
•

SANDIA REPORT
SAND2020-AAAA
Printed September, 2020

Sandia
National
Laboratories

TChem v2.0 - A Software Toolkit for the
Analysis of Complex Kinetic Models
Kyungjoo Kim, Oscar Diaz-lbarra, Cosmin Safta, Habib N. Najm

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

SAND2020-10762

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods

mT - - 4k SOX
ltrirfirpagar NacApar $4,c‘rritrActrarinheradoc

2

ACKNOWLEDGMENT

This work is supported as part of the Computational Chemical Sciences Program funded by the
U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences,
Geosciences and Biosciences Division. Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a
wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-NA0003525.

3

CONTENTS

9

911 1 Nomenclature

112. Building TChem

1112A.DownloadLibranes1
122.2. Building Libraries and Configuring TCheM

122.2.1.Kokkosl
122.2.2._KokkosKemels1
13MIKW11110:111

132 2 4 TCheml

143. input Files

164. Thermodynamic Properties
1614.1.Mass,MolarConversionsl
174.2. Equation of State

4.3. Gas-Phase Species Properties 17

4.4. Examples 18

4.5. Surface Species Properties 18

20

205.1. Gas-Phase Chemistry

205 1 1 Forward and Reverse Rate Constant§

215.1.2. Concentration of the "Third-Body"

5.1.3. Pressure-dependent Reactions 21
5 1 4 Note on ITnits for Reaction Rate§ 23

235.1.5. Example

5.2. Surface Chemistry 23
245.2.1. Forward and Reverse Rate Constantsl

245.2.2. Sticking Coefficients

5.2.3. Note on Units for surface production rates 25
5.2.4. Example 25

26

266.1. Time Integrator
276.1.1. Timestep Adaptivity

6.1.2. Interface to Time Integrator 28

5

6.2. Homogenous Batch Reactors
6.2.1 Jacobian Formulation

6.2.2. Running the OD Ignition Utility
6.2.3. Ignition Delay Time Parameter Study for IsoOctane

6.3. Plug Flow Reactor (PFR) Problem with Gas and Surfaces Reactions

6.3.1.ProblemDefinitionl
6_12._Iacobianformulation
6.3.3. Running the Plug Flow Reactor with Surface Reactions Utility
6 3 4 Initial Condition for PFR Problem]

7. Application Programming Interface
7.1. Thermodynamic Properties

7.1.1. SpecificHeatCapacityPerMass
7.1.2. EnthalpyMass
7.1.3. InternalEnergyMass
7.1.4. EntropyMass

7 2 Chemical Source Term§

mamerarzrarrrwarxrearlaYArrl
7.2.2.NetProductionRatesPerMold
7 2.3 NetProductionRateSurfacePerMol6
7 2.4 NetProductionRateSurfacePerMas§

7 3 Reactor Model§

7.3.1. Ignition OD

7.3.2.—SoureeTerml
13.3. PlugHowReactor
7.3.4. PlugHowReactorRHS
7 3 5 JacobianReducecl

7.3.6. IgnitionaroDNumJacobian

7.3.7_1mlialConditionSurtacel
1.3.8. SimpleSurface

7 4 Kinetic Model - Other Interface§
7 4 1 Smatrixl

7.4.2. Rate0fProgress

8. Summary

29
30
35
38

39
39
40
40
45

49
52
52
53
53
53
53

54
54
54
54

55
55
55
55
56
56
56
57
57

57
58
58

59

Referencea 60

6

LIST OF FIGURES

Figure 4-1. Specific enthalpy h and heat capacity cp for a mixture of 53 species (the set of
species in the GRI-Mech v3.0 model). 19

Figure 6-1. Left frame: Temperature and CH4, 02, CO Mass Fractions; Right frame: Tem-
perature and OH, H, H2 Mass Fractions 37

Figure 6-2. Ignition delay times [s] at P=1 atm for several CH4/air equivalence ratio 0 and
initial temperature values. Results are based on the GRI-Mech v3.0 kinetic model. 38

Figure 6-3. Ignition delay times [s] at lOatm (left frame) and 16atm (right frame) for several
equivalence ratio (vertical axes) and temperature (horizontal axes) values for
iso-Octane/air mixturesi 39

Figure 6-4. Ignition delay times [s] at 34atm (left frame) and 45atm (right frame) for several
equivalence ratio (vertical axes) and temperature (horizontal axes) values for
iso-Octane/air mixturesl 40

Figure 6-5. Gas Temperature (left axis), velocity and density (both on right axis) along the
PFRJ

Figure 6-6. Gas-phase species mass fractions and surface species site fractions.
43
44

Figure 6-7. Temperature, gas-phase species mass fractions, and surface species site frac-
tions for the example parametric study. 47

Figure 6-8. Site fractions for X (empty space), OX and COX. We start this simulation with
an empty surface (X = 1)

7

48

LIST OF TABLES

table 5-1. Uas-phase reaction types.
Table 5-2. Expressions for computing Fi.

8

1 INTRODUCTION

TChem is an open source software library for solving complex computational chemistry problems
and analyzing detailed chemical kinetic models. The software provides support for
• complex kinetic models for gas-phase and surface chemistry,
• thermodynamic properties based on NASA polynomials,
• species production/consumption rates,
• stable time integrator for solving stiff time ordinary differential equations,
• reactor models such as homogenous gas-phase ignition (with analytical Jacobian matrices),

continuously stirred tank reactor, plug-flow reactor.

This toolkit builds upon earlier versions that were written in C and featured tools for gas-phase
chemistry only. The current version of the software was completely refactored in C++, uses an
object-oriented programming model, and adopts Kokkos [2, ti] as its portability layer to make it
ready for the next generation computing architectures i.e., multi/many core computing platforms
with GPU accelerators. We have expanded the range of kinetic models to include surface
chemistry and have added examples pertaining to Continuously Stirred Tank Reactors (CSTR)
and Plug Flow Reactor (PFR) models to complement the homogenous ignition examples present
in the earlier versions. To exploit the massive parallelism available from modern computing
platforms, the current software interface is designed to evaluate samples in parallel, which
enables large scale parametric studies, e.g. for sensitivity analysis and model calibration.

1.1. Nomenclature

In the table below, ro stands for reaction order, for the forward and reverse paths, respectively.

Notation
N spec

gpec

Nss pec

si,nNsec

Nreac

P
P
T
Cp

Description Units
number of species -
number of gas-phase species -
number of surface species
number of surface species in phase n
number of reactions -
gas-phase density kg/m3
thermodynamic pressure Pa
temperature K
mixture heat capacity at constant pressure J/(K.kmol)

Cp,k for species k J/(K.kmol)
cp specific J/(K.kg)

9

Cp,k specific, for species k J/(K.kg)
H mixture molar enthalpy J/kmol

Hk for species k J/kmol
hp specific J/kg
hp* specific, for species k J/kg

S mixture molar entropy J/(kmol.K)
Sk for species k J/(K.kmol)
s specific J/(K.kg)
sk specific, for species k J/(K.kg)

G Gibbs free energy for the mixture J/kmol
Gk for species k J/kmol

g specific J/kg

Yk
Xk

gk specific, for species k
mass fraction of species k
mole fraction of species k

J/kg

Zk site fraction of species k -
(n)
Zk for species k in phase n -

Xk molar concentration of species k kmol/m3
Fr, surface site density of phase n kmol/m2

ck(n) site occupancy by species k in phase n
W mixture molecular weight kg/kmol

Wk for species k kg/kmol
R universal gas constant J/(kmol.K)

kfi forward rate constant of reaction i
(kmourn3)(1-m)

kr
(kmo

i reverse rate constant of reaction i ihn3)(l-m)
s

ili rate of progress of reaction i kmol/(m3.$)

ri sticking coefficient for reaction i
(cinoym3)(1-ro)

thk molar production rate of species k kmol/(m3.$)

gic surface molar production rate of species k kmol/(m2.$)

2. BUILDING TCHEM

TChem is designed and implemented using Kokkos (a performance portable parallel
programming model) and it requires Kokkos and KokkosKernels. For testing, we use the GTEST
infrastructure. Additionally, it can use OpenBLAS or Intel MKL (more precisely we use CBLAS
and LAPACK interface from those libraries).

For convenience, we explain how to build TChem using the following set of environment
variables that users can modify according to their working environments.

/// repositories

export TCHEM_REPOSITORY_PATH=/where/you/clone/tchem/git/repo

export KOKKOS_REPOSITORY_PATH=/where/you/clone/kokkos/git/repo

export KOKKOSKERNELS_REPOSITORY_PATH=/where/you/clone/kokkoskernels/git/repo

export GTEST_REPOSITORY_PATH=/where/you/clone/gtest/git/repo

/// build directories

export TCHEM_BUILD_PATH=/where/you/build/tchem

export KOKKOS_BUILD_PATH=/where/you/build/kokkos

export KOKKOSKERNELS_BUILD_PATH=/where/you/build/kokkoskernels

export GTEST_BUILD_PATH=/where/you/build/gtest

/// install directories

export TCHEM_INSTALL_PATH=/where/you/install/tchem

export KOKKOS_INSTALL_PATH=/where/you/install/kokkos

export KOKKOSKERNELS_INSTALL_PATH=/where/you/install/kokkoskernels

export GTEST_INSTALL_PATH=/where/you/install/gtest

export OPENBLAS_INSTALL_PATH=/where/you/install/openblas

export LAPACKE_INSTALL_PATH=/where/you/install/lapacke

2.1. Download Libraries

Clone Kokkos, KokkosKernels and TChem repositories. Note that we use the develop branch of
Kokkos and KokkosKernels.

git clone https://path.to.tchem/TChem ${TCHEM_REPOSITORY_PATH}

git clone https://github.com/kokkos/kokkos.git ${KOKKOS_REPOSITORY_PATH}

cd ${KOKKOS_REPOSITORY_PATH}; git checkout -- track origin/develop

git clone https://github.com/kokkos/kokkos-kernels.git ${KOKKOSKERNELS_REPOSITORY_PATH}

cd ${KOKKOSKERNELS_REPOSITORY_PATH}; git checkout --track origin/develop

git clone https://github.com/google/googletest.git ${GTEST_REPOSITORY_PATH}

Here, we compile and install the TPLs separately; TChem will then be built against these TPLs.

11

2.2. Building Libraries and Configuring TChem

2.2.1. Kokkos

The example below builds Kokkos on Intel Sandybridge architectures and installs it to
$ { KOKKOS_INS TALL_PATH } . For more details, see [2].

cd ${KOKKOS_BUILD_PATH}

cmake \

-D CMAKE_INSTALL_PREFIX="${KOKKOS_INSTALL_PATH}"

-D CMAKE_CXX_COMPILER="${CXX}" \

-D Kokkos_ENABLE_SERIAL=ON \

-D Kokkos_ENABLE_OPENMP=ON \

-D Kokkos_ENABLE_DEPRECATED_CODE=OFF \

-D Kokkos_ARCH_SNB=ON \

${KOKKOS_REPOSITORY_PATH}

make -j install

To compile for NVIDIA GPUs, one can customize the following cmake script. Note that, for this
case, we use the nvcc_wrapper compiler. The architecture flag indicates that the host
architecture is Intel SandyBridge and the GPU architecture is a Volta 70 generation. With Kokkos
3.1, the CUDA architecture flag is optional (the script automatically detects the correct CUDA
arch flag).

cd ${KOKKOS_BUILD_PATH}

cmake \

-D CMAKE_INSTALL_PREFIX="${KOKKOS_INSTALL_PATH}" \

-D CMAKE_CXX_COMPILER="${KOKKOS_REPOSITORY_PATH}/bin/nvcc_wrapper" \

-D Kokkos_ENABLE_SERIAL=ON \

-D Kokkos_ENABLE_OPENMP=ON \

-D Kokkos_ENABLE_CUDA:BOOL=ON \

-D Kokkos_ENABLE_CUDA_UVM:BOOL=OFF \

-D Kokkos_ENABLE_CUDA_LAMBDA:BOOL=ON \

-D Kokkos_ENABLE_DEPRECATED_CODE=OFF \

-D Kokkos_ARCH_VOLTA70-ON \

-D Kokkos_ARCH_SNB=ON \

${KOKKOS_REPOSITORY_PATH}

make -j install

2.2.2. KokkosKernels

Compiling KokkosKernels follows the Kokkos configuration information now available under
$ { KOKKOS_INS TALL_PATH } . Please note that, on Max OSX, "1ib64" will need to be replaced
by "lib".

cd ${KOKKOSKERNELS_BUILD_PATH}

cmake \

-D cmAKE_INSTALL_PREFIx="${KoKKosKERNELs_INSTALL_PATH}" \

-D CMAKE_CXX_COMPILER="${CXX}" \

-D CmAKE_Cxx_FLAGS="-g" \

-D KokkosKernels_INST_LAYOUTRIGHT:BOOL=ON \

-D Kokkos_DIR="${KOKKOS_INSTALL_PATH}/1ib64/cmake/Kokkos" \

-D KokkosKernels_ENABLE_TPL_LAPACKE:BOOL=ON \

-D KokkosKernels_ENABLE_TPL_CBLAS:BOOL=ON \

-D CBLAS_INCLUDE_DIRS="/opt/local/include" \

$MOKKOSKERNELS_REPOSITORY_PATHI

make -j install

12

The CXX environment variable needs to be set to the C++ compiler of choice. For GPUs, the
compiler is changed to nvcc_wrapper by adding

-D CMAKE_CXX_COMPILER="${KOKKOS_INSTALL_PATH}/bin/nvcc_wrapper"

2.2.3. GTEST

We use GTEST [1] as our testing infrastructure. GTEST can be configured and installed with the
following cmake script.

cd ${GTEST_BUILD_PATH}

cmake \

-D CMAKE_INSTALL_PREFIX="${GTEST_INSTALL_PATH}"

-D CMAKE_CXX_COMPILER="${CXX}" \

$1GTEST_REPOSITORY_PATHI

make -j install

2.2.4. TChem

The following example cmake script compiles TChem on for host computations, linking with the
libraries described in the above e.g., kokkos, kokkoskernels, gtest and openblas. The openblas
and lapacke libraries are required on a host device, providing an optimized version of dense linear
algebra library. With an Intel compiler, one can replace these libraries with Intel MKL by adding
an option TCHEM_ENABLE_MKL=ON instead of using openblas and lapacke. On Mac OSX, we
use the openblas library managed by macports. This version of openblas has different header
names and we need to distinguish this version of the code from others that are typically used on
Linux distributions. To discern the two version of the code, cmake looks for
cblas_openblas . h to check whether the installed version is from macports. This mechanism
can be broken if macports openblas is changed later. The macports openblas version includes the
lapacke interface and one can remove LAPACKE_INSTALL_PATH from the configure script.

cd $ITCHEM_BUILD_PATH1

cmake \

-D CMAKE_INSTALL_PREFIX="${TCHEM_INSTALL_PATH}" \

-D CMAKE_CXX_COMPILER="${CXX}" \

-D CMAKE_BUILD_TYPE=RELEASE \

-D TCHEM_ENABLE_VERBOSE=OFF \

-D TCHEM_ENABLE_KOKKOS=ON \

-D TCHEM_ENABLE_KOKKOSKERNELS=ON \

-D TCHEM_ENABLE_TEST=ON \

-D TCHEM_ENABLE_EXAMPLE=ON \

-D KOKKOS_INSTALL_PATH="${KOKKOS_INSTALL_PATH}" \

-D KOKKOSKERNELS_INSTALL_PATH="${KOKKOSKERNELS_INSTALL_PATH}" \

-D OPENBLAS_INSTALL_PATH="${0PENBLAS_INSTALL_PATH}" \

-D LAPACKE_INSTALL_PATH="${LAPACKE_INSTALL_PATH}" \

-D GTEST_INSTALL_PATH="$IGTEST_INSTALL_PATHI" \

${TCHEM_SRC_PATH}

make -j install

For GPUs, we can use the above cmake script and replace the compiler choice by
-D CMAKE_CXX_COMPILER="${1KOKKOS_INSTALL_PATH}/bin/nvcc_wrappern.

13

3. INPUT FILES

TChem requires several input files to prescribe the modeling choices. For a gas-phase system the
user provides (1) the reaction mechanisms and (2) thermal properties. Alternatively, these can be
provided inside the same file with appropriate keyword selection. For the homogenous OD
ignition utility an additional file specifies the input state vectors and other modeling choices. For
surface chemistry calculations, the surface chemistry model and the corresponding thermal
properties can be specified in separate files or, similarly to the gas-phase chemistry case, in the
same file, with appropriate keywords. Three more files are needed for the model problems with
both gas and surface interface. In additional to the surface chemistry and thermodynamic
properties' files, the parameters that specify the model problem are provided in a separate file.

1. Reaction Mechanism Input File

TChem uses input files that follow the Chemkin Software syntax. A complete description
can be found in Kee et al. [M]

2. Thermal Property Data

TChem currently employs the 7-coefficient NASA polynomials. The format for the data
input follows specifications in Table I of McBride et al. [11]. Support for 9-coefficient
NASA polynomials is expected in the next TChem release.

3. Input State Vectors

The format of the sample.dat file is:

T P SPECIES_NAME1 SPECIES_NAME2 ... SPECIES_NAMEN

T#1 P#1 Y1#1 Y2#1 ... YN#1 (sample #1)

T#2 P#2 Y1#2 Y2#2 ... YN#2 (sample #2)

...

• • •

T#M P#M Y1#M Y2#M ... YN#M (sample #M)

Here T is the temperature [K], P is the pressure [Pa] and SPECIES_NAME1 is the name of
the first gas species from the reaction mechanism input file. Y 1#1 is the mass fraction of
SPECIES_NAME1 in sample #1. The sum of the mass fractions on each row has to be
equal to one since TChem does not normalize mass fractions. New samples can be created
by adding rows to the input file. The excerpt below illustrates a setup for an example with 8
samples using a mixture of CH4, 02, N2, and Ar:

T P CH4 02 N2 AR

800 101325 1.48e-01 1.97e-01 6.43e-01 1.14e-02

800 101325 2.82e-02 2.25e-01 7.34e-01 1.30e-02

800 4559625 1.48e-01 1.97e-01 6.43e-01 1.14e-02

800 4559625 2.82e-02 2.25e-01 7.34e-01 1.30e-02

1250 101325 1.48e-01 1.97e-01 6.43e-01 1.14e-02

14

1250 101325 2.82e-02 2.25e-01 7.34e-01 1.30e-02

1250 4559625 1.48e-01 1.97e-01 6.43e-01 1.14e-02

1250 4559625 2.82e-02 2.25e-01 7.34e-01 1.30e-02

The eight samples in the above example correspond to the corners of a cube in a 3D
parameter space with temperatures between 800 K and 1250 K, pressures between 1 atm to
45 atm, and equivalence ratios (0) for methane/air mixtures between 0.5 to 3.

4. Surface Reaction Mechanism Input File and Thermal Property Data

TChem uses a the specifications in Coltrin et al. [5] for the input file for the surface reaction
mechanism and the corresponding thermodynamic properties for the surface species.

5. Input site fractions

The format of the inputSurf.dat file is:

SURF_SPECIES_NAME1 SURF_SPECIES_NAME2 SURF_SPECIES_NAMEN

Z1#1 Z2#1 ... ZN#1 (sample #1)

Z1#2 Z2#2 ... ZN#2 (sample #2)

...

. • •

Z1#M Z2#M ... ZN#M (sample #M)

where SURF_SPECIES_NAME1 is the name of the first surface species in the surface
mechanism file and Z1#1 is the site fraction of this species for sample #1, and so forth.

15

4. THERMODYNAMIC PROPERTIES

We first present conversion formulas and the gas-phase equation of state, followed by a
description of molar and mass-based expression for several thermodynamic properties.

4.1. Mass-Molar Conversions

The molar mass of the mixture, W, is computed as

Nspec

)047k
k=1 (

Nspec yk

E vTikk=1
(4.1.1)

where Xk and vk are the mole and mass fractions, respectively, of species k, and Wk is the
molecular weight of species k. It is assumed (TChem does not check this), that mole and mass
fractions sum up to one

Nspec Nspec

EXk= yk = 1
k=1 k=1

Mass and mole fractions can be computed from each other as

(4.1.2)

Xk = YkW 1147k, Yk = XkWk 1147 (4.1.3)

The the molar concentration of species k is given by Xk = pYk/Wk = pXklW , and the molar
concentration of the mixture is given by

Nspec

Xk =1,1w (4.1.4)
k=1

For problems that include heterogenous chemistry, the site fractions Zk describe the composition
of species on the surface. The number of surface phases is denoted by Nphase and the site fractions
are normalized with respect to each phase.

E Zvi) - 1 forn = (4.1.5)k 1, • • • N phase •
k=1

Here, Nss},ne, is the number of species on surface phase n. TChem currently handles 1 surface phase
only, Nphase = 1. The surface concentration of surface species k is given by

Ik = 4n)rn/ ak(r1) (4.1.6)

where Fn is the surface site density of surface phase n and ak(n) is the site occupancy number for
species k. ak(n) represents the number of sites in phase n occupied by species k.

16

4.2. Equation of State

The ideal gas equation of state is used throughout the library,

R Nspec Nspec
T L —)

k=1 Wk
T = p—

w
T = E xk)

k=1
RT (4.2.1)=P = p N pR

EkZic XkWk

where P is the thermodynamic pressure, W and Wk are the molecular weights of the mixture and
of species k, respectively, T is the temperature, and Xk is the molar concentration of species k.

4.3. Gas-Phase Species Properties

The standard-state thermodynamic properties for a thermally perfect gas are computed based on
NASA polynomials [I111 The molar heat capacity at constant pressure for species k is computed
as

Cp k
= ap,k T (al 7k T (a2,k + T (a3,k + a4,kT)))

where R is the universal gas constant. The molar enthalpy is computed as

(4.3.1)

Hk fT

R T

k
= p,kdT Hk,To = (clo,k + 1

al (a2,k
+ T (C1 1.3'k a45k T)))) a5,k (4.3.2)

o

The molar entropy is given by

SO f

T

T k a2,k a3k T)))
R T
k =

 dT Sk,T0 = ao,k1nT T (al,k+
(3 4

a6,k
o

(4.3.3)

The temperature units are Kelvin in the polynomial expressions above. Other thermodynamics
properties are computed based on the polynomial fits above. The molar heat capacity at constant
volume C„,k, the internal energy Uk, and the Gibbs free energy Gk are given by

Cv,k = Cp,k — R, Uk = Hk — RT, = Hk — T (4.3.4)

The mixture properties in molar units are given by

Nspec Nspec Nspec Nspec

Cp = E XkCp,k, Cv = E XkG,k, H = E u = E XkUk
k=1 k=1 k=1 k=1

(4.3.5)

where Xk the mole fraction of species k. The entropy and Gibbs free energy for species k account
for the entropy of mixing and thermodynamic pressure

Sk = Rln (Xk P , Gk= Sk—TSk
Patm

17

(4.3.6)

The mixture values for these properties are computed as above

Nspec Nspec

S= E XkSk, G = XkGk
k=1 k=1

The specific thermodynamic properties in mass units are obtained by dividing the above
expression by the species molecular weight, Wk,

(4.3.7)

Cmk = Cp,k/Wk, Cv,k = Cv,k/Wk, hk = Hk/Wk, Uk = Uk/Wk, 4,S2/147k, 4=G(k)/14/k (4.3.8)

and
Sk = Sk/Wk, gk = Gk/Wk (4.3.9)

For the thermodynamic properties in mass units the mixture properties are given by

Nspec Nspec Nspec Nspec Nspec Nspec

Cp = L YkCp,k, Cv = L YkCv,k, h= E Ykhk, u= E Yolk, S = E YkSk) g = E Ykgk
k=1 k=1 k=1 k=1 k=1 k=1

(4.3.10)
where Yk is the mass fraction of species k.

The mixture properties in mass units can also be evaluated from the equivalent molar properties
as

cp=CpIW, c,=C,IW, hk = H/W, u=U1W, s =SIW, g =GIW (4.3.11)

where W is the molecular weight of the mixture.

4.4. Examples

A example to compute the specific heat at constant pressure cp and the specific enthalpy h is
provided in example/TChem_ThermalProperties . cpp. Sections 7.1.2) and 7.1.1)
present more details on the top-level function calls employed in this example. This example can
be used in batch mode, and several samples are computed simultaneously. The next figure was
constructed based on 4 x 105 samples spanning several temperature and equivalent ratio values
for methane/air mixtures.

4.5. Surface Species Properties

The thermal properties of the surface species are computed with the same type of expressions
used by the gas-phase species described above.

18

4.
800 960 1000 1100

Temperature [K]

11000

800

-600

-400

200

Mi
xt
ur
e
En
th
al
py
 [
kJ
/k
g]

1200 800 900 1000 1100 1200
Temperature [K]

Figure 4-1. Specific enthalpy h and heat capacity c1, for a mixture of 53
species (the set of species in the GRI-Mech v3.0 model).

19

5. REACTION RATES

In this chapter we present reaction rate expressions for gas-phase reactions in Section
surface species or between surface and gas-phase species in Section

5.1. Gas-Phase Chemistry

The production rate for species k in molar units is written as

Nreac

thk = E Vkigil Vki = Vjcil
i=1

5.2
5.1 and for

(5.1.1)

where Nreac is the number of reactions and vki and vci are the stoichiometric coefficients of species
k in reaction i for the reactant and product side of the reaction, respectively. The rate-of-progress
of reaction i is qi = WiMi, with (ei corresponding to different reaction types shown in Table

and A given by

cei Reaction Type
1 basic reaction
Xi 3-rd body enhanced, no pressure dependence

Pr' F. unimolecular/recombination fall-off reactions1Pr,
1 1+Pr F. chemically activated bimolecular reactions

Table 5-1. Gas-phase reaction types.

5-1

Nspec v Nspec Vu

A=kfin - kri ri 3e; (5.1.2)
j=1 j=1

The above expressions are presented below.

5.1.1. Forward and Reverse Rate Constants

The evaluation of the forward rate constant typically follows an Arrhenius expression,

Ei
kf = AiTM exp

RT)

20

(5.1.3)

where Ai, A, and Ei are the pre-exponential factor, temperature exponent, and activation energy,
respectively, for reaction i. For reactions with reverse Arrhenius parameters specified, the reverse
rate constant kri is computed similar to kf 1. If the reverse Arrhenius parameters are not specified,
kri is computed as

kri = kf (5.1.4)

where Kci is the equilibrium constant (in concentration units) for reaction i

Nspec
Vki Nspec

Sk HkPatni Ek=1
Kpi and Kpi = exp vki (R — RT

))

Kci RT
k=1

(5.1.5)

When computing the equilibrium constant, the atmospheric pressure, Patm = 1 atm, and the
universal gas constant R are converted to cgs units, dynes/cm2 and erg/(mol.K), respectively.

If a reaction is irreversible, its reverse rate constant is set to zero, kr = O.

5.1.2. Concentration of the "Third-Body"

If the expression "+M" is present in the reaction string, some of the species might have custom
efficiencies for their contribution in the mixture. For these reactions, the mixture concentration is
computed as

Nspec

xi = E
j=1

(5.1.6)

where ai is the efficiency of species j in reaction i and 3e j is the concentration of species j.
Coefficients ai are set to 1 unless specified on auxiliary lines corresponding to specific
reactions.

5.1.3. Pressure-dependent Reactions

If expression "(+M)" is used to describe a reaction, then the reduced pressure Pr, shown in the
expressions presented in Table 5-1 is computed as

o •k
Pri = Xi

k •
(5.1.7)

where Xi is the mixture concentration, possibly enhanced with specific species efficiences for
reaction i.

For reactions that contain expressions like "(+-11m)", where Tin is the name of species in, the
reduced pressure is computed as

koi
Pri =

Kooi

21

(5.1.8)

Reaction Type
1
1/(1+(A/B)2)

Fcent

dTe (aexp (4,) + exp (—MX

Lindemann reaction

Troe reaction

SRI reaction

Table 5-2. Expressions for computing F,.

• For unimolecular/recombination fall-off reactions the Arrhenius parameters for the
high-pressure limit rate constant, koo, are provided on the reaction line, while the parameters
for the low-pressure limit rate constant ko are given on the auxiliary reaction line that
contains the keyword LOW.

• For chemically activated bimolecular reactions the parameters for k0 are given on the
reaction line while the parameters for lc. are given on the auxiliary reaction line that
contains the keyword HIGH.

Table 5-2shows the expressions for Fi (see also Table

• For the Troe form, Fcent, A, and B are

5-1)

T**
Fcent = (1 — a) exp + a exp T + exp , (5.1.9)

A = log10Pri — 0.67logio Fcent — 0.4, B = 0.806 — 1.1762logioFcent 0.141og10Pri
(5.1.10)

Parameters a, T*** , T* , and T** are provided (in this order) in the kinetic model description
for each Troe-type reaction. If T** is omitted, only the first two terms are used to compute

Fcent.

• For the SRI form exponent X is computed as

2X = (1 + (logio PT)

—1

(5.1.11)

Parameters a, b, c, d, and e are provided in the kinetic model description for each SRI-type
reaction. If d and e are omitted, these parameters are set to d = 1 and e = 0.

Miller [7] has developed an alternative expression for the pressure dependence for fall-off
reactions that cannot be fitted with a single Arrhenius rate expression. This approach employs
several Arhenius expressions

)
Al exp

Eij

RT
i=1

22

(5.1.12)

corresponding to a pressure p1 in a specified set Iipi, P2, • • . . The rate constant at an arbitrary
pressure p, 131 <= P < Pl-Fi, is computed by linear interpolation of log kf as a function of log p

logkf7i±i(T)— log k f 1(T)
log kf (T, p) = log kf,i(T) + (log p — log pl) (5.1.13)

— log pi

For p < pi the Arrhenius rate is set to kf = kf,i, and similar for p > pN,kf =kf,N, where N is the
number of pressures for which the Arrhenius factors are provided, for a specific reaction. This
formulation can be combined with 3rd-body information, e.g. Wi = Xi for a specific reaction i.

5.1.4. Note on Units for Reaction Rates

In most cases, the kinetic models input files contain parameters that are based on calories, cm,
moles, kelvin, seconds. The mixture temperature and species molar concentrations are necessary
to compute the reaction rates and the species production rates. Molar concentrations computed as
illustrated in Section 4.1 are in [kmol/m3]. For the purpose of reaction rates evaluation, the
concentrations are transformed to [mol/cm3]. The resulting reaction rates and species production
rates are in [mol/(cm3.$)]. In the last step these are converted to SI units [kg/(m3.$)] (in molar
units) and [kg/(m3.$)] (in mass units).

5.1.5. Example

The production rate for species k in mole units Cik [kmol/m3/s] is computed via the function call
shown in Section 7.2.2)) and in mass units thkWk [kg/m3/s] via the function call shown in
Section 7.2.1. The example provided in
src/ex amp 1 e T Chem_Ne tPro du ct i onRat esPe rMa s s . cpp computes the production
rate in mass units for gas-phase species.

5.2. Surface Chemistry

The production rate for gas and surface species k in molar units is written as

Nreac

S'k = Vki = Vccil
i=1

(5.2.1)

where Nreac is the number of reactions on the surface phase and vL and vc"i are the stoichiometric
coefficients of species k in reaction i for the reactant and product side of the reaction,
respectively.

The rate of progress qi of the ith surface reaction is equal to:

Nspec / Nspec

q, = kf, n ;it - kri n
j=1 j=1

23

(5.2.2)

Where 3e; is the concentration of the species j. If the species j is a gas species, this is the molar
concentration, Xi = Yjp/147j. If, on the other hand, species j is a surface species, it surface molar
concentration is computed by Eq. (4.1.6).

5.2.1. Forward and Reverse Rate Constants

The forward rate for surface reactions are computed as described in the gas phase. If parameters
are not specified, the reverse rate is computed via the equilibrium constant as:

kri = kf ,i Kc,i (5.2.3)

The equilibrium constant for the surface reaction i is computed as

Nfpec N hase
P° (Ek=1 Vki) h

lc° =KP'i (RT) (rn)44:7(n,i).
n=1

(5.2.4)

Here, N,g,pec and Nsspec represent the number of gas-phase and surface species, respectively, and
p° = latm. TChem currently assumes the surface site density Fn for all phases to be constant.
The equilibrium constant in pressure units is computed as

AS° AM)
Kp,i = exp (—

R RT
(5.2.5)

based on entropy and enthalpy changes from reactants to products (including gas-phase and
surface species). The net change for surface of the site occupancy number for phase n for reaction
i is given by

s,n

Acryz, = E Vki6k(11)
k=1

5.2.2. Sticking Coefficients

The reaction rate for some surface reactions are described in terms of the probability that a
collision results in a reaction. For these reaction, the forward rate is computed as

k f = r,tni
tot

RT

27rW

(5.2.6)

(5.2.7)

where yi is the sticking coefficient, W is the molecular weight of the gas-phase mixture, R is the
universal gas constant, Ftot is the total surface site concentration over all phases, and m is the sum
of stoichiometric coefficients for all surface species in reaction i.

24

5.2.3. Note on Units for surface production rates

The units of the surface and gas species concentration presented above are in units of kmol/m2
(surface species) or kmol/m3 (gas species). To match the units of the kinetic model and compute
the rate constants, we transformed the concentration units to mol/cm3 or mol/cm2. The resulting
rate constant has units of mol/cm2. In the last step these are converted to SI units [kg/(m2.$)].

5.2.4. Example

The production rate for species k in in molar units Šk [kmole/m2/s] is computed through the
function call listed in Sec. 7.2.3 and in mass units ŠkWk [kg/m2/s] via the function call listed in
Sec. 7.2.4). The example provided in
src/example/TChem_NetproductionsurfaceperMass.cpp

computes the production rates for gas-phase and surface species in mass units.

25

6. REACTORS

We present the setup for canonical examples that are available through TChem. All models
presented in this section are setup to be run in parallel, possibly exploiting several layers of
parallelism available on the platform of choice. We start with a description of a 2-nd order
backward differentiation formula (BDF2) time stepping algorithm in Section 6.1. BDF2 was
implemented via Kokkos and takes advantage of parallel threads available through the Kokkos
interface. We then present results for homogenous batch reactors in Section 6.2, and the plug-flow
reactor, in Section 6.3

6.1. Time Integrator

When solving a system of stiff ordinary differential equations (ODEs), the time step size is
limited by a stability condition rather than a truncation error. To obtain a reliable solution, we rely
on the 2nd order Trapezoidal Backward Difference Formula (TrBDF2)[3]. The TrBDF2 scheme
is a composite single step method, and is 2nd order accurate and L-stable.

Consider a following system of ODEs.

dui
i 1, (6.1.1)

dt
= fi(u,t), = . . . ,N

As its name states, the method advances the solution from tn to an intermediate time
tn+7 = tn yAt by applying the trapezoidal rule.

At Atj.
tin+7 ryin-ky = Un 71,

_e
n (6.1.2)

Next, it uses BDF2 to march the solution from tn+7 to tn+1 = tn + At as follows.

1 — y 1 (1 — y)2
At (6.1.3)fn-pl =un+i —

2 — y 7(2 — un+7 7(2 — 7) un

We solve the above non-linear equations iteratively using the Newton method. The Newton
equation of the first trapezoidal step is given by:

(k)

°f
I
() (5u(k) = —(u.,19ky — un) + 4 (.fizi-(1, + fn) (6.1.4)y
2 thzij'

[

26

This step is followed by Newton iterations to solve the BDF2 step

[I
2 —
 YAt

(fdu
) (k)1 614(k) —

— U(k)
1 (1 — y)2 1 — y A. (k)

(n+1 7(2 7) un±y + 7(2 7) tin) + 2 tit fn+1

Here, we denote a Jacobian as J = d f I du. The modified Jacobian's used for solving the Newton
equations of the above trapezoidal rule and the BDF2 are given as follows

At
At r = I — y-

2
J

1 — y
Abd f I

2 — 7At
J

while their right hand sides are defined as

btr (UtClic)py Un) yiAt (ey+fn)

1 , (1 — y)2
bbd f = — (t n(k+) 1 7(2 7) un+y 7(2 7)Un

1 — y (k)
+ 2 — Atfn+1

(6.1.5)

(6.1.6)

(6.1.7)

In this way, a Newton solver can iteratively solves a problem A(u)Su = b(u) followed by the
solution update u = u + 3u.

The timestep size At can be adapted within a range (At,nin, At/flax) using a local error estimator.

1 1 —372 47-2
error 2kyAt (-

17
fn

7(1 -
 fn-Hy +

1 —
fn-p1) where ky =

12(2

+

This error is minimized when using a 7 = 2 —

6.1.1. Timestep Adaptivity

(6.1.8)

TChem uses weighted root-mean-square (WRMS) norms to estimate the time stepping error. The
same approach is used in Sundial package[8]. A weighting factor is computed as

wi = 1/ (rtoliluil+ atoli) (6.1.9)

and the normalized error norm is computed as follows

norm = i (errori *14)02 1 m(
i

(6.1.10)

where errori is given by Eq. (6 1-81). An error norm value close to 1 is considered small and the
time step size is increased. If the error norm is bigger than 10, the time step size decreases by
half.

27

6.1.2. lnterface to Time lntegrator

Our time integrator advances each sample in time independently in a parallel for. A namespace
"Impr is used to define a code interface for an individual sample.
TChem::Impl::TimeIntegrator::team_invoke_detail(

/// kokkos team thread communicator

const MemberType& member,

/// abstract problem generator

const ProblemType& problem,

/// control parameters

const ordinal_type& max_num_newton_iterations,

const ordinal_type& max_num_time_iterations,

/// absolute and relative tolerence size 2 array

const RealTypelDViewType& tol_newton,

/// a vector of absolute and relative

const RealType2DViewType& tol_time,

/// \Delta t input, min, max

const real_type& dt_in,

const real_type& dt_min,

const real_type& dt_max,

/// time begin and end

const real_type& t_beg,

const real_type& t_end,

/// input state vector at time begin

const RealTypelDViewType& vals,

/// output for a restarting purpose:

const RealTypeODViewType& t_out,

const RealTypeODViewType& dt_out,

const RealTypelDViewType& vals_out,

const WorkViewType& work) {

/// A pseudo code is illustrated here

computing J {prob} and f

tolerence size Nspec x 2

time, delta t, state vector

to describe the workflow

/// This object is used to estimate the local errors

TrBDF2<problem_type> trbdf2(problem);

/// A {tr} and b {tr} are computed using the problem provided J {prob} and f

TrBDF2_Partl<problem_type> trbdf2_partl(problem);

/// A {bdf} and b {bdf} are computed using the problem provided J {prob} and f

TrBDF2_Part2<problem_type> trbdf2_part2(problem);

for (ordinal_type iter=0;iter<max_num_time_iterations && dt != zero;++iter) I

/// evaluate function f n

problem.computeFunction(member, u_n, f_n);

/// trbdf_partl provides A {tr} and b_{tr} solving A {tr} du = b_{tr}

/// and update u_gamma += du iteratively until it converges

TChem::Impl::NewtonSolver(member, trbdf_partl, u_gamma, du);

/// evaluate function f gamma

problem.computeFunction(member, u_gamma, f_gamma);

/// trbdf_part2 provides A {bdf} and b {bdf} solving A {bdf} du = b {bdf}

/// and update u_np += du iteratively until it converges

TChem::Impl::NewtonSolver(member, trbdf_part2, u_np, du);

/// evaluate function f np

problem.computeFunction(member, u_np, f_np);

/// adjust time step

trbdf2.computeTimeStepSize(member,

dt_min, dt_max, tol_time, f_n, f_gamma, f_np, /// input for error evaluation

dt); /// output

/// account for the time end

dt = ((t + dt) > t_end) ? t_end t : dt;

1

28

dT 1 Nspecv

cpkWknk = STndt t'CP k=1

dYk 1

/// store current time step and state vectors for a restarting purpose

This "TimeIntegrator code requires the user to define a problem object. A problem class should
include the following interface in order to be used with the time integrator.

template<typename KineticModelConstDataType>

struct MyProblem 1

ordinal_type getNumberOfTimeODEs();

ordinal_type getNumberOfConstraints();

/// the number of equations should be sum of number of time ODEs and number of constraints

ordinal_type getNumberOfEquations();

/// temporal workspace necessary for this problem class

ordinal_type getworkspacesize();

/// x is initialized in the first Newton iteration

void computeInitValues(const MemberType& member,

const RealTypelDViewType& x) const;

/// compute f(x)

void computeFunction(const MemberType& member,

const RealTypelDViewType& x,

const RealTypelDViewType& f) const;

/// compute J (prob} at x

void computeJacobian(const MemberType& member,

const RealTypelDViewType& x,

const RealType2DViewType& J) const;

};

6.2. Homogenous Batch Reactors

In this example we consider a transient zero-dimensional constant-pressure problem where
temperature T and species mass fractions for Nsp„ gas-phase species are resolved in a batch
reactor. In this problem an initial condition is set and a time integration solver will evolve the
solution until a time provided by the user.

For an open batch reactor the system of ODEs solved by TChem are given by:

Energy equation

Species equation

A:" 1---Nspec

where p is the density, cp is the specific heat at constant pressure for the mixture, 11)k is the molar
production rate of species k, Wk is its molecular weight, and hk is the specific enthalpy.

29

6.2.1. Jacobian Formulation

Efficient integration and accurate analysis of the stiff system of ODEs shown above requires the
Jacobian matrix of the rhs vector. In this section we will derive the Jacobian matrix
components.

Let
4:13 = Y2, • • • YNspecIT

by the denote the variables in the lhs of the OD system and let

= {P ,P,T,171,172, • • • ,11N,,}T

be the extended state vector. The OD system can be written in compact form as

dt
f (c13) and

dt
— f (43)

where f = {ST ,SY„ . . . SyNspec}T and f = {S p , SP,ST,SY„ SYNspec}T . The thermodynamic
pressure P was introduced for completeness. For open batch reactors P is constant and Sp O.
The source term S p is computed considering the ideal gas equation of state

Yi
P = pR L—T

WL

with P=const and using the expressions above for ST and 54,

Nspec Nspec

S p = -147 E thk E thovkhk
k=1 CP

T
k=1

Let j and J be the Jacobian matrices corresponding to f (cD) and f (43), respectively. Chain-rule
differentiation leads to

fu fu afu ap
dv dv dp dv

Note that each component u of (13 is also a component of 43 and the corresponding rhs
components are also the same, L (43) = fu(43)•

Evaluation of f components

We first identify the dependencies on the elements of 43 for each of the components of f

• fi = Sp. We postpone the discussion for this component.

• /2 = Sp =

30

• f3 = ST. ST is defined above. Here we highlight its dependencies on the elements of cio

Nspec

cp =E Ykcpk(T), hk =hk(T), and thk = thk(T ,X1, X2 , • • • XNspei
k=1

where Xk is the molar concentration of species k, Xk = PYk /Wk.

d 13 1 L (0)k d thk
131

) ,Enk j32

dp pcp p dp

13,3
df3 1 dc

dT dT

p, hick 1 1 d thk_
pcp12: Lktudk thkp iczpEh:dT

1
13

d13
,3+1 = = CP/ Lhkthk pcp ay; — • • ,Nspecdyi pcp -

(6.2.1)

(6.2.2)

(6.2.3)

• f3+k = Syk

df3-4 Wk (a thk thk) ; d f3+k ,-,
f3+k,1 = , .13-4,2 = alp u, (6.2.4)

dp p dp p

d f3-4 _Wkdthk j- df3+k Wk d thk
J3+k,3 = i 1(1, 2, ... ,Nspec (6.2.5)

dT p di' ' 3+1c,3+i = ay; = p dY. ' ' =

The values for heat capacities and their derivatives are computed based on the NASA
polynomial fits as

dc dc
dlik

p
P = C

Pk' dT d —
EYk

dc

T

dC

T

k
Pk = Rk(al,k+T (2a2,k T (3a3,k 4a4,kT)))
 d

The partial derivatives of the species production rates, thk(T , Xi, X2, ...), are computed as as

d thk

dp

dthk

dYj

NspeC dthk dX1 d thk dT dthk dp dthkE
T,Y
=

1 1 —1 -I)
 +

dT dp dp dp =

Nspec

 d3C1'
(6.2.6)

0 0

NspeC d d d thk d T dthk dp p dthk= E — + — = —a3ei dY; aT dYi dp dYi d'ejp,T,1 1 1=1
o o

The steps for the calculation of 4, and are itemized below

• Derivatives of production rate thk of species k

Nreac dok Nreac dqi dthk Nreac d qi
thk = E = E — = E Vki

i=1 ax,

31

(6.2.7)

• Derivatives of rate-of-progress variable qi of reaction i

aqi aq• dq• dce• aq.
— = - ,4`•+%'•
aT aT aT ax, t L

• Derivatives of Wi

- Basic reactions Vi = 1: d(6°-aT -

- 3-rd body-enhanced reactions Wi = Xi: adf,i 0, 3ew; = ail

- Unimolecular/recombination fall-off reactions Wi = 1%iFi

dWi 1 a Pri Pri d

d T (1 + pr)2 dT
 Fi+ 1+Pri dT

1 d Pri Pri dFi

dx1 (1+Pri)2 axl
+ 1 + Pri ax1

(6.2.8)

(6.2.9)

koi ic.i .A.. x d Pri eoik-i-koje..i ,
koi —

a Pri koi ryPri = i ,, = kli '1' dXi
—

il•

, koi x d Pri eciik—i—koile.i x-Pii = k..i .,...in , = kii .A.1n, 'Y:31: = tom" where Shn is Kroenecker

delta symbol.

For Lindemann form Fi = 1 g . g. O.
For Troe form

d Fi d Fi d Fcent + d Fi d Pri

dT d Fcent dT dPri dT '
dFi dFi d Fcent + dFi d Pri

aXi dFcent dX1 d Pri dX1...-...,,,--,
o

dF,

dFcew

F
 F ln Fcent
Fcent (1 + (V) B3 A 2

(1 ± 6)2)

dFi
= F in Fcent

(2A) AprB - BprA

dFi d Pri

d Pri dxl

B3 (
1+ G3)

d Pr,

where

2) 2

(2A) AFB-BFA

(6.2.10)

(6.2.11)

(6.2.12)

(6.2.13)

dA 0.67 dB 1.1762
AF

et
= n r7., B F

F
= (6.2.14)

cent Fcent ln 10 ' d-cent Fcent ln 10
dA 1 dB 0.14

Apr = = Bpr = = (6.2.15)
d Pri Pri ln 10 ' d Pri Pri ln 10

dFcew 1-a (T a (T T** (T**exp
dT T*** T***) T*

exp

T*

+

) T2

exp

T
(6.2.16)

32

* For SRI form

(e dX a Pri ln exn + exp
T T Pri T T

± X T
4cexp (4) — eXP

(6.2.17)
aexp (4) +exp (4)

=F ln (a exp (--T exp
T)) dX Pri

Pri ()XI
(6.2.18)

Fi

dX
 = X

22 1og1 0 Pri
(6.2.19)

aPri Pri ln 10

— Chemically activated bimolecular reactions: Wi = i±pri

(9%1 1 a Pri 1 Fi
(6.2.20)

aT (1 +pri)2 dT
+

1 +Pri aT

1 Pri 1 aFz
(6.2.21)

d3e/ (1 + Pri)2 axi
Fi+

1+ Pri ()Xi

Partial derivatives of Pri and Fi are computed similar to the ones above.

• Derivatives of

()A Nspec , Nspec „

aT
=ki

fi
xv.ji

ri
n

1=1
(6.2.22)

i=1

Frjspiec xufij
d kf iii(iFfj\:s27 krivi;

(6.2.23)
axi xl

- kfi= AiTA exp (—R4,) = Ai exp (pi ln T — 7,t) , where Tai = Ei1R. The derivative

with respect to temperature can be calculated as efi = k+ (A +

— if reverse Arrhenius parameters are provided, kiri is computed similar to above. If kri is
computed based on k.fi and the equilibrium constant Kci, then its derivative is
computed as

kfi
k f .Kci kf y• (Pi + 7+.i)

kri = =
Kci Kci

kfi

Kci Kci

= (A ±T;i) _KKCD
(6.2.24)

c

vNspec
(ENkspiec vkigk) _EIA:spiec vkigfSince Kci = (Pr)L*=1 p ex It follows that

where gik is computed based on NASA polynomial fits as

as,k) aLk (a2,k (a3,k a4,k))
gk (ao,k — 1

T
+

2
+T

3
+T

4
+

5
T

Efficient evaluation of the .1 terms

• Step 1:

.13-14,2 = 0, (6.2.25)

Wk a thk
f3±k

Wk

p

c dcej mr)mf,
Nreac
v 11„.;%0j
j=1

. kfri

ri kri ,'
3 = p dT

rrea
L Vic;
j=i dT

(71,f,Kfi

[Wk d thk d thk Wk
Nreac aWk

13±k3+i aY: W Vkj d3ei13 - , dIE —i i j—i

i = 1, 2, • • • , Nspec

(6.2.26)

Nreac
• — j) v,„,e;

j=1

Here R./ and Mrj are the forward and reverse parts, respectively of Mj:

Nspec

j=kfi n Xi ,

i= 1

Nspec Vii

= krj
i=l

• Step 2: Once13-4,3-ki are evaluated for all i, then 13-4,1 is computed as

• Step 3:

Wk (d thk

p dp
(bk)

(6.2.27)

TIT ,..,. Nspec,:s Nspec dth, 1
vvkwk + E yi:i3+0+iWk (wk + V yi c —p p iii= 1 d3ei P

)

P i=i

= — E,
Nspec d

= — — E
Nspec

-13,2
pCp i=1 p d p

Nspec
CP i=l

1 1 d C D iVs‘:-,Pec 1 Nic-,Pec d thi

PCp cp dT i 1
_ L vvihithi

—
E vvicpithi — loci, i2,_1 147,Iii

Nspe
i=t dT

4,3 =

[1 1 C AisPec h 1 Nspec L
P E Wirlithi — E vvicpioi _ _ E nih+i,3

PCp cp T i l i=l CP i=1

34

(6.2.28)

(6.2.29)

Evaluation of J components

• Temperature equation

• Species equations

dp
=4,3

dp
.111+k =

.13,3+k+j3,1aYk

dp
Ji = +

dp
4,1-rk = 4+1,3-4 + 4+1,1 (y,k, k — 2,... Ns pec

(6.2.30)

(6.2.31)

For P=const density is a dependent variable, calculated based on the ideal gas equation of
state:

P=
ec Y

RTEk=1 Wk

The partial derivaties of density with respect to the independent variables are computed as

dp p dp p dp pW

aP P' aT T' dyk

6.2.2. Running the OD lgnition Utility

Wk •

The executable to run this example is installed at TCHEM_INSTALL_PATH/example/, and
the inputs parameters are (. /TChem_IgnitionZeroDSA.x --help):

options:

--OnlyComputeIgnDelayTime bool If true, simulation will end when Temperature is equal

to T_threshold

(default: --OnlyComputeIgnDelayTime=false)

--T_threshold double Temp threshold in ignition delay time

(default: --T_threshold=1.5e+03)

--atol-newton double Absolute tolerence used in newton solver

(default: --atol-newton=1.0e-10)

--chemfile string Chem file name e.g., chem.inp

(default: --chemfile=chem.inp)

--dtmax double Maximum time step size

(default: --dtmax=1.00e-01)

--dtmin double Minimum time step size

(default: --dtmin=1.00e-08)

--echo-command-line bool Echo the command-line but continue as normal

--help bool Print this help message

--inputsPath string path to input files e.g., data/inputs

(default: --inputsPath=data/ignition-zero-d/C0/)
--max-newton-iterations int Maximum number of newton iterations

(default: --max-newton-iterations=100)

--max-time-iterations int Maximum number of time iterations

(default: --max-time-iterations=1000)

--output_frequency int save data at this iterations

(default: --output_frequency=-1)
--rtol-newton double Relative tolerance used in newton solver

(default: --rtol-newton=1.0e-06)

--samplefile string Input state file name e.g.,input.dat

35

(default: --samplefile=sample.dat)

--tbeg double Time begin

(default: --tbeg=0.0)

--team-size int User defined team size

(default: --team-size=-1)

--tend double Time end

(default: --tend=1.0)

--thermfile string Therm file namee.g., therm.dat

(default: --thermfile=therm.dat)

--time-iterations-per-interval int Number of time iterations per interval to store qoi

(default: --time-iterations-per-interval=10)

--tol-time double Tolerance used for adaptive time stepping

(default: --tol-time=1.0e-04)

--use_prefixPath bool If true, input file are at the prefix path

(default: --use_prefixPath=true)

--vector-size int User defined vector size

(default: --vector-size=-1)

--verbose bool If true, printout the first Jacobian values

(default: --verbose=true)

Description:

This example computes the solution of an ignition problem

GRIMech 3.0 model

We can create a bash scripts to provide inputs to TChem. For example the following script runs an
ignition problem with the GRIMech 3.0 model NAT

exec=$TCHEM_INSTALL_PATH/Tchem_IgnitionzeroDSA.x

inputs=$TCHEM_INSTALL_PATH/data/ignition-zero-d/gri3.0/

save=1

dtmin=le-8

dtmax=le-3

tend=2

max_time_iterations=260

max_newton_iterations=20

atol_newton=le-12

rtol_newton=le-6

tol_time=le-6

$exec --inputsPath=$inputs --tol-time=$tol_time --atol-newton=$atol_newton --rtol-newton=

$rtol_newton --dtmin=$dtmin --max-newton-iterations=$max_newton_iterations --output_frequency

=$save --dtmax=$dtmax --tend=$tend --max-time-iterations=$max_time_iterations

In the above bash script the "inputs" variables is the path to where the inputs files are located in
this case (TCHEM_INSTALL_PATH/example/data/ignition-zero-d/gri3 . 0). In
this directory, the gas reaction mechanism is defined in "chem.inp" and the thermal properties in
"therm.dat". Additionally, "sample.dat" contains the initial conditions for the simulation.

The parameters "dtmiC and "dtmax" control the size of the time steps in the solver. The decision
on increase or decrease time step depends on the parameter "tol_time. This parameter controls
the error in each time iteration, thus, a bigger value will allow the solver to increase the time step
while a smaller value will result in smaller time steps. The time-stepping will end when the time
reaches "tenr. The simulation will also end when the number of time steps reache
"max_time_iterations". The absolute and relative tolerances in the Newton solver in each
iteration are set with "atol_newtoe and "rtol_newtoe, respectively, and the maximum number of
Newton solver iterations is set with "max_newton_iterations".

36

The user can specify how often a solution is saved with the parameter "save". Thus, a solution
will be saved at every iteration for this case. The default value of this input is —1, which means
no output will be saved. The simulation results are saved in "IgnSolution.dar, with the following
format:

iter t dt Density[kg/m3] Pressure[Pascal] Temperature[K] MF_SPECIES1 MF_SPECIESN

where MF_SPECIES1 respresents the mass fraction of species #1, and so forth. Finally, we
provide two methods to compute the ignition delay time. In the first approach, we save the time
where the gas temperature reaches a threshold temperature. This temperature is set by default to
1500K. In the second approach, save the location of the inflection point for the temperature
profile as a function of time, also equivalent to the time when the second derivative of temperature
with respect to time is zero. The result of these two methods are saved in files
"IgnitionDelayTimeTthreshold.dat" and "IgnitionDelayTime.dar, respectively.

GRIMech 3.0 results

The results presented below are obtained by running
TCHEM_INSTALL_PATH/example/TChem_IgnitionZeroDSA.x with an initial
temperature of 1000K, pressure of latm and a stoichiometric equivalence ratio (0) for
methane/air mixtures. The input files are located at
TCHEm_INSTALL_PATH/example/data/ignition—zero—d/gri3 . 0/ and selected
parameters were presented above. The outputs of the simulation were saved every iteration in
"Ignsolution.dar. Time profiles for temperature and mass fractions for selected species are
presented in Figs.

2500

E 1500

1000

6-1

-1

— Temperature

--- CH4

--- 02

--- CO
1.099 1.100 1.101 1.102

-1

_,r
0.6 0.8 1.0 1.2

Time [5]
1.4 1.6

0.20 2500

0.15.°
1:12 2000

0.10 It 1-
tts

1/1 _
E 1500ro

0.05 1.099 1.100 1.101 1.102

— Temperature

--- OH

- H

--- H2

0.010

0.008 c
o

0.006 ,Y3
ii

0.004 ,u.ri

a
0.002

0.00 1000 0.000

0 7 0.8 0.9 1.0 1 1 1.2 1.3 1.4 1 5
Time [s]

Figure 6-1. Left frame: Temperature and CH4, 02, co Mass Fractions; Right
frame: Temperature and OH, H, H2 Mass Fractions

The ignition delay time values based on the two alternative computations discussed above are
1.100791s and 1.100854s, respectively. The scripts to setup and run this example and the
jupyter-notebook used to create these figures can be found under
TCHEM_INSTALL_PATH/example/runs/gri3.0_IgnitionzeroD.

37

GRIMech 3.0 results parametric study

Fig. 6-2 shows the ignition delay time as a function of the initial temperature and equivalence
ratio values. These results are based on settings provided in
TCHEM_INSTALL_PATH/example/runs/gri3 . O_IgnDelay and correspond to 100
samples. "TChem_IgnitionZeroDSA.x" runs these samples in parallel. The wall-time is between
200 — 300s on a 3.1GHz Intel Core i7 cpu. We also provide a jupyter-notebook to produce the

Ignition delay time [s] at P=latm

0.8 0 9 1.0 1.1
1000/T

1.2

1102

100
>,
co

Figure 6-2. Ignition delay times [s] at P=1 atm for several CH4/air equivalence
ratio 0 and initial temperature values. Results are based on the GRI-Mech
v3.0 kinetic model.

sample file "sample.dat" and to generate the figure presented above.

6.2.3. lgnition Delay Time Parameter Study for lsoOctane

We present a parameter study for several equivalence ratio, pressure, and initial temperature
values for iso-Octane/air mixtures. The iso-Octane reaction mechanism used in this study consists
of 874 species and 3796 elementary reactions [12]. We selected four pressure values,
{10,16,34, 45 } [atm]. For each case we ran a number of simulations that span a grid of 30 initial
conditions each for the equivalence ratio and temperature resulting in 900 samples for each
pressure value. Each sample was run on a test bed with a Dual-Socket Intel Xeon Platinum
architecture.

The data produced by this example is located at
TCHEM_INSTALL_PATH/example/runs/isoOctane_IgnDelay. Because of the time
to produce a result we save the data in a hdf5 format in i s o0 ct ane I gnD e 1 a yB lake . hdf 5.
Figs. 6-3 and 6-4 show ignition delay times results for the conditions specified above. These
figures were generated with the jupyter notebook shared in the results directory.

38

3
Ignition delay time [s] at P=10atm

0.8 0.9 1.0 1.1
1000/T

1.2

10°
13Ignition delay time [s] at -16atm

3

10-1 -e-
o
Ti] 2

10-2 (1.)

ai

7>3
'5

10-3
o-
LLI

1

.10-4

.10-3
8 0.9 1.00

1000fT
1.1 1.2

I

Figure 6-3. Ignition delay times [s] at lOatm (left frame) and 16atm (right
frame) for several equivalence ratio (vertical axes) and temperature (hori-
zontal axes) values for iso-Octane/air mixtures.

100

10-1

10-2

10-3

10-4

10-5

6.3. Plug Flow Reactor (PFR) Problem with Gas and Surfaces Reactions

6.3.1. Problem Definition

The plug flow reactor (PFR) example employs both gas-phase and surface species. The PFR is
assumed to be in steady state, therefore a system of differential-algebraic equations (DAE) must
be resolved. The ODE part of the problem correspond to the solution of energy, momentum, total
mass and species mass balance. The algebraic constraint arises from the assumption that the PFR
problem is a steady-state problem. Thus, the surface composition on the wall must be
stationary.

The equations for the species mass fractions yk, temperature T, axial velocity u, and continuity
(represented by density p) resolved by TChem were derived from Ref. [9].

dYk

dz

dT

dz

du

dz

pu
—thkWk+ r ŠkWk

1 Nx'gle.,'
thkWkhk

pucp k

N
fpec

E gkwk - -
PAc k=1 um W dz

k=1

dp Pr Nf „ p du
— = — L gkwk- Tizdz uAc k

39

p/r.

Nfpec

A Yk ŠJTV;
puric j_i

Ngpecprl

L

Škinhk

puAccp k=1
Nf e1 dT dyk

(— — + T E)
dz Wk

(6.3.1)

(6.3.2)

(6.3.3)

(6.3.4)

Ignition delay time [s] at P=34atm

0.8 0.9 1.0 1.1
1000/T

1.2

Ignition delay time [s] at P=45atmno 10°

10-1 10-1

o
-W12

Icr2 10-2

(73

10-3
0-
1

10-4 10-4

10-5
0.8 0.9 1.0

10-5
1.1 1:2

1000fT

Figure 6-4. Ignition delay times [s] at 34atm (left frame) and 45atm (right
frame) for several equivalence ratio (vertical axes) and temperature (hori-
zontal axes) values for iso-Octane/air mixtures.

PZ

where 7= , Pp" _ , m = 1 —
pu

A, is the surface area, Pr' is the surface chemistry parameter. In the
in?

equations above Šk represents the surface chemistry production rate for a gas-phase species k.

Algebraic constraint
sk = 0 k = 1, . . . ,AT:p„.

Here n„ represent all surface species.

The number of ODEs is equal to the number of gas-phases species with three additional equations
for thermodynamic temperature, continuity and momentum. The number of constraints is equal to
the number of surfaces species. This PFR formulation assumes that surface reactions are taking
place on the channel wall and gas-phase reactions inside the channel Wall friction and heat
transfer at the wall are neglected in this example.

6.3.2. Jacobian Formulation

The current implementation uses a numerical jacobian based on forward finite differences [13].

6.3.3. Running the Plug Flow Reactor with Surface Reactions Utility

The executable for this example is installed under TCHEM_INSTALL_PATH/example/. The
inputs for this example are obtained through

./Tchem_PlugFlowReactor.x --help

40

Usage: ./Tchem_PlugFlowReactor.x [options]
options:
--Area double Cross-sectional Area

(default: --Area=5.3e-04)

--Pcat double Chemically active perimeter,

(default: --Pcat=2.6e-02)

--atol-newton double Absolute tolerance used in newton solver

(default: --atol-newton=1.e-12)

--batchsize int Batchsize the same state vector described in state file

is cloned

(default: --batchsize=1)

--chemSurffile string Chem file name e.g., chemSurf.inp

(default: --chemSurffile=chemSurf.inp)

--chemfile string Chem file name e.g., chem.inp

(default: --chemfile=chem.inp)

--dzmax double Maximum dz step size

(default: --dzmax=1.0e-06)

--dzmin double Minimum dz step size

(default: --dzmin=1.0e-10)

--echo-command-line bool Echo the command-line but continue as normal

--help bool Print this help message

--initial_condition bool If true, use a newton solver to obtain initial

condition of the constraint

(default: --initial_condition=True)

--inputSurffile string Input state file name e.g., inputSurfGas.dat

(default: --inputSurffile=inputSurf.dat)

--inputVelocityfile string Input state file name e.g., inputVelocity.dat

(default: --inputVelocityfile=inputVelocity.dat)

--max-newton-iterations int Maximum number of newton iterations

(default: --max-newton-iterations=100)

--max-z-iterations int Maximum number of z iterations

(default: --max-z-iterations=4000)

--output_frequency int save data at this iterations

(default: --output_frequency=-1)

--prefixPath string prefixPath e.g.,inputs/

(default: --prefixPath=data/plug-flow-reactor/X/)

--rtol-newton double Relative tolerance used in newton solver

(default: --rtol-newton=1.0e-06)

--samplefile string Input state file name e.g., input.dat

(default: --samplefile=sample.dat)

--zbeg double Position begin

(default: --zbeg=0)

--team-size int User defined team size

(default: --team-size=-1)

--zend double Position end

(default: --zend=2.5e-02)

--thermSurffile string Therm file name e.g.,thermSurf.dat

(default: --thermSurffile-thermSurf.dat)

--thermfile string Therm file name e.g., therm.dat

(default: --thermfile=therm.dat)

--time-iterations-per-intervalint Number of time iterations per interval to store qoi

(default: --time-iterations-per-interval=10)

--tol-z double Tolerance used for adaptive z stepping

(default: --tol-z=1.0e-04)

--transient_initial_condition bool If true, use a transient solver to obtain initial

condition of the constraint

(default: --transient_initial_condition=false)

--use_prefixPath bool If true, input file are at the prefix path

(default: --use_prefixPath=true)

--vector-size int User defined vector size

(default: --vector-size=-1)

--verbose bool If true, printout the first Jacobian values

(default: --verbose=true)

Description:

This example computes Temperature, density, mass fraction and site fraction for a plug flow

reactor

41

The following shell script sets the input parameters and runs the PFR example

exec=$TCHEM_INSTAIL_PATR/example/TChem_PluqFlowReactor.x

inputs=$TCHEM_INSTALL_PATH/example/data/plug-flow-reactor/CH4-PTnogas/

Area=0.00053

Pcat=0.025977239243415308

dzmin=le-12

dzmax=le-5

zend=0.025

tol_z=le-8

max_z_iterations=310

max_newton_iterations=20

atol_newton=le-12

rtol_newton=le-8

save=1

transient_initial_condition=false

initial_condition=true

$exec --prefixPath=$inputs --initial_condition=$initial_condition --transient_initial_condition=

$transient_initial_condition --Area=$Area --Pcat=$Pcat --tol-z=$tol_z --atol-newton=

$atol_newton --rtol-newton=$rtol_newton --dzmin=$dzmin --max-newton-iterations=

$max_newton_iterations --output_frequency=$save --dzmax=$dzmax --zend=$zend --max-time-

iterations=$max_z_iterations

We ran the example in the install directory
TCHEM_INSTALL_PATH/example/runs/PlugFlowReactor/CH4-PTnogas

Thus, all the paths are relative to this directory. This script will run the executable
TCHEM_INSTALL_PATH/example/Tchem_PlugFlowReactor.x

with the input files located at
TCHEM_INSTALL_PATH/example/data/plug-flow-reactor/CH4-PTnogas/.

These files correspond to the gas-phase and surface reaction mechanisms ("chem.inp" and
"chemSurtinp") and their corresponding thermo files ("therm.dat" and "thermSurf. dat"). The
operating condition at the inlet of the reactor, i.e. the gas composition, in "sample.dat", and the
initial guess for the site fractions, in "inputSurf. dat", are also required. The format and
description of these files are presented in Section The gas velocity at the inlet is provided in
"inputVelocity.dat".

The "Aree [m2] is the cross area of the channel and "Pcat" [m] is the chemical active perimeter
of the PFR. The step size is controled by "dzmie, "dzmax", and "tol_e, the simulation will end
with the "e(position) is equal to "zend" or when it reaches the "max_z_iterations'. The relative
and absolute tolerance in the Newton solver are set through "atol_newton" and "rtol_newtoe.
The description of the integration method can be found in Section 6.1. The "save' parameter sets
the output frequency, in this case equal to 1, which means the information will be saved every
stepin "PFRSolution.dat". The following header is saved in the output file

iter t dt Density[kg/m3] Pressure[Pascal] Temperature[K] SPECIES1 (Mass Fraction) ... SPECIESN (

Mass Fraction) SURFACE_SPECIES1 (Site Fraction) ... SURFACE_SPECIESN (Site Fraction) Velocity

[m/s]

The inputs "transient_initial_conditioe and "initial_conditioe allow us to pick a method to
compute an initial condition that satisfies the system of DAE equation as described in
Section 6.3.4. In this case, the simulation will use a Newton solver to find an initial surface site
fraction to meet the constraint presented above.

42

Results

The gas-phase and surface mechanisms used in this example represents the catalytic combustion
of methane on platinum and was developed by Blondal and co-workers !!]. These mechanisms
have 15 gas species, 20 surface species, 47 surface reactions and no gas-phase reactions. The total
number of ODEs is 18 and there are 20 constrains. One simulation took about 12s to complete on
a MacBook Pro with a 3.1GHz Intel Core i7 processor. Time profiles for temperature, density,
velocity, mass fractions and site fractions for selected species are presented in Figs 6-5,
Scripts and jupyter notebooks for this example are located under

TCHEM_INSTALL_PATH/example/runs/PlugFlowReactor/CH4-PTnogas

1600

2 1400

1000

800

 Temperature

— Density

— Velocity

0.65 0.70

ti

0 0 0.5 1.0 1.5
Position [m]xle-2

2.0 2 5

0.40

0.30

-13

0.25

0 20

Figure 6-5. Gas Temperature (left axis), velocity and density (both on right
axis) along the PFR.

Parametric Study

The executable
TCHEM_INSTALL_PATH/example/Talem_PlugFlowReactor.x

6-6

can be also used with more than one sample. In this example, we ran it with eight samples. The
inputs for this run are located at
TCHEM_INSTALL_PATH/example/data/plug-flow-reactor/CH4-PTnogas_SA.

A script and a jupyter-notebook to reproduce this example are placed under
TCHEM_INSTALL_PATH/example/runs/PlugFlowReactor/CH4-PTnogas_SA.

These samples correspond to combination of values for the molar fraction of CH4, {0.04, 0.08},
inlet gas temperature, {800, 9000} [K], and velocity, {0.0019, 0.0038} [m/s]. The bash script to
run this problem is listed below

43

0.025

0M20-

0.015 -

0M05-

0M00-
OMO 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Position [m] xle-2

0.8

0.7 -

0.6 -

- Xxl

- OCXx0.0001

- CX x5e-08

0.200

0.175

0.150

O 0.125

E 0.100

0.075

0.050

0.025

0.000
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Position [m] xle-2

1.0

- 02 x1

H2 x5e-06

H02 x5e-06

2.00

0.8 -

- 0Xxl

- HOX x5e-05

- CH4X x0.005

g 0.5 - c
9 0.6 -

f, u
12 0.4 - 12u _

B
"LT) 0.3 -

0.2 -

0.1-

0.0 -
0.0 0.5 1 0 1.5

Position [m] xle-2

2.0

o
• 0.4-

0.2 -

0.0 J \• -. , .
2.5 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Position [m] xle-2

Figure 6-6. Gas-phase species mass fractions and surface species site frac-
tions.

exec=$TCHEM_INSTALL_PATH/example/Tchem_PlugFlowPeactor.x

use_prefixPath=false

inputs=$TCHEM_INSTALL_PATH/example/data/plug-flow-reactor/CH4-PTnogas/

inputs_conditions=inputs/

chemfile=$inputs"chem.inp"

thermfile=$inputs"therm.dat"

chemSurffile=$inputs"chemSurf.inp"

thermSurffile=$inputs"thermSurf.dat"

samplefile=$inputs_conditions"sample.dat"

inputSurffile=$inputs_conditions"inputSurf.dat"

inputvelocityfile=$inputs_conditions"inputvelocity.dat"

save=1

dzmin=le-12

dzmax=le-5

zend=0.025

max_newton_iterations=100

max_z_iterations=2000

atol_newton=le-12

rtol_newton=le-8

tol_z=le-8

Area=0.00053

Pcat=0.025977239243415308

transient_initial_condition=true

44

initial_condition=false

$exec --use_prefixPath=$use_prefixPath --chemfile=$chemfile --thermfile=$thermfile --chemSurffile

=$chemSurffile --thermSurffile=$thermSurffile --samplefile=$samplefile --inputSurffile=

$inputSurffile --inputVelocityfile=$inputVelocityfile --initial_condition=$initial_condition

--transient_initial_condition=$transient_initial_condition --Area=$Area --Pcat=$Pcat --tol-z

=$tol_z --atol-newton=$atol_newton --rtol-newton=$rtol_newton --dzmin=$dzmin --max-newton-

iterations=$max_newton_iterations --output_frequency=$save --dzmax=$dzmax --zend=$zend --max-

time-iterations-$max_z_iterations

In the above script we did not use a prefix path ("use_prefixPath=false) instead we provided the
name of the inputs files: "chemfile", "thermfile", "chemSurffile", "thermSurffile, "samplefile",
"inputSurffile, "inputVelocityfile". The files for the reaction mechanism ("chem.inp" and
"chemSurf. inp") and the thermo files ("therm.dat" and "thermSurf.dat") are located under
TCHEM_INSTALL_PATH/example/data/plug-flow-reactor/CH4-PTnogas/

The files with the inlet conditions ("sample.dat", "inputSurf.dat" aneinputVelocity.dar) are
located in the "input" directory, located under the run directory. One can set a different path for
the input files with the command-line option "use_prefixPath". Additionally, one can also use the
option "transient_initial_condition=true", to activate the transient solver to find initial condition
for the PFR634

Fig. 6-7 shows temperature, gas-phase species mass fractions and surface species site fractions
corresponding to the example presented above

6.3.4. Initial Condition for PFR Problem

The initial condition for the PFR problem must satisfy the algebraic constraint in the DAE
system. Thus, an appropriate initial condition must be provided. To solve this problem, TChem
first solves a system that accounts for the constraint only. The gas-phase species mass fractions
and temperature are kept constant. The constraint component can be solved either by evolving an
equivalent time-dependent formulation to steady-state or by directly solving the non-linear
problem directly. a steady state or a time dependent formulation. In one method, the following
equation is resolved in time until the system reaches stable state. In the second method, a newton
solver is used to directly resolver the constraint part(Šk = 0).

dZk gk
= —

dt F
k correspond to surfaces species (6.3.5)

In the first method, the ODE system is solved until reaches steady state. This is presented at
TCHEM_REPOSITORY_PATH/src/example/TChem_Simplesurface .cpp. The
Fig. 6-8 shows three surface species, the other species have values lower than le-4. This result
shows the time to reach stable state is only of 1 e-4 s. In the PFR example presented above, this
option can be used setting "transient_initial_condition=true" and "initial_condition=false.

The example produces an output file ("InitialConditionPFR.dat") with the last iteration. This file
can be used in the PFR problem as the "inputSurf.dat" file. The inputs for this example are
located at TCHEM_INSTALL_PATH/example/runs/InitialConditionPFR.

45

In the second method, we used a newton solver to find a solution to the constraint. One code
example of this alternative is presented at
TCHEM_REPOSITORY_PATH/src/example/TChem_InitialCondsurface.cpp. In
the PFR example presented above, the default option is "initial_condition=true, if both option
are set true, the code will execute the transient initial condition first and then the newton initial
condition.

46

2400

2200

2000

• 1800

;Li • 1600

O

E 1400

1200

1000

800

0.00 0.25 0.50 0.75 1.00 1.25
Position [m]xle2

0.04

U 0.03

ut ▪ 0.02

0.01

0.00

0 0 0.2 0.4 0.6 0.8 1.0

Position [m]xle2

0.175

0.150

0 0.125

o

'FA 0.100
u_

0.075

0.050

0.025

0.000
1.50 1.75 2.00 0 0 0.2 0.4 0.6 0.8 1.0

Position [m]xle2

1.2

No: 0

No: 1

No: 2

No: 3

No: 4

No: 5

No: 6

No: 7

1.4

0.0035 -

0.0030 -

0.0025 -

o
'E; 0.0020 -

• 0.0015 -
r a
a (loon -

0.0005 -

0.0000

0 0

1.0

- No: 0

- No: 1

- No: 2

- No: 3

- No: 4

- No: 5

- No: 6

- No: 7

0.2 0:4 0.6 0.8 1.0 1.2 1.4
Position [m]xle2

0.8 -

O
c • 0.6
2

uji, ▪ 0.4 -

in

0.2

0.0

- No: 0

- No: 1

- No: 2

- No: 3

- No: 4

- No: 5

- No: 6

- No: 7

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Position [m]xle2

2.00

0.014

0.012

O 0' 010U
c
o
ri 0.008

v.., 0.006

0.004

0.002

0.000

1.0

0.8

g • 0.6

1.2 1.4

- No: 0

- No: 1

- No: 2

- No: 3

- No: 4

- No: 5

- No: 6

- No: 7

0 0 0.5 1.0 1.5 2.0

Position [m]xle2

0.4 -

i.71

0.2 -

0.0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Position [m]xle2

0.005

0.004

L' 0.003c
o

0.002

0.001

0.000

- No: 0

- No: 1

- No: 2

- No: 3

- No: 4

- No: 5

- No: 6

- No: 7

0 0 0:2 0:4 0.6 0.8 1.0 1:2

Position [m]xle2

Figure 6-7. Temperature, gas-phase species mass fractions, and surface
species site fractions for the example parametric study.

47

1.0

0.8 -

0.2

— OX x1

— X xl

— COX x0.005

10-10 10-8 10-8 10-7 10-6 10-5 10-4

time [s]

Figure 6-8. Site fractions for X (empty space), OX and COX. We start this
simulation with an empty surface (X = 1)

48

7 APPLICATION PROGRAMMING INTERFACE

TChem provides two types of interfaces called runHostBatch and runDeviceBatch,
respectively, to run multiple samples on either the host or the device. The mlnii ost Bat cql uses
the "Kokkos::DefaultHostExecutionSpacC with data residing in the host memory. On the other
hand, "runDeviceBatcV dispatches the work to "Kokkos::DefaultExecutionSpace" which is
configured via Kokkos. In general, the default execution space is configured as OpenMP or Cuda,
when GPUs are available. When the device is configured to Cuda, data should be transferred to
the device memory using Kokkos : : deep_copy. The code snippet below illustrates the
computation of species production rates for a number of samples in parallel. It reads the kinetic
model data and a collection of input state vectors. The input data is then copied to the device
memory. After requisite computations are done, the results are copied from the device memory
back to the host memory.

#include "TChem_Util.hpp"

#include "TChem_ReactionRates.hpp"

#include "TChem_KineticModelData.hpp"

using ordinal_type = Tchem::ordinal_type;

using real_type = TChem::real_type;

using real_type_ld_view = TChem::real_type_ld_view;

using real_type_2d_view = TChem::real_type_2d_view;

int main() {

std::string chemFile("chem.inp");

std::string thermFile("therm.dat");

std::string periodictableFile("periodictable.dat");

std::string inputFile("input.dat");

std::string outputFile("omega.dat");

Kokkos::initialize(argc, argv);

{
/// kinetic model is constructed and an object is constructed on host

TChem::KineticModelData kmd(chemFile, thermFile, periodictableFile);

/// kinetic model data is transferred to the device memory

const auto kmcd = kmd.createConstData<TChem::exec_space>();

/// input file includes the number of samples and the size of the state vector

ordinal_type nBatch, stateVectorSize;

TChem::readNumberOfSamplesAndStateVectorSize(inputFile, nBatch, stateVectorSize);

/// create a 2d array storing the state vectors

real_type_2d_view state("StateVector", nBatch, stateVectorSize);

auto state_host = Kokkos::create_mirror_view(state);

/// read the input file and store them into the host array

TChem::readStateVectors(inputFile, state_host);

/// if execution space is host execution space, this deep copy is a soft copy

Kokkos::deep_copy(state, state_host);

/// output: reaction rates (omega)

real_type_2d_view omega("ReactionRates", nBatch, kmcd.nSpec);

49

/// create a parallel policy with workspace

/// for better performance, team size must be tuned instead of using AUTO

Kokkos::TeamPolicy<TChem::exec_space>

policy(TChem::exec_space(), nBatch, Kokkos::AUT0());

const ordinal_type level = 1;

const ordinal_type per_team_extent = TChem::ReactionRates::getworkSpaceSize(kmcd);
const ordinal_type per_team_scratch =

TChem::Scratch<real_type_ld_view>::shmem_size(per_team_extent);
policy.set_scratch_size(level, Kokkos::PerTeam(per_team_scratch));

/// computes reaction rates

TChem::KeactionKates::runDeviceBatch(policy, state, omega, kmcd);

TChem::exec_space().fence();

/// optionally, one can move the production rate to host memory

auto omega_host = Kokkos::create_mirror_view(omega);

Kokkos::deep_copy(omega_host, omega);

/// print omega_host to std::out

for (ordinal_type s=0;s<nBatch;++s) f

std::cout << "Sample ID = " << s « std::endl;

for (ordinal_type k=0;k<kmcd.nSpec;++k)

std::cout << omega_host(s, k) « std::endl;

1

1
Kokkos::finalize();

return 0;

1

This workflow pattern can be applied for the other similar functions, presented in Section
and

7.2

The homogenous batch reactor and the other examples described in Section b require a different
workflow from the above example. For this example category the user needs to specify a time
advance object including the range of time integration, time step sizes, Newton solver tolerances,
etc. The following example corresponds to the homogenous batch reactor example.

#include "TChem_Util.hpp"

#include "TChem_KineticModelData.hpp"

#include "TChem_IgnitionzeroD.hpp"

using ordinal_type = TChem::ordinal_type;

using real_type = TChem::real_type;

using time_advance_type = TChem::time_advance_type;

using real_type_Od_view = TChem::real_type_Od_view;

using real_type_ld_view = TChem::real_type_ld_view;

using real_type_2d_view = TChem::real_type_2d_view;

using time_advance_type_Od_view = TChem::time_advance_type_Od_view;

using time_advance_type_ld_view = TChem::time_advance_type_ld_view;

using real_type_Od_view_host = TChem::real_type_Od_view_host;

using real_type_ld_view_host = TChem::real_type_ld_view_host;

using real_type_2d_view_host = TChem::real_type_2d_view_host;

using time_advance_type_Od_view_host = TChem::time_advance_type_Od_view_host;

using time_advance_type_ld_view_host = TChem::time_advance_type_ld_view_host;

int main(int argc, char *argv[]) (

/// input files

std::string chemFile("chem.inp");

std::string thermFile("therm.dat");

std::string periodictableFile("periodictable.dat");

50

std::string inputFile("input.dat");

/// time stepping parameters

/// the range of time begin and end

real_type tbeg(0), tend(1);

/// min and max time step size

real_type dtmin(le-11), dtmax(le-6);

/// maximum number of time iterations computed in a single kernels launch

ordinal_type num_time_iterations_per_interval(1);

/// adaptive time stepping tolerance which is compared with the error estimator

real_type tol_time(le-8);

/// new ton solver absolute and relative tolerence

real_type atol_newton(le-8), rtol_newton(le-5);
/// max number of newton iterations

ordinal_Type max_num_newton_iterations(100);

/// max number of time ODE kernel launch

ordinal_type max_num_time_iterations(le3);

Kokkos::initialize(argc, argv);

{
/// kinetic model is constructed and an object is constructed on host

TChem::KineticModelData kmd(chemFile, thermFile, periodictableFile);

/// kinetic model data is transferred to the device memory

const auto kmcd = kmd.createConstData<TChem::exec_space>();

/// input file includes the number of samples and the size of the state vector

ordinal_type nBatch, stateVectorSize;

TChem::readNumberOfSamplesAndStateVectorSize(inputFile, nBatch, stateVectorSize);

/// create a 2d array storing the state vectors

real_type_2d_view state("StateVector", nBatch, stateVectorSize);

auto state_host = Kokkos::create_mirror_view(state);

/// read the input file and store them into the host array

TChem::readStateVectors(inputFile, state_host);

/// if execution space is host execution space, this deep copy is a soft copy

Kokkos::deep_copy(state, state_host);

/// create time advance objects

time_advance_type tadv_default;

tadv_default._tbeg = tbeg;

tadv_default._tend = tend;

tadv_default._dt = dtmin;

tadv_default._dtmin = dtmin;

tadv_default._dtmax = dtmax;

tadv_default._tol_time = tol_time;

tadv_default._atol_newton = atol_newton;

tadv_default._rtol_newton = rtol_newton;

tadv_default._max_num_newton_iterations = max_num_newton_iterations;

tadv_default._num_time_iterations_per_interval = num_time_iterations_per_interval;

/// each sample is time-integrated independently

time_advance_type_ld_view tadv("tadv", nBatch);

Kokkos::deep_copy(tadv, tadv_default);

/// for print the time evolution of species, we need a host mirror view

auto tadv_host = Kokkos::create_mirror_view(tadv);

auto state_host = Kokkos::create_mirror_view(state);

/// create a parallel execution policy with workspace

Kokkos::TeamPolicy<TChem::exec_space>

policy(TChem::exec_space(), nBatch, Kokkos::AUT0());
const ordinal_type level = 1;

const ordinal_type per_team_extent = TChem::IgnitionZeroD::getWorkSpaceSize(kmcd);
const ordinal_type per_team_scratch =

TChem::Scratch<real_type_ld_view>::shmem_size(per_team_extent);

policy.set_scratch_size(level, Kokkos::PerTeam(per_team_scratch));

51

for (; iter < max_num_time_iterations && tsum <= tend; ++iter) I

/// in each kernel launch, it computes the number of time iterations per

/// interval

TChem::IgnitionzeroD::runDeviceBatch

(policy,

tadv, state, /// input

t, dt, state, /// output

kmcd);

Kokkos::fence();

/// terminate this loop when all samples reach the time end

tsum = zero;

Kokkos::parallel_reduce(

Kokkos::RangePolicy<TChem::exec_space>(0, nBatch),

KOKKOS_LAMBDA(const ordinal_type &i, real_type &update) I

tadv(i)._tbeg = t(i);

tadv(i)._dt = dt(i);

update += t(i);

1,

tsum);

Kokkos::fence();
tsum /= nBatch;

/// to store or print the state vectors, the data must be transferred to

/// host memory

Kokkos::deep_copy(tadv_host, tadv);

Kokkos::deep_copy(state_host, state);

UserDefinedPrintStateVector(tadv_host, state_host);

Kokkos::finalize();

Funcions pertaining to several reactor models are provided in Section

7.1. Thermodynamic Properties

7.3

This section lists all top-level function interface for thermodynamic properties. These functions
are launching a parallel kernel with a given parallel execution policy.

7.1.1. SpecificHeatCapacityPerMass

/// Specific heat capacity per mass

///

/// [in] policy - Kokkos parallel execution policy; league size must be nBatch

/// [in] state - rank 2d array sized by nBatch x stateVectorSize

/// [out] CpMass - rank 2d array sized by nBatch x nSpec storing Cp per species

/// [out] CpMixMass - rank ld array sized by nBatch

/// [in] kmcd - a const object of kinetic model storing in device memory

#inclue "TChem_SpecificHeatCapacityPerMass.hpp"

TChem::SpecificHeatCapacityPerMass::runDeviceBatch

(const team_policy_type &policy,

const real_type_2d_view &state,

const real_type_2d_view &CpMass,

const real_type_ld_view &CpMixMass,

cosnt KineticModelConstDataDevice &kmcd);

52

7.1.2. EnthalpyMass

/// Enthalpy per mass

///

/// [in] policy - Kokkos parallel execution policy; league size must be nBatch

/// [in] state - rank 2d array sized by nBatch x stateVectorSize

/// [out] EnthalpyMass - rank 2d array sized by nBatch x nSpec storing enthalpy per species

/// [out] EnthalpyMixMass - rank ld array sized by nBatch

/// [in] kmcd - a const object of kinetic model storing in device memory

#inclue "TChem_EnthalpyMass.hpp"

TChem::EnthalpyMass::runDeviceBatch

(const team_policy_type &policy,

const real_type_2d_view &state,

const real_type_2d_view &EnthalpyMass,

const real_type_ld_view &EnthalpyMixMass,

cosnt KineticModelConstDataDevice &kmcd);

7.1.3. lnternalEnergyMass

/// Internal Energy per mass

///
/// [in] policy - Kokkos parallel execution policy; league size must be nBatch

/// [in] state - rank 2d array sized by nBatch x stateVectorSize

/// [out] InternalEnergyMass - rank 2d array sized by nBatch x nSpec storing enthalpy per

species

/// [out] InternalEnergyMixMass - rank ld array sized by nBatch

/// [in] kmcd - a const object of kinetic model storing in device memory

#inclue "TChem_InternalEnergyMass.hpp"

TChem::InternalEnergyMass::runDeviceBatch

(const team_policy_type &policy,

const real_type_2d_view &state,

const real_type_2d_view &InternalEnergyMass,

const real_type_ld_view &InternalEnergyMixMass,

cosnt KineticModelConstDataDevice &kmcd);

7.1.4. EntropyMass

/// Entropy per mass

///

/// [in] policy - Kokkos parallel execution policy; league size must be nBatch

/// [in] state - rank 2d array sized by nBatch x stateVectorSize

/// [out] EntropyMass - rank 2d array sized by nBatch x nSpec storing enthalpy per species

/// [out] EntropyMixMass - rank ld array sized by nBatch

/// [in] kmcd - a const object of kinetic model storing in device memory

#inclue "TChem_EntropyMass.hpp"

TChem::EntropyMass::runDeviceBatch

(const team_policy_type &policy,

const real_type_2d_view &state,

const real_type_2d_view &EntropyMass,

const real_type_ld_view &EntropyMixMass,

cosnt KineticModelConstDataDevice &kmcd);

7.2. Chemical Source Terms

This section lists all top-level function interface for the computation of species production rates.
These functions are launching a parallel kernel with a given parallel execution policy.

53

7.2.1. NetProductionRatesPerMass

/// Net Production Rates per mass

///

/// [in] policy - Kokkos parallel execution policy; league size must be nBatch

/// [in] state - rank 2d array sized by nBatch x stateVectorSize

/// [out] omega - rank 2d array sized by nBatch x nSpec storing reaction rates

/// [in] kmcd - a const object of kinetic model storing in device memory

#inclue "TChem_NetProductionRatePerMass.hpp"

TChem::NetProductionRatePerMass::runDeviceBatch

(const team_policy_type &policy,

const real_type_2d_view &state,

const real_type_2d_view &omega,

const KineticModelConstDataDevice &kmcd);

7.2.2. NetProductionRatesPerMole

/// Net Production Rates per mole

///

/// [in] policy - Kokkos parallel execution policy; league size must be nBatch

/// [in] state - rank 2d array sized by nBatch x stateVectorSize

/// [out] omega - rank 2d array sized by nBatch x nSpec storing reaction rates

/// [in] kmcd - a const object of kinetic model storing in device memory

#inclue "TChem_NetProductionRatePerMole.hpp"

TChem::NetProductionRatePerMole::runDeviceBatch

(const team_policy_type &policy,

const real_type_2d_view &state,

const real_type_2d_view &omega,

cosnt KineticModelConstDataDevice &kmcd);

7.2.3. NetProductionRateSurfacePerMole

/// Net Production Rates Surface per mole

///

/// [in] policy - Kokkos parallel execution policy; league size must be nBatch

/// [in] state - rank 2d array sized by nBatch x stateVectorSize

/// [in] zSurf - rank 2d array sized by nBatch x nSpec(Surface)

/// [out] omega - rank 2d array sized by nBatch x nSpec(Gas) storing reaction rates gas species

/// [out] omegaSurf - rank 2d array sized by nBatch x nSpec(Surface) storing reaction rates

surface species

/// [in] kmcd - a const object of kinetic model storing in device memory(gas phase)

/// [in] kmcdSurf - a const object of kinetic model storing in device memory (Surface phase)

TChem::NetProductionRateSurfacePerMole::runDeviceBatch

(const real_type_2d_view &state,

const real_type_2d_view &zSurf,

const real_type_2d_view &omega,

const real_type_2d_view &omegaSurf,

const KineticModelConstDataDevice &kmcd,

const KineticSurfModelConstDataDevice &kmcdSurf);

7.2.4. NetProductionRateSurfacePerMass

///

///

/// [in] policy - Kokkos parallel execution policy; league size must be nBatch

/// [in] state - rank 2d array sized by nBatch x stateVectorSize

/// [in] zSurf - rank 2d array sized by nBatch x nSpec(Surface)

/// [out] omega - rank 2d array sized by nBatch x nSpec(Gas) storing reaction rates gas species

/// [out] omegaSurf - rank 2d array sized by nBatch x nSpec(Surface) storing reaction rates

surface species

/// [in] kmcd - a const object of kinetic model storing in device memory(gas phase)

/// [in] kmcdSurf - a const object of kinetic model storing in device memory (Surface phase)

TChem::NetProductionRateSurfacePerMass::runDeviceBatch

Net Production Rates Surface per mass

54

(const real_type_2d_view &state,

const real_type_2d_view &zSurf,

const real_type_2d_view &omega,

const real_type_2d_view &omegaSurf,

const KineticModelConstDataDevice &kmcd,

const KineticSurfModelConstDataDevice &kmcdSurf);

7.3. Reactor Models

This section lists all top-level function interfaces for the reactor examples.

7.3.1. Ignition OD

/// Ignition OD

///

/// [in] policy - Kokkos parallel execution policy; league size must be nBatch

/// [in] tadv - rank ld array sized by nBatch storing time stepping data structure

/// [in] state - rank 2d array sized by nBatch x stateVectorSize

/// [out] t_out - rank ld array sized by nBatch storing time when exiting the function

/// [out] dt_out - rank ld array sized by nBatch storing time step size when exiting the

function

/// [out] state_out - rank 2d array sized by nBatch x stateVectorSize storing updated state

vectors

/// [in] kmcd - a const object of kinetic model storing in device memory

#inclue "TChem_IgnitionZeroD.hpp"

TChem::IgnitionZeroD::runDeviceBatch

(const team_policy_type &policy,

const time_advance_type_ld_view &tadv,

const real_type_2d_view &state,

const real_type_ld_view &t_out,

const real_type_ld_view &dt_out,

const real_type_2d_view &state_out,

cosnt KineticModelConstDataDevice &kmcd);

7.3.2. SourceTerm

/// SourceTerm

///

/// [in] nBatch - number of samples

/// [in] state - rank 2d array sized by nBatch x stateVectorSize

/// [out] SourceTerm - rank2d array by nBatch x number of species + 1 (temperature)

/// [in] kmcd - a const object of kinetic model storing in device memory

#include "TChem_SourceTerm.hpp"

TChem::SourceTerm::runDeviceBatch

(const ordinal_type nBatch,

const real_type_2d_view& state,

const real_type_2d_view& SourceTerm,

const KineticModelConstDataDevice& kmcd);

7.3.3. PlugFlowReactor

/// Plug Flow Reactor

///

/// [in] policy - Kokkos parallel execution policy; league size must be nBatch

/// [in] tadv - rank ld array sized by nBatch storing time stepping data structure

/// [in] state - rank 2d array sized by nBatch x stateVectorSize

/// [in] zSurf - rank2d array by nBatch x number of surface specues

/// [in] velociy -rankld array by nBatch

/// [out] t_out - rank ld array sized by nBatch storing time when exiting the function

55

/// [out] dt_out - rank ld array sized by nBatch storing time step size when exiting the

function

/// [out] state_out - rank 2d array sized by nBatch x stateVectorSize storing updated state

vectors

/// [out] z_out - rank2d array by nBatch x number of surface specues

/// [out] velocity_out -rankld array by nBatch

/// [in] kmcd - a const object of kinetic model storing in device memory

/// [in] kmcdSurf - a const object of surface kinetic model storing in device memory

/// [in] area - cross-sectional area

/// [in] pcat - chemically active perimeter

#inclue "TChem_PlugFlowReactor.hpp"

TChem::PlugFlowReactor::runDeviceBatch

(const team_policy_type &policy,

const time_advance_type_ld_view &tadv,

const real_type_2d_view &state,

const real_type_2d_view &z_surf,

const real_type_ld_view &velocity,
const real_type_ld_view &t_out,

const real_type_ld_view &dt_out,

const real_type_2d_view &state_out,

const real_type_2d_view &z_out,

const real_type_ld_view &velocity_out,

cosnt KineticModelConstDataDevice &kmcd,

const KineticSurfModelConstDataDevice &kmcdSurf,

const real_type area,

const real_type pcat);

7.3.4. PlugFlowReactorRHS

/// Plug Flow Reactor RHS

///

/// [in] nBatch - number of samples

/// [in] state - rank 2d array sized by nBatch x stateVectorSize

/// [in] zSurf - rank 2d array by nBatch x number of surface species

/// [in] velocity - rank 2d array sized by nBatch x stateVectorSize

/// [in] kmcd - a const object of kinetic model storing in device memory

/// [in] kmcdSurf - a const object of surface kinetic model storing in device memory

#include "TChem_PlugFlowReactorRHS.hpp"

TChem::PlugFlowReactorRHS::runDeviceBatch

(const ordinal_type nBatch,

const real_type_2d_view& state,

const real_type_2d_view& zSurf,

const real_type_2d_view& velocity,

const real_type_2d_view& rhs,

const KineticModelConstDataDevice& kmcd,

const KineticSurfModelConstDataDevice& kmcdSurf);

7.3.5. JacobianReduced

/// JacobianReduced

///

/// [in] nBatch - number of samples

/// [in] state - rank 2d array sized by nBatch x stateVectorSize

/// [out] Jacobian - rank 3d array by nBatch x number of species + 1 x number of species + 1

/// [in] kmcd - a const object of kinetic model storing in device memory

#include "TChem_JacobianReduced.hpp"

TChem::JacobianReduced::runDeviceBatch

(const ordinal_type nBatch,

const real_type_2d_view& state,

const real_type_3d_view& Jacobian,

const KineticModelConstDataDevice& kmcd);

7.3.6. IgnitionZeroDNumJacobian

56

///

///

/// [in] nBatch - number of samples

/// [in] state - rank 2d array sized by nBatch x stateVectorSize

/// [out] jac - rank 3d array by nBatch x number of species + 1

/// [out] fac - rank 2d array by nBatch x number of species + 1

/// [in] kmcd a const object of kinetic model storing in device

#include "TChem_IgnitionzeroDNumjacobian.hpp"

TChem::IgnitionzeroDNumjacobian::runDeviceBatch

(const ordinal_type nBatch,

const real_type_2d_view& state,

const real_type_3d_view& jac,

const real_type_2d_view& fac,

const KineticModelConstDataDevice& kmcd);

IgnitionzeroDNumjacobian

7.3.7. InitialConditionSurface

x number of species + 1

memory

/// InitialConditionSurface

///

/// [in] policy - Kokkos parallel execution policy; league size must be nBatch

///
/// [in] siteFraction - rank2d array by nBatch x number of surface species

/// [out] siteFraction_out - rank2d array by nBatch x number of surface species

/// [in] kmcd - a const object of kinetic model storing in device memory

/// [in] kmcdSurf - a const object of surface kinetic model storing in device memory

#include "TChem_InitialCondSurface.hpp"

TChem::InitialCondSurface::runDeviceBatch

(const team_policy_type &policy,

const real_type_2d_view &state,

const real_type_2d_view &siteFraction,

const real_type_2d_view &siteFraction_out,

const KineticModelConstDataDevice &kmcd,

const KineticSurfModelConstDataDevice &kmcdSurf);

[in] state - rank 2d array sized by nBatch x stateVectorSize

7.3.8. SimpleSurface

Simple surface

[in] kmcdSurf - a const object of

#include "TChem_SimpleSurface.hpp"

TChem::SimpleSurface::runDeviceBatch

team_policy_type &policy,

time_advance_type_ld_view

real_type_2d_view &state,

real_type_2d_view &siteFraction,

real_type_ld_view &t,

real_type_ld_view &dt,

real_type_2d_view &siteFraction_out,

KineticModelConstDataDevice &kmcd,

KineticSurfModelConstDataDevice &kmcdSurf);

(const

const

const

const

const

const

const

const

const

[in] policy - Kokkos parallel execution policy; league size must be nBatch

[in] tadv - rank ld array sized by nBatch storing time stepping data structure

[in] state - rank 2d array sized by nBatch x stateVectorSize

[in] siteFraction - rank2d array by nBatch x number of surface species

[out] t - rank ld array sized by nBatch storing time when exiting the function

[out] dt - rank ld array sized by nBatch storing time step size when exiting the

[out] siteFraction_out - rank2d array by nBatch x number of surface species

[in] kmcd - a const object of kinetic model storing in device memory

surface kinetic model storing in device

&tadv,

7.4. Kinetic Model - Other Interfaces

memory

function

This section lists top-level function interfaces for properties derived from the kinetic model
specifications.

57

7.4.1. Smatrix

/// S Matrix

///

/// [in] nBatch - number of samples

/// [in] state - rank 2d array sized by nBatch x stateVectorSize

/// [out] Smatrix - rank3d array by nBatch x number of species + 1 x twice the number of

reaction in gas phase

/// [in] kmcd - a const object of kinetic model storing in device memory

#include "TChem_Smatrix.hpp"

TChem::Smatrix::runDeviceBatch

(const ordinal_type nBatch,

const real_type_2d_view& state,

const real_type_3d_view& Smatrix,

const KineticModelConstDataDevice& kmcd);

7.4.2. Rate0fProgress

///

///

RateofProgress

/// [in] nBatch - number

/// [in] state - rank 2d

/// [out] RoPFor - rank2d

/// [out] RoPFor - rank2d

/// [in] kmcd - a const

of samples

array sized by nBatch x stateVectorSize

array by nBatch x number of reaction in gas phase

array by nBatch x number of reaction in gas phase

object of kinetic model storing in device memory

#include "TChem_RateofProgress.hpp"

TChem::RateofProgress::runDeviceBatch

(const ordinal_type nBatch,

const real_type_2d_view& state,

const real_type_2d_view& RoPFor,

const real_type_2d_view& RoPRev,

const KineticModelConstDataDevice& kmcd);

58

8. SUMMARY

TChem is the subject of continual development and improvement. If you have questions about or
suggestions for features to be adopted in future versions, feel free to e-mail Cosmin Safta at

or share your questions directly on the github page. In the upcoming
versions we plan to expand the 1/0 to support YAML and HDF5 interfaces, improve the
performance on GPUs and explore advanced time-stepping algorithms for stiff systems.

csafta@sandia.gov

59

REFERENCES

[1] GTEST.
2020-08-26.

https://github.com/google/googletest

[2] Kokkos.

[3]

https://github.com/kokkos/kokkos

, 2020. Accessed:

, 2020. Accessed: 2020-08-26.

R. E. Bank, W. M. Coughran, W. Fichtner, E. H. Grosse, D. J. Rose, and R. K. Smith.
Transient simulation of silicon devices and circuits. IEEE Transactions on Electron Devices,
32(10):1992-2007, 1985.

[4] Katrin Blondal, Jelena Jelic, Emily Mazeau, Felix Studt, Richard H. West, and C. Franklin
Goldsmith. Computer-generated kinetics for coupled heterogeneous/homogeneous systems:
A case study in catalytic combustion of methane on platinum. Industrial & Engineering
Chemistry Research, 58(38):17682-17691, 2019.

Michael E. Coltrin, Robert J. Kee, Fran M. Rupley, and Ellen Meeks. Surface Chemkin-III:
A FORTRAN Package for Analyzing Heterogenous Chemical Kinetics at a
Solid-surface—Gas-phase Interface. Technical Report SAND96-8217, Sandia National
Laboratories, Livermore, CA, 1996.

[5]

[6] H. Carter Edwards, Christian R. Trott, and Daniel Sunderland. Kokkos: Enabling manycore
performance portability through polymorphic memory access patterns. Journal of Parallel
and Distributed Computing, 74(12):3202 — 3216, 2014. Domain-Specific Languages and
High-Level Frameworks for High-Performance Computing.

[7] X. Gou, J. A. Miller, W. Sun, and Y. Ju. PLOG Formulation.
http://engine.princeton.edu, 2011. Accessed: 2020-08-26.

[8] Alan C Hindmarsh, Peter N Brown, Keith E Grant, Steven L Lee, Radu Serban, Dan E
Shumaker, and Carol S Woodward. SUNDIALS: Suite of nonlinear and
differential/algebraic equation solvers. ACM Transactions on Mathematical Software
(TOMS), 31(3):363-396, 2005.

[9] R. J. Kee and H. Zhu M. E. Coltrin, P. Glarborg. Chemically Reacting Flow: Theory,
Modeling, and Simulation. Wiley, 2 edition, 20177.

[10] R.J. Kee, EM. Rupley, and J.A. Miller. Chemkin-II: A Fortran Chemical Kinetics Package
for the Analysis of Gas Phase Chemical Kinetics. Technical Report SAND89-8009B,
Sandia National Laboratories, Livermore, CA, August 1993.

[11] B. J. McBride, S. Gordon, and M. A. Reno. Coefficients for Calculating Thermodynamic
and Transport Properties of Individual Species. Technical Report NASA TM-4513, NASA,
1993.

60

[12] M. Mehl, H. J. Curran, W. J. Pitz, and C. K. Westbrook. Chemical kinetic modeling of
component mixtures relevant to gasoline. Technical Report LLNL-CONF-410968,
Lawrence Livermore National Laboratory, 2009.

[13] D E Salane. Adaptive routines for forming jacobians numerically. SAND86, 8 1986.

[14] G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T.
Bowman, R. K. Hanson, S. Song, W. C. Gardiner Jr., V. V. Lissianski, and Z. Qin.
GRI-Mech v3.0. http://www.me.berkeley.edu/gri mech, 2011. Accessed:
2020-08-26.

61

DISTRIBUTION

Hardcopy—External

Number of
Copies

Name(s)
Company Name and

Company Mailing Address

Hardcopy—lnternal

Number of
Copies

Name Org. Mailstop

Email—lnternal (encrypt for OUO)

Name Org. Sandia Email Address

Technical Library 01177 libref@sandia.gov

62

63

Sandia National Laboratories

is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy's
National Nuclear Security
Administration under contract
DE-NA0003525.

