized by nBatch x stateVectorSize

ut] Smatrix - rank3d array by nBatch

reaction in gas phase
n] kmcd - a const object of kinetic model storing in device memory

/17 [i
#include
TChem::S
(const
const
const
const

7.4.2.

"TChem_Smatrix.hpp"
matrix::runDeviceBatch

ordinal_type nBatch,

real_type_2d_view& state,

real_type_3d_viewé& Smatrix,

KineticModelConstDataDevice& kmcd) ;

RateOfProgress

x number of species + 1 x twice the number of

ut] RoPFor - rank2d array by nBatch x number of reaction in gas phase
ut] RoPFor - rank2d array by nBatch x number of reaction in gas phase
n] kmcd - a const object of kinetic model storing in device memory

/// RateOfProgress

/17

/17 [in] nBatch - number of samples

/17 [in] state - rank 2d array sized by nBatch x stateVectorSize
e [o

/17 [o

/17 [i

#include "TChem_ RateOfProgress.hpp"

TChem: :RateOfProgress: :runDeviceBatch

(const
const
const
const
const

ordinal_type nBatch,
real_type_2d_viewé& state,
real_type_2d_view& RoPFor,
real_type_2d_view& RoPRev,
KineticModelConstDataDevice& kmcd) ;

58

8. SUMMARY

TChem is the subject of continual development and improvement. If you have questions about or
suggestions for features to be adopted in future versions, feel free to e-mail Cosmin Safta at
csafta@sandia.gov, or share your questions directly on the github page. In the upcoming
versions we plan to expand the I/O to support YAML and HDFS interfaces, improve the
performance on GPUs and explore advanced time-stepping algorithms for stiff systems.

59

REFERENCES

[1] GTEST. https://github.com/google/googletest, 2020. Accessed:
2020-08-26.

[2] Kokkos. https://github.com/kokkos/kokkos, 2020. Accessed: 2020-08-26.

[3] R. E. Bank, W. M. Coughran, W. Fichtner, E. H. Grosse, D. J. Rose, and R. K. Smith.
Transient simulation of silicon devices and circuits. /EEE Transactions on Electron Devices,
32(10):1992-2007, 1985.

[4] Katrin Blondal, Jelena Jelic, Emily Mazeau, Felix Studt, Richard H. West, and C. Franklin
Goldsmith. Computer-generated kinetics for coupled heterogeneous/homogeneous systems:

A case study in catalytic combustion of methane on platinum. Industrial & Engineering
Chemistry Research, 58(38):17682—-17691, 2019.

[5] Michael E. Coltrin, Robert J. Kee, Fran M. Rupley, and Ellen Meeks. Surface Chemkin-III:
A FORTRAN Package for Analyzing Heterogenous Chemical Kinetics at a
Solid-surface—Gas-phase Interface. Technical Report SAND96-8217, Sandia National
Laboratories, Livermore, CA, 1996.

[6] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. Kokkos: Enabling manycore
performance portability through polymorphic memory access patterns. Journal of Parallel
and Distributed Computing, 74(12):3202 — 3216, 2014. Domain-Specific Languages and
High-Level Frameworks for High-Performance Computing.

[7] X. Gou, J. A. Miller, W. Sun, and Y. Ju. PLOG Formulation.
http://engine.princeton.edu, 2011. Accessed: 2020-08-26.

[8] Alan C Hindmarsh, Peter N Brown, Keith E Grant, Steven L Lee, Radu Serban, Dan E
Shumaker, and Carol S Woodward. SUNDIALS: Suite of nonlinear and
differential/algebraic equation solvers. ACM Transactions on Mathematical Software
(TOMS), 31(3):363-396, 2005.

[9] R.J. Kee and H. Zhu M. E. Coltrin, P. Glarborg. Chemically Reacting Flow: Theory,
Modeling, and Simulation. Wiley, 2 edition, 20177.

[10] R.J. Kee, EM. Rupley, and J.A. Miller. Chemkin-II: A Fortran Chemical Kinetics Package
for the Analysis of Gas Phase Chemical Kinetics. Technical Report SAND89-8009B,
Sandia National Laboratories, Livermore, CA, August 1993.

[11] B.J. McBride, S. Gordon, and M. A. Reno. Coefficients for Calculating Thermodynamic
and Transport Properties of Individual Species. Technical Report NASA TM-4513, NASA,
1993.

60

[12] M. Mehl, H. J. Curran, W. J. Pitz, and C. K. Westbrook. Chemical kinetic modeling of
component mixtures relevant to gasoline. Technical Report LLNL-CONF-410968,
Lawrence Livermore National Laboratory, 2009.

[13] D E Salane. Adaptive routines for forming jacobians numerically. SANDS6, 8 1986.

[14] G.P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T.
Bowman, R. K. Hanson, S. Song, W. C. Gardiner Jr., V. V. Lissianski, and Z. Qin.
GRI-Mech v3.0. http://www.me.berkeley.edu/gri_mech, 2011. Accessed:
2020-08-26.

61

DISTRIBUTION

Hardcopy—External

Hardcopy—Internal

Email—Internal (encrypt for OUO)

Technical Library 01177 libref@sandia.gov

62

63

Sandia
National
Laboratories

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

