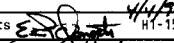
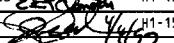
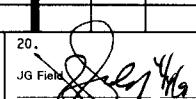


APR 08 1997

ENGINEERING DATA TRANSMITTAL

Page 1 of 1



1. EDT 619562


2. To: (Receiving Organization) Distribution	3. From: (Originating Organization) Packaging Engineering	4. Related EDT No.: NA
5. Proj./Prog./Dept./Div.: 03E00	6. Design Authority/ Design Agent/Cog. Engr.: E. P. Clements	7. Purchase Order No.: NA
8. Originator Remarks: For approval.		9. Equip./Component No.: NA
		10. System/Bldg./Facility: NA
11. Receiver Remarks: 11A. Design Baseline Document? <input type="checkbox"/> Yes <input checked="" type="checkbox"/> No		12. Major Assm. Dwg. No.: NA
		13. Permit/Permit Application No.: NA
		14. Required Response Date:

15. DATA TRANSMITTED						(F)	(G)	(H)	(I)
(A) Item No.	(B) Document/Drawing No.	(C) Sheet No.	(D) Rev. No.	(E) Title or Description of Data Transmitted	Approval Design- inator	Reason for Trans- mittal	Origin- ator Dispo- sition	Receiv- er Dispo- sition	
1	HNF-SD-TP-RPT-026		0	Spreader Beam Analysis for the CASTOR GSF Cask	NA	1	1		

16. KEY								
Approval Designator (F)		Reason for Transmittal (G)			Disposition (H) & (I)			
E, S, Q, D or N/A (see WHC-CM-3-5, Sec.12.7)		1. Approval 2. Release 3. Information	4. Review 5. Post-Review 6. Dist. (Receipt Acknow. Required)		1. Approved 2. Approved w/comment 3. Disapproved w/comment	4. Reviewed no/comment 5. Reviewed w/comment 6. Receipt acknowledged		

17. SIGNATURE/DISTRIBUTION
(See Approval Designator for required signatures)

(G) Reason	(H) Disp.	(J) Name	(K) Signature	(L) Date	(M) MSIN	(G) Reason	(H) Disp.	(J) Name	(K) Signature	(L) Date	(M) MSIN
		Design Authority				1	1	SS Shiraga		4/4/97	H1-15
		Design Agent									
1	1	Cog.Eng.: EP Clements		H1-15							
1	1	Cog. Mgr.: JG Field		H1-15							
		QA									
		Safety									
		Env.									

18.	19.	20.	21. DOE APPROVAL (if required)
EP Clements Signature of EDT Originator	Date 4/4/97	JG Field Authorized Representative Date for Receiving Organization	Ctrl. No. <input type="checkbox"/> Approved <input type="checkbox"/> Approved w/comments <input type="checkbox"/> Disapproved w/comments

Spreader Beam Analysis for the CASTOR GSF Cask

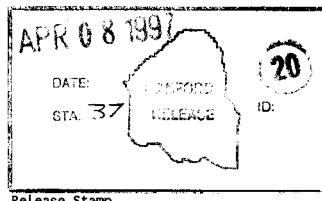
E. P. Clements

Rust Federal Services Inc. Northwest Operations, Richland, WA 99352
U.S. Department of Energy Contract DE-AC06-96RL13200

EDT/ECN: EDT 619562 UC: 512
Org Code: 03E00 Charge Code: POFK06
B&R Code: 820201000 Total Pages: -34 33^{pb}

Key Words: spreader beam, CASTOR GSF cask, load test

Abstract: The purpose of this report is to document the results of the 150% rated capacity load test that was performed by DynCorp Hoisting and Rigging for the CASTOR GSF special lifting beams.



TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

Printed in the United States of America. To obtain copies of this document, contact: Document Control Services, P.O. Box 950, Mailstop H6-08, Richland WA 99352, Phone (509) 372-2420; Fax (509) 376-4989.

T.L. Burkland
Release Approval

4/7/97
Date

Approved for Public Release

CONTENTS

1.0 INTRODUCTION	1
2.0 SUMMARY OF RESULTS	1
3.0 CONCLUSION	1
4.0 REFERENCES	3
5.0 APPENDICES	4
5.1 ORIGINAL GERMAN LOAD TESTS	4
5.2 HANFORD LOAD TESTS	6
5.3 CASTOR LIFTING BEAM EVALUATION	27

LIST OF FIGURES

1. Lift Test Adaptor.	2
2. CASTOR Lifting Beam.	2
3. Lift Test Arrangement.	3

LIST OF TERMS

ANSI	American National Standards Institute
ASTM	American Society for Testing and Materials
IAEA	International Atomic Energy Agency
SARP	Safety Analysis Report for Packaging

SPREADER BEAM ANALYSIS FOR THE CASTOR GSF CASK**1.0 INTRODUCTION**

The purpose of this report is to document the results of the 150% rated capacity load test performed by DynCorp Hoisting and Rigging on the CASTOR GSF special cask lifting beams. The two lifting beams were originally rated and tested at 20,000 kg (44,000 lb) by the cask manufacturer in Germany. The testing performed by DynCorp rated and tested the lifting beams to 30,000 kg (66,000 lb) +0%, -5%, for Hanford Site use.

The CASTOR GSF cask, used to transport Isotopic Heat Sources (canisters), must be lifted with its own designed lifting beam system (Figures 1, 2, and 3). As designed, the beam material is RSt 37-2 (equivalent to American Society for Testing and Materials [ASTM] A-570), the eye plate is St 52-2 (equivalent to ASTM A-516), and the lifting pin is St 50 (equivalent to ASTM A-515). The beam has two opposing 58 mm (2.3 in.) diameter by 120 mm (4.7 in.) length, high grade steel pins that engage the cask for lifting. The pins have a manual locking mechanism to prevent disengagement from the casks. The static, gross weight (loaded) of the cask 18,640 kg (41,000 lb) on the pins prevents movement of the pins during lifting. This is due to the frictional force of the cask on the pins when lifting begins.

2.0 SUMMARY OF RESULTS

The two lifting beams (1A and 1B) delivered as auxiliary equipment with the CASTOR GSF casks were designed, built, tested, and used by the cask manufacturer in Germany (Section 5.1). The beams were built and tested to International Atomic Energy Agency (IAEA) requirements. For use at the Hanford Site, the beams shall meet the requirements listed in the *Hanford Site Hoisting and Rigging Manual*, Section 11.0, "Below-the-Hook-Lifting Devices" (RL 1993) and the American National Standard Institute (ANSI) N14.6, *Radioactive Materials Special Lifting Devices for Shipping Containers Weighing 10,000 lb (4500 kg) or More* (ANSI 1993). To meet the Hanford Site and ANSI criteria, both lifting beams were analyzed to ensure 3 to 1 against yield, requirements are met (Section 5.3). The beams were physically load tested (Section 5.2) in accordance with the *Hanford Site Hoisting and Rigging Manual*, Section 11.0, "Below-the-Hook-Lifting Devices" and ANSI N14.6, Section 6.3(a), "Testing," to verify continuing compliance. The two lifting beams were tested to 150% 30,000 kg (66,000 lb) +0% , -5% for an actual load test of 29,345 kg (64,560 lb) held for 10 minutes. This test was performed with certified weights and rigging. The beams were inspected after testing as described in ANSI 6.3(a) and no discrepancies were found.

3.0 CONCLUSION

The two CASTOR GSF cask lifting beams are only intended and designed for their particular use as described in the CASTOR Safety Analysis Report for Packaging (SARP) (HNF-SD-TP-SARP-021). The beams meet both the *Hanford Site Hoisting and Rigging Manual* (Section 11.0) and ANSI N14.6 (Section 6.3.1(a)) criteria for use on the Hanford Site. Analysis demonstrates the beams meet a safety factor of 3 to 1 against yield for the approved load. The Hanford Site approved rating is 29,345 kg (64,500 lb).

Figure 1. Lift Test Adaptor.

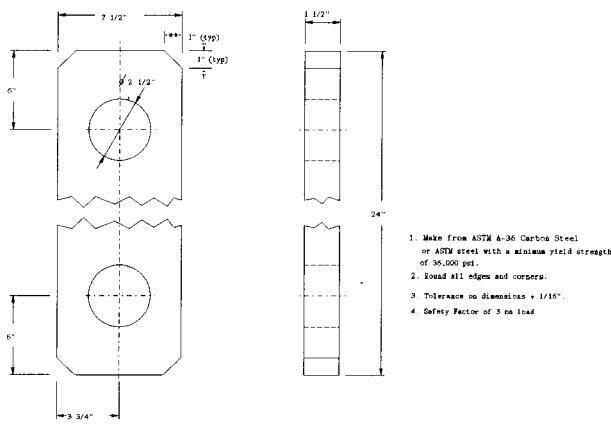


Figure 2. CASTOR Lifting Beam.

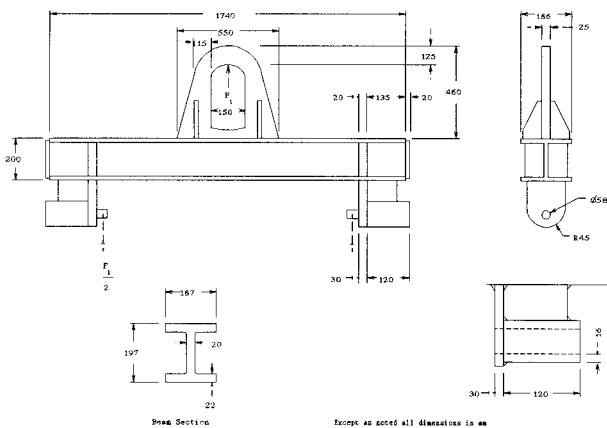
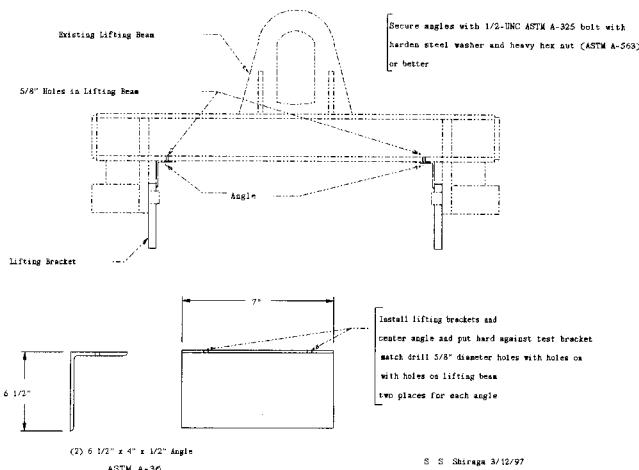



Figure 3. Lift Test Arrangement.

4.0 REFERENCES

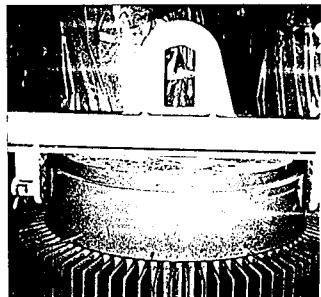
ANSI, 1993, *American National Standard for Radioactive Materials - Special Lifting Devices for Shipping Containers Weighing 10,000 lb (4500 kg) or More*, ANSI N14.6, American National Standards Institute, New York, New York.

HNF-SD-TP-SARP-021, *Safety Analysis Report for Packaging (Onsite) CASTOR GSF Cask*, Rust Federal Services Inc. Northwest Operations, Richland, Washington.

RL, 1993, *Hanford Site Hoisting and Rigging Manual*, DOE/RL-92-36, U.S. Department of Energy, Richland Operations Office, Richland, Washington.

5.0 APPENDICES

5.1 ORIGINAL GERMAN LOAD TESTS


Prüfnachweis für Lastaufnahme- und Anschlagmittel

gem. § 40 VBG 9a

Betriebsmittel-Nr.

Kette <input type="checkbox"/>		Seil <input type="checkbox"/>	Band <input type="checkbox"/>	Traverse <input checked="" type="checkbox"/>	Gehänge <input type="checkbox"/>	Nr. 1
Kunde	GNB, Mülheim an der Ruhr		Einsatzort	Verladung		
Hersteller/Lieferer	Eisenbau GmbH Oberhausen		Anzahl der	Stück pro Aufhängelöchern		= 2
Werksabnahmzeugnis			I =	150	mm	d = 58 mm
Werkstoff	RSt. 37-2		Tragfähigkeit des Schenkels			
Güteklass			Entzerrung	20.000	kg	
Zubehör			Prüflast	20.000	kg	
Fabr.			Gesamttragfähigkeit bei			
XXXX-Nr.	17 8 73					
Typ	Baujahr 19 87		45° Neigungs	kg		
Eigengewicht	ca. 250 kg		60° Neigungs	kg		
Instandsetzung und Wärmebehandlung von Ketten der Güteklassen 3, 5, 6 und 8 nur von Kettenherstellern und Werkstätten, die hierzu			vom Fachausschuß Eisen und Metall, Sachgebiet Ketten, ermächtigt sind.			

Skizze / Foto

Mit Nennlast geprüft: 04.07.1996

BKR

D-KRANTECHNIK
West und Nord
Service-Zentrale
Hömberger Str. 6
D-4088 Ratingen
Tel.: (0 21 02) 84 20 65
Fax: (0 21 02) 84 27 56

D-KRANTECHNIK
Süd
Theodor-Heuss-Str. 1
D-74193 Schwäbisch Gmünd
Tel.: (0 71 36) 40 11
Fax: (0 71 35) 40 15

D-KRANTECHNIK
Ost
Am Goethehaus 3
D-99438 Bad Berka
Tel.: (03 64 56) 2 11 52
Fax: (03 64 56) 2 11 53

D-KRANTECHNIK AG
Schweiz
Ruchstuckstr. 19
CH-8306 Brüttisellen
Tel.: (0 41) 8 33 37 57
Fax: (0 41) 8 33 08 04


Prüfnachweis für Lastaufnahme- und Anschlagmittel

gem. § 40 VBG 9a

Betriebsmittel-Nr.

Kette <input type="checkbox"/> Seil <input type="checkbox"/> Band <input type="checkbox"/> Traverse <input checked="" type="checkbox"/> Gehänge <input type="checkbox"/>	
Kunde	GNB, Mülheim
Hersteller/Lieferer	Eisenbau GmbH Oberhausen
Werkabsnahmezeugnis	I = 150 mm d = 58 mm
Werkstoff	RSt 37-2
Güteklaasse	Einzelstränge 20.000 kg
Zubehör	Prüflast 20.000 kg
Fabrik-Zeichn.-Nr.	17873
Typ	Baujahr 1987
Eigengewicht	ca. 250 kg
Instandsetzung und Wärmebehandlung von Ketteln der Güteklaasse 3, 5, 6 und 8 nur von Kettenherstellern und Werkstätten, die hierzu vom Fachausschuß Eisen und Metall, Sachgebiet Ketten, ermächtigt sind.	

Skizze / Foto

Mit Nennlast geprüft:

25.11.1996

Rausch

5.2 HANFORD LOAD TESTS

PAGE: 1

CRANE & RIGGING WORK ORDER

03/07/97 07:59:56

Job Number 3R-97-8754/W

1. Requested By DONALD LARUE
Org. 408 Telephone No. 376-7105 MSIN G3-08

2. Charge Code P0FK06

3. Date of Request 03/04/97

4. Response Required N/A

5. Type of Work

6. Location

Area 1100AREA
Bldg 1171 Room
Other

7. Description

INSPECT- LOAD TEST 2 SPREADER BARS FOR LOADING GERMAN CASKS @ 324

CONTACT AT 324 TO GET THE SPREADER BARS IS STEVE HALSTEAD
376-3973. PERFORM A 150% LOAD TEST. (66,000 LBS). ALSO
PERFORMINSPECTION TO PROCEDURE 7-GN-100 & LOAD TEST TO A WRITTEN
PROCEDURE IN THIS PACKAGE. RECORD ALL INFORMATION ON DATA
SHEETS IN THIS PACKAGE.

		Signature	Date
8. Released by	R. J. GILLESPIE		03/03/97
9. Craft Complete			
10. Field Work Complete	<i>R. J. Gillespie</i>		<i>3/27/97</i>
Cancelled			

11. Resources Required

Res Code	Description	Qty	Est Hrs	Servicing Org.	Act Hrs
013	Crane Operator	1	—	C/R	6
035	Iron Worker	3	—	C/R	26
14B	Truck Driver - Hv	1	—	C/R	6
SUPR	Supervisor	1	—	C/R	6
3R-PL	Planner/Scheduler	1	—	C/R	—

43 Total

MES MAINTENANCE PROCEDURE
 PERIODIC TO ANNUAL CONDITION INSPECTION OF
 BELOW-THE-HOOK LIFTING DEVICES

PROC. NO. 7-GN-100
 REV. 2, CHG. A
 PAGE 17 of 21

DATA SHEET (Sheet 1 of 5)

7.0 INSTRUCTIONS (Record S - Satisfactory, U - Unsatisfactory or N/A - Not Applicable on steps below).

STEP	S-U-N/A	COMMENTS	INITIAL/DATE
7.1.1	S	OK	RKIC 3/26/97
7.1.2	S	OK	RKIC 3/26/97
7.1.3	S	OK	RKK 3/26/97
7.1.4	S	OK	RKK 3/26/97
7.2.1.a	N/A		
b	N/A		
c	N/A		
d	N/A		
e	N/A		
f	N/A		
g	N/A		
7.3.1.a	N/A		
b	N/A		
c	N/A		
d	N/A		
e	N/A		
f	N/A		
g	N/A		
h	N/A		
7.3.2	N/A		

MES MAINTENANCE PROCEDURE
PERIODIC TO ANNUAL CONDITION INSPECTION OF
BELOW-THE-HOOK LIFTING DEVICES

PROC. NO. 7-GN-100
REV. 2, CHG. A
PAGE 18 of 21

DATA SHEET (Sheet 2 of 5)

7.0 INSTRUCTIONS (Record S - Satisfactory, U - Unsatisfactory or N/A - Not Applicable on steps below).

STEP	S-U-N/A	COMMENTS	INITIAL/DATE
7.4.1.a	N/A		
b	N/A		
c	N/A		
d	N/A		
e	N/A	Record results of inspection on Hook Identification Record Data Sheet(s).	
f	N/A	Record results of inspection on Hook Identification Record Data Sheet(s).	
7.4.2.a	N/A	Record results of inspection on Hook Identification Record Data Sheet(s).	
b	N/A	Record results of inspection on Hook Identification Record Data Sheet(s).	
c	N/A	Record results of inspection on Hook Identification Record Data Sheet(s).	
7.4.3	N/A	Record results of inspection on Hook Identification Record Data Sheet(s).	
7.4.4.a	N/A		
b	N/A		
c	N/A		
d	N/A		
7.5.1.a	S	OK	Rev 3/26/97
b	S	OK	Rev 3/26/97
c	N/A		
d	S	OK	Rev 3/26/97
e	N/A		
f	S	OK	Rev 3/26/97
g	S	OK	Rev 3/26/97

MES MAINTENANCE PROCEDURE
 PERIODIC TO ANNUAL CONDITION INSPECTION OF
 BELOW-THE-HOOK LIFTING DEVICES

PROC. NO. 7-GN-100
 REV. 2, CHG. A
 PAGE 19 of 21

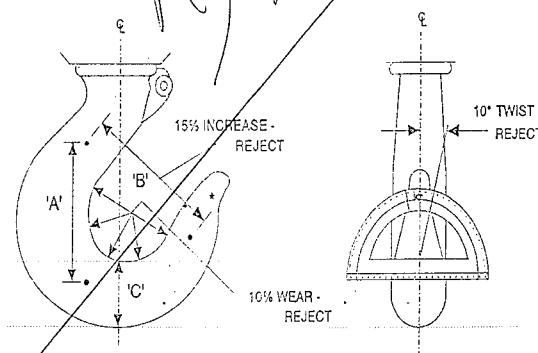
DATA SHEET (Sheet 3 of 5)

7.0 INSTRUCTIONS (Record S - Satisfactory, U - Unsatisfactory or N/A - Not Applicable on steps below).

STEP	S-U-N/A	COMMENTS	INITIAL/DATE
7.5.2.a	S	OK	ERK-3/26/97
b	S	OK	RCIC 3/26/97
c	S	OK	ERK 3/26/97
d	N/A		
e	N/A		
f	N/A		

MES MAINTENANCE PROCEDURE
PERIODIC TO ANNUAL CONDITION INSPECTION OF
BELOW-THE-HOOK LIFTING DEVICES

PROC. NO. 7-GN-100
REV. 2, CHG. A
PAGE 20 of 21


DATA SHEET (Sheet 4 of 5)

HOOK IDENTIFICATION RECORD

Inspection Type (Circle one): Initial/Monthly/Periodic
(Specify return to service, pre-Critical Lift, etc.)

Inspection Date _____ Hook Location/Bldg. _____
 Hoist Mfg. _____ Hook I.D. No. _____
 Hoist Serial No. _____ Hook Capacity _____
 Hoist Capacity _____ Hook Mfg. _____
 Hook Dimension "A" _____ Hook Dimension "B" _____
 Hook Dimension "C" _____ Original if Known Current
 Caliper Serial No. _____ Calibration Date _____
 Hook NDE Accept _____ Reject _____ Date _____
 Qualified Inspector _____ Date _____

NOTE: *Place numbers on hook as close to tip of hook as practical.

HOOK INSPECTION INFORMATION

1. See Attachment 1 or 2 for discontinuity repair guidelines.
2. If hook is twisted more than 10 degrees, replace hook.
3. Measure distance between 'B' punchmarks using calipers. The measurement between 'A' punchmarks is a reference standard to compare this dimension with.

MES MAINTENANCE PROCEDURE
PERIODIC TO ANNUAL CONDITION INSPECTION OF
BELOW-THE-HOOK LIFTING DEVICES

PROC. NO. 7-GN-100
REV. 2, CHG. A
PAGE 21 of 21

DATA SHEET (Sheet 5 of 5)

HOOK IDENTIFICATION RECORD

Inspection Type (Circle one): Initial/Monthly/Periodic _____
(Specify return to service, pre-Critical Lift, etc.)

Inspection Date _____ Hook Location/Bldg. _____

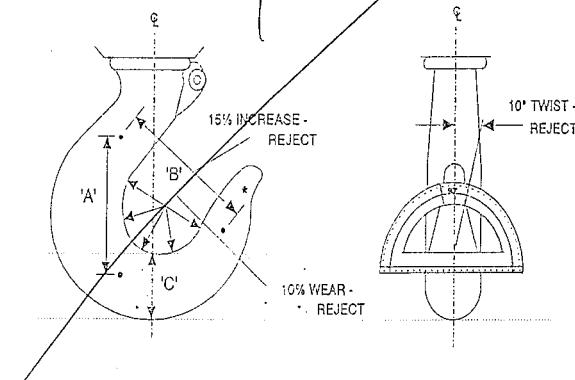
Hoist Mfg. _____ Hook I.D. No. _____

Hoist Serial No. _____ Hook Capacity _____

Hoist Capacity _____ Hook Mfg. _____

Hook Dimension "A" _____ Hook Dimension "B" _____

Hook Dimension "C" _____


Original if Known _____ Current _____

Caliper Serial No. _____ Calibration Date _____

Hook NDE Accept _____ Reject _____ Date _____

Qualified Inspector _____ Date _____

NOTE: *Place numbers on hook as close to tip of hook as practical.

HOOK INSPECTION INFORMATION

1. See Attachment 1 or 2 for discontinuity repair guidelines.
2. If hook is twisted more than 10 degrees, replace hook.
3. Measure distance between 'B' punchmarks using calipers. The measurement between 'A' punchmarks is a reference standard to compare this dimension with.

LOAD TEST PROCEDURE
BELOW-THE-HOOK LIFTING DEVICE

APPROVAL:

Facility Manager

W/A R.G

Date

APPROVAL:

Industrial Safety

W/A R.G

Date

APPROVAL:

Crane and Rigging Services
Manager

Rep. Kuehne

Date

3/24/97

LOAD TEST INSTRUCTIONS

1.0 PURPOSE

- 1.1 The purpose of this procedure is to provide a sequence of operations for load testing a below-the-hook lifting device.

2.0 REFERENCES

- 2.1 Hanford Site Hoisting and Rigging Manual DOE-RL-92-36
- 2.2 WHC-CM-4-4, VOL. 1-3, Industrial Safety Manual
- 2.3 Environmental, Safety, and Health Program Manual.

3.0 RESPONSIBILITIES

- 3.1 The equipment custodian (designated by the Facility manager) is responsible for ensuring maintenance inspections and testing of equipment are not delinquent. He is also responsible for maintaining records of the repairs, inspections, tests, and any maintenance performed. He will assure these records are available for audit.
- 3.2 Industrial Safety shall ensure compliance with hoisting and rigging equipment requirements.
- 3.3 A designated leader shall be appointed to all hoisting and rigging (HRR) activities, which include both critical and noncritical lifts. For critical lifts, the designated leader may also be the PIC. For ordinary lifts, the designated leader may be a crew member.
- 3.4 Designated Leader or (if needed) Site Crane and Rigging Services (SC&RS) Supervisor/or Designee is responsible for (1) coordinating the test lift, (2) ensuring a procedure is prepared and approved, (3) ensuring that personnel are qualified to perform the work, (4) ensuring that all equipment and rigging are qualified.
 - 3.4.1 Designated Leader or Supervisor shall conduct a pre-job meeting with all personnel involved in the test.
- 3.5 QC/NDE shall conduct NDE test of welds after load test. NDE requirements, if required, will be called out on design drawing or listed on the work package.

4.0 REQUIREMENTS

4.1 Before each load test, confirm that all equipment inspections and maintenance are current.

Ron K. Kivela
Equipment Custodian or Supervisor

3/26/97
Date

4.2 The Equipment Custodian or the SC&RS Supervisor shall verify that all rigging and accessories inspections are current.

Ron Kivela
Equipment Custodian or SC&RS Supervisor

3/26/97
Date

4.3 Load test weight 64,360 is known and documented within a tolerance of $\pm 0\%$, -5% . Weights shall be traceable to a recognized standard, verified by: Engineering calculations, a calibrated $(\pm 0\%, -5\%)$ load measuring device or calculating load based on known unit weights and dimensions of test fixture.

4.3.1 Load test units accepted prior to test.

Ron Kivela
Designated Leader or SC&RS Supervisor

3/26/97
Date

5.0 PRE-JOB MEETING

5.1 The Designated Leader or Supervisor shall conduct a pre-job meeting prior to work start to review this procedure with all involved personnel and resolve any safety concerns. The Supervisor shall ensure involved personnel wear appropriate safety attire (e.g., hard hat, safety shoes, gloves, safety glasses, and any other personal protective equipment required). A designated signal person shall be appointed by the SC&RS Supervisor.

Ron Kivela
Designated Leader or SC&RS Supervisor

3/26/97
Date

6.0 LOAD TEST

6.1 Barricade or rope off work area to warn unauthorized personnel of load test in progress.

6.2 Position hook or device over center of gravity of load.

6.3 Attach rigging to hook or attachment as directed by the supervisor. Stop and inspect, adjust rigging as needed.

6.4 Hoist load a few inches and hold for 5 minutes.

6.5 Set load down and remove rigging or test weight assembly.
Visually inspect load bearing parts to verify that no damage has
been done.

6.6 NDE of load bearing welds after load test (if required).
Type of NDE: MT PT VISUAL

N/A
NDE Accept

N/A
NDE Reject

7.0 LOAD TEST REPORT

7.1 Complete load test report.

7.2 The reports shall be placed in the Crane History file by the
equipment custodian.

LOAD TEST REPORT FORM

* Building No./Facility 324 Bldg. Load Test Date 3-26-97
* I.D. No. 1-A Model No. N/A Manufacturer Hersteller
* Rated Capacity 44,000
* Last Load Test Date N/A Weight(s) Lifted 64,560
* This Load Test: Weight Lifted 64,560
* Dynamometer: Calibration ID No. 865-24-06-035 Recal Due Date 3-5-98
Range 50 Ton ± 50 Lbs

Remarks: _____

[] Quality Assurance
or
[] Third Party Verification
(Check One)

✓/A

Signature

Date

After Load Test Place This Document in the Crane History File.

MES MAINTENANCE PROCEDURE
PERIODIC TO ANNUAL CONDITION INSPECTION OF
BELOW-THE-HOOK LIFTING DEVICES

PROC. NO. 7-GN-100
REV. 2, CHG. A
PAGE 17 of 21

DATA SHEET (Sheet 1 of 5)

7.0 INSTRUCTIONS (Record S - Satisfactory, U - Unsatisfactory or N/A - Not Applicable on steps below).

STEP	S-U-N/A	COMMENTS	INITIAL/DATE
7.1.1	S		OK RKK 3/26/97
7.1.2	S		OK RKK 3/26/97
7.1.3	S		OK RKK 3/26/97
7.1.4	S		OK RKK 3/26/97
7.2.1.a	N/A		
b	N/A		
c	N/A		
d	N/A		
e	N/A		
f	N/A		
g	N/A		
7.3.1.a	N/A		
b	N/A		
c	N/A		
d	N/A		
e	N/A		
f	N/A		
g	N/A		
h	N/A		
7.3.2	N/A		

MES MAINTENANCE PROCEDURE
PERIODIC TO ANNUAL CONDITION INSPECTION OF
BELOW-THE-HOOK LIFTING DEVICES

PROC. NO. 7-GN-100
REV. 2, CHG. A
PAGE 18 of 21

DATA SHEET (Sheet 2 of 5)

7.0 INSTRUCTIONS (Record S - Satisfactory, U - Unsatisfactory or N/A - Not Applicable on steps below).

STEP	S-U-N/A	COMMENTS	INITIAL/DATE
7.4.1.a	<i>N/A</i>		
b	<i>N/A</i>		--
c	<i>N/A</i>		
d	<i>N/A</i>		
e	<i>N/A</i>	Record results of inspection on Hook Identification Record Data Sheet(s).	
f	<i>N/A</i>	Record results of inspection on Hook Identification Record Data Sheet(s).	
7.4.2.a	<i>N/A</i>	Record results of inspection on Hook Identification Record Data Sheet(s).	
b	<i>N/A</i>	Record results of inspection on Hook Identification Record Data Sheet(s).	
c	<i>N/A</i>	Record results of inspection on Hook Identification Record Data Sheet(s).	
7.4.3	<i>N/A</i>	Record results of inspection on Hook Identification Record Data Sheet(s).	
7.4.4.a	<i>N/A</i>		
b	<i>N/A</i>		
c	<i>N/A</i>		
d	<i>N/A</i>		
7.5.1.a	<i>S</i>	OK	RKK 3-26-97
b	<i>S</i>	OK	RKK 3-26-97
c	<i>N/A</i>		
d	<i>S</i>	OK	RKK 3-26-97
e	<i>N/A</i>		
f	<i>S</i>	OK	RKK 3-26-97
g	<i>S</i>	OK	RKK 3-26-97

MES MAINTENANCE PROCEDURE
PERIODIC TO ANNUAL CONDITION INSPECTION OF
BELOW-THE-HOOK LIFTING DEVICESPROC. NO. 7-GN-100
REV. 2, CHG. A
PAGE 19 of 21

DATA SHEET (Sheet 3 of 5)

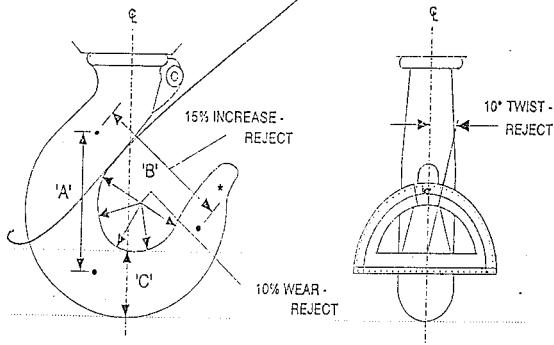
7.0 **INSTRUCTIONS** (Record S - Satisfactory, U - Unsatisfactory or N/A - Not Applicable on steps below).

STEP	S-U-N/A	COMMENTS	INITIAL/DATE
7.5.2.a	S	OK	RKK 3/26/97
b	S	OK	RKK 3/26/97
c	S	OK	RKK 3/26/97
d	N/A		
e	N/A		
f	N/A		

THINK SAFETY IN ALL WE DO

MES MAINTENANCE PROCEDURE
PERIODIC TO ANNUAL CONDITION INSPECTION OF
BELOW-THE-HOOK LIFTING DEVICES

PROC. NO. 7-GN-100
REV. 2, CHG. A
PAGE 20 of 21


DATA SHEET (Sheet 4 of 5)

HOOK IDENTIFICATION RECORD

Inspection Type (Circle one): Initial/Monthly/Periodic _____
(Specify return to service, pre-Critical Lift, etc.)

Inspection Date _____	Hook Location/Bldg. _____
Hoist Mfg. _____	Hook I.D. No. _____
Hoist Serial No. _____	Hook Capacity _____
Hoist Capacity _____	Hook Mfg. _____
Hook Dimension "A" _____	Hook Dimension "B" _____
Hook Dimension "C" _____	
Original if Known	
Caliper Serial No. _____	Current
Hook NDE Accept _____	Calibration Date _____
Reject _____	Date _____
Qualified Inspector _____	Date _____

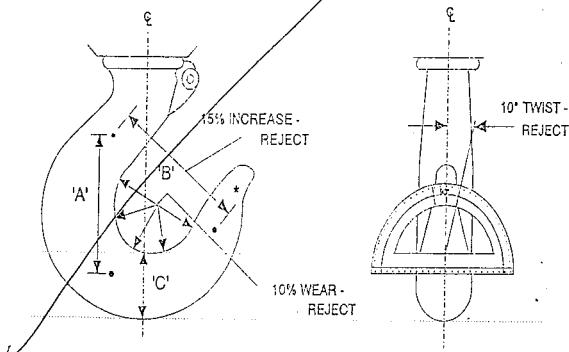
NOTE: *Place numbers on hook as close to tip of hook as practical.

HOOK INSPECTION INFORMATION

1. See Attachment 1 or 2 for discontinuity repair guidelines.
2. If hook is twisted more than 10 degrees, replace hook.
3. Measure distance between 'B' punchmarks using calipers. The measurement between 'A' punchmarks is a reference standard to compare this dimension with.

MES MAINTENANCE PROCEDURE
PERIODIC TO ANNUAL CONDITION INSPECTION OF
BELOW-THE-HOOK LIFTING DEVICES

PROC. NO. 7-GN-100
REV. 2, CHG. A
PAGE 21 of 21


DATA SHEET (Sheet 5 of 5)

HOOK IDENTIFICATION RECORD

Inspection Type (Circle one): Initial/Monthly/Periodic _____
(Specify return to service, pre-Critical Lift, etc.)

Inspection Date _____	Hook Location/Bldg. _____
Hoist Mfg. _____	Hook I.D. No. _____
Hoist Serial No. _____	Hook Capacity _____
Hoist Capacity _____	Hook Mfg. _____
Hook Dimension "A" _____	Hook Dimension "B" _____
Hook Dimension "C" _____	
Original if Known	
Caliper Serial No. _____	Current
Hook NDE Accept _____	Calibration Date _____
Reject _____	Date _____
Qualified Inspector _____	
Date _____	

NOTE: *Place numbers on hook as close to tip of hook as practical.

HOOK INSPECTION INFORMATION

1. See Attachment 1 or 2 for discontinuity repair guidelines.
2. If hook is twisted more than 10 degrees, replace hook.
3. Measure distance between 'B' punchmarks using calipers. The measurement between 'A' punchmarks is a reference standard to compare this dimension with.

LOAD TEST PROCEDURE
BELOW-THE-HOOK LIFTING DEVICE

APPROVAL:

Facility Manager

Date

N/A 12.6

APPROVAL:

Industrial Safety

Date

N/A 12.6

APPROVAL:

Crane and Rigging Services

Date

Manager

3/29/97

LOAD TEST INSTRUCTIONS

1.0 PURPOSE

- 1.1 The purpose of this procedure is to provide a sequence of operations for load testing a below-the-hook lifting device.

2.0 REFERENCES

- 2.1 Hanford Site Hoisting and Rigging Manual DOE-RL-92-36
- 2.2 WHC-CM-4-4, VOL. 1-3, Industrial Safety Manual
- 2.3 Environmental, Safety, and Health Program Manual.

3.0 RESPONSIBILITIES

- 3.1 The equipment custodian (designated by the Facility manager) is responsible for ensuring maintenance inspections and testing of equipment are not delinquent. He is also responsible for maintaining records of the repairs, inspections, tests, and any maintenance performed. He will assure these records are available for audit.
- 3.2 Industrial Safety shall ensure compliance with hoisting and rigging equipment requirements.
- 3.3 A designated leader shall be appointed to all hoisting and rigging (H&R) activities, which include both critical and noncritical lifts. For critical lifts, the designated leader may also be the PIC. For ordinary lifts, the designated leader may be a crew member.
- 3.4 Designated Leader or (if needed) Site Crane and Rigging Services (SC&RS) Supervisor/or Designee is responsible for (1) coordinating the test lift, (2) ensuring a procedure is prepared and approved, (3) ensuring that personnel are qualified to perform the work, (4) ensuring that all equipment and rigging are qualified.
 - 3.4.1 Designated Leader or Supervisor shall conduct a pre-job meeting with all personnel involved in the test.
- 3.5 QC/NDE shall conduct NDE test of welds after load test. NDE requirements, if required, will be called out on design drawing or listed on the work package.

4.0 REQUIREMENTS

4.1 Before each load test, confirm that all equipment inspections and maintenance are current.

Roy Kunkel
Equipment Custodian or Supervisor

3/26/97
Date

4.2 The Equipment Custodian or the SC&RS Supervisor shall verify that all rigging and accessories inspections are current.

Roy Kunkel
Equipment Custodian or SC&RS Supervisor

3/26/97
Date

4.3 Load test weight 64,560 is known and documented within a tolerance of $\pm 0\%$, -5% . Weights shall be traceable to a recognized standard, verified by: Engineering calculations, a calibrated $(\pm 0\%, -5\%)$ load measuring device or calculating load based on known unit weights and dimensions of test fixture.

4.3.1 Load test units accepted prior to test.

Roy Kunkel
Designated Leader or SC&RS Supervisor

3/26/97
Date

5.0 PRE-JOB MEETING

5.1 The Designated Leader or Supervisor shall conduct a pre-job meeting prior to work start to review this procedure with all involved personnel and resolve any safety concerns. The Supervisor shall ensure involved personnel wear appropriate safety attire (e.g., hard hat, safety shoes, gloves, safety glasses, and any other personal protective equipment required). A designated signal person shall be appointed by the SC&RS Supervisor.

Roy Kunkel
Designated Leader or SC&RS Supervisor

3/26/97
Date

6.0 LOAD TEST

6.1 Barricade or rope off work area to warn unauthorized personnel of load test in progress.

6.2 Position hook or device over center of gravity of load.

6.3 Attach rigging to hook or attachment as directed by the supervisor. Stop and inspect, adjust rigging as needed.

6.4 Hoist load a few inches and hold for 5 minutes.

6.5 Set load down and remove rigging or test weight assembly. Visually inspect load bearing parts to verify that no damage has been done.

6.6 NDE of load bearing welds after load test (if required).
Type of NDE: MT PT VISUAL

N/A
NDE Accept

N/A
NDE Reject

7.0 LOAD TEST REPORT

7.1 Complete load test report.

7.2 The reports shall be placed in the Crane History file by the equipment custodian.

LOAD TEST REPORT FORM

* Building No./Facility 324 Bldg. Load Test Date 3-26-97
* I.D. No. 1-B Model No. n/a Manufacturer Hersteller
* Rated Capacity 44,000
* Last Load Test Data n/a. Height(s) Lifted 64,560
* This Load Test: Weight Lifted 64,560
* Dynamometer: Calibration ID No. 815-29-06-038 Recal Due Date 3-5-98
Range 50 ton \pm 500 LBS

Remarks: _____

Quality Assurance
or
 Third Party Verification
(Check One)

Signature

Date

After Load Test Place This Document in the Crane History File.

5.3 CASTOR LIFTING BEAM EVALUATION

ENGINEERING SAFETY EVALUATION

Subject: <u>CASTOR LIFTING BEAM EVALUATION</u>	Page: <u>1</u> of <u>5</u>
Originator: <u>S. S. Shiraga</u> <i>[Signature]</i>	Date: <u>04/02/97</u>
Checker: <u>S. R. Crow</u> <i>[Signature]</i>	Date: <u>04/03/97</u>

I. Objective:

The objective of this evaluation is ensure the CASTOR lifting beam meets the requirements of the Hanford Site Hoisting and Rigging Manual. The requirement is a safety factor of 3 to 1 based on yield strength.

II. References:

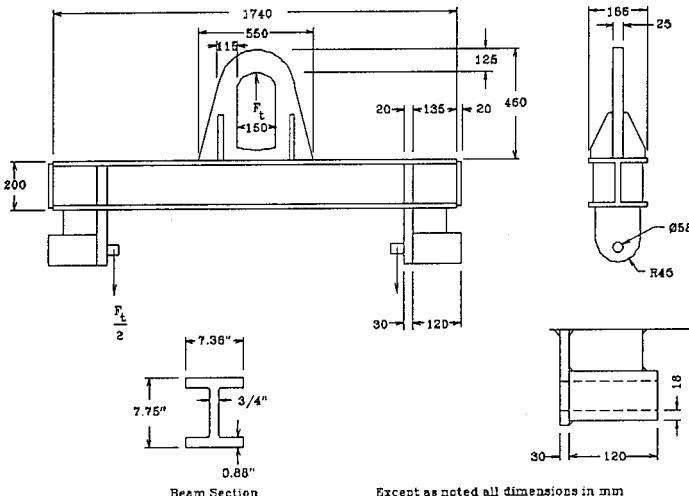
DOE, DOE-RL-92-36, *Hanford Site Hoisting and Rigging Manual*, Richland Field Office, Richland, WA., January, 1993.

HNF-SD-TP-SARP-021, *Safety Analysis Report for Packaging (Onsite) CASTOR GSF Cask*, RFS NW Operations, Richland, WA.

Hudson, R. G., *The Engineers' Manual*, Second Edition, John Wiley and Sons, New York, New York, 1939.

AISC, *Manual of Steel Construction*, Ninth Edition, American Institute of Steel Construction, Chicago, Illinois, 1989.

D-Krantechnik, *Lifting Beam Structural Calculations*, Ratingen, Germany, May 7, 1996.


III. Results and Conclusions:

Results of this evaluation verifies the CASTOR Lifting Beam meets the requirements of the Hoisting and Rigging Manual (DOE, 1993). The evaluation is based on the nominal strengths of equivalent German structural steel. As shown in the evaluation the safety factors for the most critical components are equal to or greater than 3. Within this evaluation, the welds are assumed to have the same structural strength as the parent material. Since the welds are not located critical or high load areas, they are not evaluated.

ENGINEERING SAFETY EVALUATION

Subject: CASTOR LIFTING BEAM EVALUATIONPage: 2 of 5Originator: S. S. ShiragaDate: 04/02/97Checker: S. R. CrowDate: 04/03/97

IV. Evaluation:

CASTOR LIFTING BEAM EVALUATION:Assumed lifting weight of CASTOR w/o impact limiters (CASTOR SARP): $W_{\text{cast}} = 41000 \text{ lbf}$ Assumed maximum lifting weight of Lifting Beam: $W_{\text{max}} = 44000 \text{ lbf}$ Beam material (RSt 37-2) yield strength: $s_{37y} = 225 \frac{\text{newton}}{\text{mm}^2}$ $s_{37y} = 32.63 \text{ ksi}$
ASTM Equivalent A-570.Eye plate (St 52-2) yield strength: $s_{52y} = 345 \frac{\text{newton}}{\text{mm}^2}$ $s_{52y} = 50.04 \text{ ksi}$
ASTM Equivalent A-516.Lifting pin (St 50) yield strength: $s_{50y} = 275 \frac{\text{newton}}{\text{mm}^2}$ $s_{50y} = 39.89 \text{ ksi}$
ASTM Equivalent A-515.

ENGINEERING SAFETY EVALUATION

Subject: CASTOR LIFTING BEAM EVALUATION

Page: 3 of 5

Originator: S. S. Shiraga

Date: 04/02/97

Checker: S. R. Crow

Date: 04/03/97

Determine moment of inertia of I beam section about the axis perpendicular to the web:

Width of flange: $w_f = 7.38\text{ in}$ Depth of section: $s_d = 7.75\text{ in}$ Flange thickness: $t_f = 0.88\text{ in}$ Thickness of web: $t_w = 0.75\text{ in}$ Depth of web: $w_s = s_d - 2t_f$

$$\text{Moment of inertia (Hudson, 1939, page 84): } I_{bs} = \frac{w_f s_d^3 - w_s^3 (w_f - t_w)}{12} \quad I_{bs} = 168\text{ in}^4$$

$$\text{Distance of center of gravity: } d_{icg} = \frac{s_d}{2} \quad d_{icg} = 3.87\text{ in} \quad \text{Section Modulus: } S_{bs} = \frac{I_{bs}}{d_{icg}}$$

$$\text{Cross sectional area: } A_{bs} = 2t_f w_f + t_w w_s \quad A_{bs} = 17.48\text{ in}^2$$

$$\text{Area of compression flange: } A_f = t_f w_f \quad A_f = 6.49\text{ in}^2$$

Evaluate to AISC Design Requirements:

$$\text{Width to thickness ratio: } \frac{w_f}{2t_f} = 4.19 \quad \text{Limiting width to thickness ratio: } \frac{65}{\sqrt{\frac{s_{37y}}{ksi}}} = 11.38$$

Since width to thickness ratio not limiting, section is compact.

Determine value of limiting laterally unsupported length for compact section in strong axis bending:

$$\frac{76w_f}{\sqrt{\frac{s_{37y}}{ksi}}} = 8.18\text{ ft} \quad \text{or} \quad \frac{20000}{\sqrt{\frac{(s_d)(s_{37y})}{(A_f)ksi}}} = 42.8\text{ ft}$$

$$\text{Unsupported length of I beam: } L_b = 1740\text{ mm} \quad L_b = 5.71\text{ ft}$$

Therefore, since critical length not exceeded flexure allowable of beam is: $s_{37b} = 0.66 s_{37y} \quad s_{37b} = 21.54\text{ ksi}$

Loading on Main Beam:

Idealize loading as a simply supported beam with a partially distributed uniform load over center section. AISC, 1989, page 2-297.

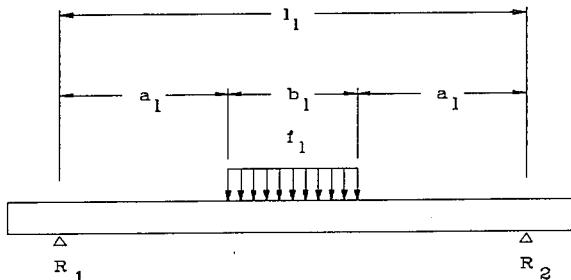
$$\text{Length between load: } l_1 = 1740\text{ mm} - 2(175\text{ mm}) \quad \text{Load width: } b_1 = 550\text{ mm}$$

$$\text{Distance from load: } a_1 = \frac{l_1 - b_1}{2} \quad a_1 = 420\text{ mm}$$

$$\text{Load on unit: } F_t = W_{\max} \quad \text{Load per unit length: } f_1 = \frac{F_t}{b_1} \quad f_1 = 2032\frac{\text{lbf}}{\text{in}}$$

ENGINEERING SAFETY EVALUATION

Subject: CASTOR LIFTING BEAM EVALUATION


Page: 4 of 5

Originator: S. S. Shiraga

Date: 04/02/97

Checker: S. R. Crow

Date: 04/03/97

Since symmetrical, reaction load at load points: $R_1 = \frac{f_1 b_1}{2 l_1} (2 a_1 + b_1)$ $R_1 = 22000 \text{ lbf}$

Maximum Moment: $M_{\max} = R_1 \left(a_1 + \frac{R_1}{2 f_1} \right)$ $M_{\max} = 482874 \text{ lbf-in}$

Bending stress: $\sigma_b = \frac{M_{\max}}{S_{bs}}$ $\sigma_b = 11.17 \text{ ksi}$ Shear at Edge: $\tau_b = \frac{R_1}{A_{bs}}$ $\tau_b = 1.26 \text{ ksi}$

Safety Factor based on Yield Strength: $SF_b = \frac{S_{37Y}}{\sigma_b}$ $SF_b = 3$

Loading on Lift Pin:

Assume as cantilevered circular beam that is loaded between cask lifting beam. Treat as short beam.

Pin diameter: $d_{pin} = 58 \text{ mm}$ Load on pins: $F_p = \frac{\tau t}{2}$ $F_p = 22000 \text{ lbf}$

Cross sectional area of pin: $A_p = \pi \frac{d_{pin}^2}{4}$ Moment of inertia of cross section: $I_p = \frac{\pi \cdot d_{pin}^4}{64}$

Distance between pin supports: $l_{ps} = 1740 \text{ mm} - 2(20 + 135 + 20) \cdot \text{mm}$

Gap between cask and lifting beam: $l_g = \frac{l_{ps} - 1365 \text{ mm}}{2}$ $l_g = 0.49 \text{ in}$

ENGINEERING SAFETY EVALUATION

Subject: CASTOR LIFTING BEAM EVALUATION

Page: 5 of 5

Originator: S. S. Shiraga

Date: 04/02/97

Checker: S. R. Crow

Date: 04/03/97

$$\text{Shear stress on pin: } \tau_p = \frac{F_p \cdot \left(\frac{d_{\text{pin}}}{2} \right)^2}{3I_p} \quad \tau_p = 7.16 \text{ ksi}$$

$$\text{Bending: } \sigma_p = \frac{F_p \cdot I_g \cdot \frac{d_{\text{pin}}}{2}}{I_p} \quad \sigma_p = 9.26 \text{ ksi}$$

$$\text{Principal stress: } \sigma_1 = \frac{\sigma_p}{2} + \sqrt{\left(\frac{\sigma_p}{2} \right)^2 + \tau_p^2} \quad \sigma_1 = 13.2 \text{ ksi}$$

$$\text{Safety Factor based on Yield Strength: } SF_p = \frac{S_{50y}}{\sigma_1} \quad SF_p = 3$$

Loading on lifting eye:

$$\text{Thickness of plate: } t_e = 25 \text{ mm} \quad \text{Length on each side of opening: } l_e = 115 \text{ mm}$$

$$\text{Distance to outside edge: } d_{oe} = 125 \text{ mm}$$

$$\text{Tensile stress on lifting eye: } \sigma_{et} = \frac{F_t}{2t_e \cdot l_e} \quad \sigma_{et} = 4.94 \text{ ksi}$$

$$\text{Safety Factor based on Yield Strength: } SF_{et} = \frac{S_{50y}}{\sigma_{et}} \quad SF_{et} = 10.1$$

$$\text{Shear tearout: } \tau_{tet} = \frac{F_t}{2t_e \cdot d_{oe}} \quad \tau_{tet} = 4.54 \text{ ksi}$$

$$\text{Safety Factor based on Yield Strength: } SF_{tet} = \frac{S_{50y}}{\tau_{tet}} \quad SF_{tet} = 11$$

DISTRIBUTION SHEET

To Distribution	From Packaging Engineering	Page 1 of 1 Date 04/04/97			
Project Title/Work Order Spreader Beam Analysis for the CASTOR GSF Cask (HNF-SD-TP-RPT-026)					EDT No. 619562 ECN No. N/A
Name	MSIN	Text With All Attach.	Text Only	Attach./ Appendix Only	EDT/ECN Only
C. E. Brewer	S3-15	X			
E. P. Clements	H1-15	X			
J. G. Field	H1-15	X			
S. D. Halstead	L1-02	X			
R. K. Kroshus	G4-07	X			
D. M. LaRue	G3-08	X			
I. L. Metcalf	L6-26	X			
S. S. Shiraga	H1-15	X			
P. J. Weaver	L1-02	X			
Central Files	A3-88	X			
HNF-SD-TP-RPT-026 File	H1-15	X			