‘~ o CoNF-9509)9)-- |

SANOGS - 2405 C

RFECEIvED
NOV 17 1995
OSTI

A Pragmatic Overview of Fast Multipole Methods

James H. Strickland and Roy S. Baty

Abstract A number of physics problems can be modeled by a set of N elements which
have pair-wise interactions with one another. A direct solution technique requires computa-
tional effort which is O(N2 ) . Fast multipole methods (FMM) have been widely used in
recent years to obtain solutions to these problems requiring a computational effort of only
O (NInN) or O (N) .Inthis paper we present an overview of several variations of the fast
multipole method along with examples of its use in solving a variety of physical problems.

1. INTRODUCTION
Many problems in science and engineering can be cast in terms of integral equations

of the form:

) v = f W) K (x %) dx

for which a discrete form may be written in terms of the summation:
N

()] v® =Yy WKk .

i=1
For example, Roach [1] shows that the solutions for a large class of linear differential
equations giv_ein by Lu = f where L is a linear differential operator may be cast in this
form when L™ exists. In this case, the kernel X (z, x) is a Green’s function for the oper-
ator L and W (x") = f. Examples of classical physics problems which may be cast in
terms of Equation 2 as noted by Greengard [2] include N body gravitational problems,
electrostatic fields, magneto-statics, heat conduction, and acoustic fields. Several example
kernels K (x,x) are given in Table 1. The primary interest of the authors in this subject
area involves the use of fast algorithms to facilitate computations associated with gridless
vortex methods in fluid mechanics. In these methods, it is necessary to obtain the velocity
vector ¥ (x) in terms of the vorticity vector @ (x) and the divergence of the velocity
field D (x') . Use of the Helmholtz decomposition for a vector field [3] allows us to
accomplish this:
&) u(x) = Vx R[ XK (xx)dR(x) -V R[ D(X)K(x x)dR(¥) .
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' No. | K(xx) Physical interpretation of y (x)

two-dimensional electrostatic poten-
tial and two-dimensional stream-

function for vortex flows
2 x—x! three-dimensional gravitational
—; force, force due to charged particles,
lx- % velocity associated with a field of

vorticity, Biot-Savart law

oz te.mpe.rature due to heat conduction,
- diffusion
4 ialr- x| three-dimensional acoustic pressure
-]
5 = -2} axisymmetric stream-function for
ri'rJ'e , Ckr ) T (kr) dk vortex rings

0

Table 1: Example Kernel Functions

From Equation 2 one notes that in order to carry out a direct summ%tion for N target
points located at various values of x, a computational effort g)f orde{1 N’ is required. This
becomes very expensive for systems in which N exceeds 10” to 10". In many cases, one
would like to make calculations with N on the order of 10% to 10° which is not practical
using direct summation.

However, in the event that Equation 1 is a Hilbert-Schmidt integral equation {4], the kernel
K(x x;) may be approximated by a degenerate kernel of the form:

p
@) . K(x, E‘,') = Z Aj ('5';‘) Bj x
J

=1 -
which produces a discrete problem requiring a computational effort of order Np . This can
be achieved by first substituting Equation 4 into Equation 2 and rearranging the order of
summation to yield:

p N
5) y(x) = Z Bj (x) Z W(l"i)Aj(Jf'i) .
Jj=1 i=1
We now define the coefficients C i (x,) by:

N
© Cix) = Y WE)AG)

i=1
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so that:
?
(7) y(x) = Z Bj x Cj (-,x,',-) .
j=1

The coefficients C;(x',) are computed ésing Equation 6 prior to carrying out the summa-
tion indicated in ]-fquation 7. Computation of C | (x';) requires O (Np) work. Since the
summation in Equation 7 for all N target points at x also requires O (Np) work we see
that this method requires O (Np) work as opposed to O(N”) work associated with the
direct solution of Equation 2. Obviously p must be significantly less than N for this
scheme to provide a significant advantage.

1t should be emphasized that the fast algorithm (Equation 7) is based on the fact that only
information at x' is required to obtain the precomputed coefficients C; (x';) . This is, in
turn, based on the ability to obtain the “separation of variables” indicateé by the right hand
side of Equation 4. In many problems of interest, Equation 4 is obtained from a truncated
series which has a limited range of validity for a specified level of accuracy. For example
the kernel X (x, x';) might be represented by a truncated Laurent series or some other far-
field representation which requires that the target point x be far away or “well separated”
from the source located at x';. On the other hand, the truncated series might be a Taylor
series or some other near-field expansion written about some point near to a set of target
points but well separated from the source points. The term “multipole expansion™ has been
used by Greengard and Rokhlin [6] to indicate the far-field series expansion and the term
“local expansion” to indicate the near-field series expansion. This terminology will be
adopted for the purposes of this paper.

As indicated, for most problems of interest, Equation 4 will be represented by multipole or
local series expansions which are valid to some specified level of accuracy according to
the relative separation of target and source points. Since the target and source points may,
in general, be located anywhere within the domain of interest, somewhat elaborate
schemes must be employed to insure that the series expansions are properly used. There
are two major classes of methods which have been developed to accomplish this. The so
called “hierarchical” or “tree code” schemes typified by the Bames-Hut algorithm [5] use
only multipole expansions while the Greengard Rokhlin algorithm [6] makes use of both
multipole and local expansions.

2. SERIES EXPANSIONS

In this section, we will present examples of Equation 4 for several different physical prob-
lems which can be represented by multipole or local series expansions.

2,1 Multipole

In Figure 1, the geometry associated with the multipole expansion is represented. The
source points are located inside the domain D, at points x',. The multipole expansion is
constructed about-the point x  in D, and the target point is located outside of domain
D, at the point x. It is assumed that a series expansion which is accurate to some preci-
sion can be obtained at the point x.
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Source Points

Figure 1. Multipole Expansion about Point in Source Domain

In order to illustrate the manner in which a multipole expansion may be generated, con-
sider the simple one-dimensional example given by the equation:
N

® y(x) = ZW(X,-)K(x—x',-) .

=1

Our goal is to replace K(x-x)) w1th a series expansion in which the variables x and X'
are separated as in Equation 4. Thls may be easﬂy achieved by expanding X (x - x' 2 mto

a Taylor series about the point x__ which is given by:

x
OK(x-x) =K(x-x) - (*-x K (x-x ) +—

2

- xSC)

o K'(x-x,) -

We note that if x and x;' are replaced by positions in the complex plane z and Z'; that we
have a planar two-dlmensmnal multipole expansion. The problem now reduces to ﬁndmg
the derivatives of X and making sure that the series converges to the desired accuracy in a

reasonable number of terms.

For a specific example, consider the case in which K (x)

= In (|x]) . From Equation 9:

A STATNPY, '
A0 K(px-x) =n(x-x - Y i % VL _ oY iz *sd 7]
=1 | x-x,, P x-x,,
We see that the resulting multipole series in x converges for Ix -x, |< Ix | to an
acy € , _
(11) £ = o[l( x_.L_""st” .
P x-=x,. 1) |

As a second example, consider the axisymmetric vortex flow problem studied by Strick-
land and Amos [7]. The contribution to the stream-function at (x,r) from a group of N
axisymmetric vortex rings located at (x';, 7',) is given by:

N

(12) y(x,r) = E WK(xx,rr),

i=1
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where
(13) K(x,x,r,r) =r; rJ'e J (kr;)J, (kr) dk.
A Taylor series expansion can be written for y as:
P n
(14) v=3) { )3 [ ———<n o K (B X T rw}}
n=0im=0 ) sc
where

N (_x'i+xsc)n—m(r'i_rsc)m
(15) A mm = ,'21 [Wi TR .

Here again we see that there is a separation of variables with regard to information con-
cerning the source points (x', ') and the target point x, r. The most difficult step is to
obtain the mixed partial denvatlves of K as indicated in Equation 14. In this particular
case, these derivatives were obtained as a function of associated Legendre functions of the
second kind. It is of interest to note that the partial differential equation for the stream-
function given by:

Ies“

2
(16) ov,9 13‘"

ox” or ror
can be used to develop two equations for X . This can be accomplished by noting that each
vortex ring must individually satisfy Equation 16. Since for a single ring y = WK with
K equal toa constant then:

»n

d K d K 10K
o ax2 +ar2 T ror

Also, due to the symmetry of the formulation the following is true:

3K 9K _ 10K

PYCR o T

ox or sc sc’’ sc

These relationships can be differentiated to obtain relationships between higher order par-
tial derivatives. This in effect reduces the number of partial derivatives which have to be
calculated directly from associated Legendre functions. Thus, we see that utilization of the
governing partial equation may be very beneficial.

13)

As a third example, consider the three-dimensional vector potential given by:

(19) y() = Z

|- ’!

Here r is the radial distance to the target point and r; is the radial distance to the source
point. One could write Equation 19 in cartesian coordinates and obtain a Laurent series in
x,y,and z for each component of y. This has in fact been accomplished by Zhao [8].
Since Equation 19 is a solution to the Laplace equation, there are a number of relationships
between the various partial derivatives associated with the Laurent series expansion which
allows a reduction in the number of terms. An equivalent expansion which involves the
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use of spherical harmonics is given by Greengard [9] as:

N p n Yﬁ 6, ¢)
20) vy =Y Y Y A0 -r.8.8) ——.
i=1n=0 m=n r- rscl .

Here, Y(6,9) are spherical harmonics which are functions of the polar and azimuthal
angles 6 and ¢ associated with the target point. The radius to the center of expansion is
givenby r__. Since the coefficients 4: are only a function of information available at the
source points then we see that a separation of variables in the spirit of Equation 7 has been
achieved.

As a last example, we will consider a case in which the derivatives associated with the
Taylor series expansion can be conveniently represented by the use of a special function.
The fast Gauss transform developed by Greengard and Strain [10] has a kernel given by:

1) K = e“"‘z.

2
Direct application of Equation 9 to this problem (differentiation of e™* ) does not yield
particularly satisfying results. However, if one notes that the derivatives of the kernel
K (x) can be written in terms of Hermite polynomials

22) K" (%) =%(e‘°"‘2) = (1" H, (Jox

then the kernel can be easily expanded to obtain:

—()&7—.7{"_.)2

P
23) K(x-x) =e Z ;ll—'[Ja(xi'—xsc)]"Hn(fa_(x-xu)) .
n=0

Greengard and Strain [10] further extend this one-dimensional fast Gauss transform to
multi-dimensions.

In summary, the far-field or multipole expansions allow one to separate variables such that
O (N) computations may be made. These expansions may be obtained by writing a Tay-
lor series in a chosen coordinate system. The resulting series may be further simplified by
making use of the governing differential equation along with perhaps a set of special func-
tions.

2.2 Translation of Source Domain Center

An essential requirement for virtually all of the fast solution techniques it is to be able to
shift the center of the multipole expansion %,. in domain D, to a new center located at
¥, indomain D, as indicated by Figure 2. This allows one to efficiently obtain multipole
expansions in large domains by summing the contributions from shifted multipole expan-

sions associated with a number of sub-domains.




A PRAGMATIC OVERVIEW OF FAST MULTIPOLE METHODS 7

Source Points

Figure 2. Translation of Source Domain Center

For the sake of brevity, we will not present shifted multipoles for all of the examples in the
previous section but only consider the simplest case given by Equations 8 and 9 in order to
illustrate the basic concept. From Equations 8 and 9 the function y (x) may be written as:

4
4) v(x) = ):[ ]
n=0
where
oo -n" B
(25) Cn(xl.) = Z[ W(x)(x x,.) ]

i=1

In order to shift the expansion to the new center ', we rewrite Equation 24 as:
P
(26 v =) {

( SC xSC)]}
n=0

This can be written in terms of a new Taylor series given by:

P n
27 y(x) = Z[C‘ (x) K(x x )]+£,
n=0
where
n - q
28) C'n (x'i) = Z l:(_qll) Cn—q (x'i)y (xsc—x'sc) q:l .
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Thus if we have expansions for several groups of sources about several centers in domain
D, , then we can simply add their shifted coefficients C', (x';) together to form a new far
field expansion. The basic concept may be extended to mulu-dlmenswnal problems by
using multi-dimensional Taylor series expansions. Various kernel functions may be used
but they must always produce a convergent series and of course, one must be able to dif-
ferentiate them if the series are formed using a Taylor series approach.

2.3 Local Expansion About Point in Target Domain

For many of the fast solution techniques, the far field or multipole expansion along with
the ability to shift the expansion to a new center is all that is required. Greengard and
Rokhlin [6] also take advantage of a local expansion about a point X, in a target domain
D, which is well separated from the source domain D, . This local expansmn allows one
to obtam the influence of a group of sources on a target point as a function of the relative
position between the target point at ¥ and the center of the local expansion at x %,. - This is
~ sometimes referred to as a group-to-group interaction whereas the multipole expansion is
a group-to-point interaction.

Target Point

Source Points

Figure 3. Local Expansion About Point in Target Domain

We can rewrite Equation 24 in the following form.
P

(29 v =Y [C (' ) K[(x x.) - (x sc—x,c)]}+£-
n=0

It should be noted that Equation 27 can also be written in this form if we simply let the

shifted center of expansion for the multipole be relabeled as X, . Equation 29 can be

expanded and rewritten in terms of a local series given by:

(30) y(x) = ): [D,(x) (x-x)"] +¢

n=0
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where

' p-n Cq(x‘i) an+q
31 D, (x) = Z [—"!_B e K(xsc—x,c)].
g=0 *
We note that Equation 30 is a power series in (x - x,) . Typically, for higher dimensional
problems a power series containing products of the independent variables will result.

2.4 Translation of Target Domain Center

Finally, for the Greengard Rokhlin method we must be able to shift the local expansion as
indicated in Figure 4 from a center at x, toacenterat ¥/, .

Target Point

Source Points

Figure 4. Translation of Target Domain Center

We first rewrite Equation 30 by inserting the center of the new target domain x', .

?
(32) w@ = ¥ [D, () [(x-%,) - (x,-2,01"] +e.
n=0
This can be rearranged to obtain a local power series in x - x, . given by:
P
(33) y@ = Y [D,a) 6-2,)"+e.
n=0

where

p-n.

. o n+g!t

(34 D, @) = ¥ [ @) S @50

q=0
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3. SPATIAL PARTITIONING

As dlscussed prev1ously, the fast solution technique is predicated on the ability to separate
variables into those containing information associated with the sources and those contain-
ing information associated with the target pomts In order to accomplish this, the kernel is
written in terms of truncated series expansions which are valid only under certain condi-
tions. These conditions are generally associated with the separation between sources and
target points. In order to insure that these conditions are met, one is required to develop
some sort of scheme to quantify the relative separation between groups of sources and tar-
get points. Virtually all of the methods which have been developed thus far possess a tree
structure or hierarchy produced by the division of the space containing source and target
points into progressively smaller regions. In the following two sections we will present an
overview of such schemes. The methods will be divided into two broad classes which we
will loosely categorize as Barnes-Hut schemes and Greengard-Rokhlin schemes. The dis-
tinguishing difference between the two methods is that the Barnes-Hut scheme utilizes
only far-field expansions while the Greengard-Rokhlin scheme utilizes both near-field and
far-field expansions.

3.1 Barnes-Hut Schemes

Barnes and Hut [5] developed a fast algorithm to study the interaction of two spherical
galaxies which are moving relative to each other and which are made up of several thou-
sand particles. Their work was based in part on that of Appel [11] who also developed a
fast algorithm to study the interaction of particles in a gravitational force field. Barnes and
Hut improved the tree structure of Appel by regularizing the spatial partitioning and were
thereby able to predict and improve the accuracy of the method. In both cases, the force on
a target point was calculated using the gravitational force produced by the total mass of a
source cluster assumed to be located at the cluster centroid. In essence, they used a far-
field multipole expansion in which only the first two terms were retained. Translation of
the source domain centers was achieved by calculating the centroid of the sources in the
domain.

The tree-structure of Barnes and Hut was obtained by first surrounding the source and tar-
get points by a square (cube in three-dimensions) as indicated in Figure 5. This box is fur-
ther subdivided into four squares (eight cubes in three-dimensions). Subdivision of parent
boxes is continued until there is only one particle per box. Empty boxes are discarded.
Each box is tagged with the total mass contained in the box and the center of gravity. This
includes all of the parent boxes as well. The force on any particle is obtained by sequen-
tially examining the boxes starting with the largest. The ratio of the source box size to the
distance between the box center of gravity and the target point is checked to see if it is
below a certain value or if there is only one particle in the box. This, of course, insures that
a certain minimum accuracy will be maintained. If the error criteria is met, the contribu-
tion from that box is computed. If not, the children of that box are examined to see if they
in turn meet the error criteria. This process is carried out in such a manner so as to include
the effect of every source in the field.
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Figure 5. Barnes-Hut Hierarchical Boxing [S]

1t should be pointed out, that the adaptive domain meshes which are generated here are not
to be confused with the adaptive meshes which are generated for conventional CFD for-
mulations. In the present case, the meshes represent a domain decomposition which is
very simple when compared to meshes generated for conventional CFD formulations.
Mesh generation for conventional CFD formulations is for the purpose of writing differ-
ence or element equations which satisfy the governing differential flow equations whereas
the domain meshes generated here are for the purpose of grouping sources or target points.
The domain meshes in the present case do not have to conform to any flow boundaries,
they extend only to regions where sources or target points reside, and they are generated
using a very simple algorithm. Generation of adaptive domain meshes is achieved using a
very small amount of CPU time whereas adaptive mesh generation for conventional CFD
problems can be quite CPU time intensive.

The Barnes-Hut algorithm, in its original form, is very simple. The multipole algorithm
which they used and the associated translation operation were simple but only of first
order. The hierarchical box structure had to have a large number of levels in order to insure
that each particle would eventually be isolated. One obvious improvement to the original
Barnes-Hut algorithm is to use higher order multipoles which improves the accuracy and
decreases the number of levels in the box hierarchy. For example, McMillan and Aarseth
[12] applied the Barnes-Hut algorithm to a stellar dynamics problem in which they used
up to 8 terms in the multipole expansion.
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Van Dommelen and Rundensteiner [13] developed an algorithm in which they used high
order multipoles with 13 to 23 terms to model vortex interactions. They found that in order
to optimize the procedure, each childless box should contain about 100 particles (vorti-
ces). They also used a binary box numbering scheme which had the position and size of
the box encrypted into it.

Clarke and Tutty [14] found that with the number of multipole terms equal to 25, approxi-
mately 30 vortices in a box was optimum. However, the spatial decomposition used by
Clarke and Tutty was different than that used in the original Barnes-Hut algorithm. As
shown in Figure 6, the original box is divided into only two smaller boxes with half of the
particles in each box. The boxes are rectangular and extend only far enough to capture half
of the particles. At each step, the rectangular parent boxes are subdivided along their
major axis in order to form relatively square child boxes. This method is very efficient in
that the number of particles in each box at each level is essentially constant. This also
allows one to start out with a rectangular box of any aspect ratio instead of a square one.

. T
.
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Figure 6. Clarke and Tatty Spatial Decomposition [14]

Another variation of the binary tree spatial decomposition is presented in the work of
Draghicescu [15], [16]. In this method, the original box may be square or rectangular with
an aspect ratio equal to two. As each box is divided into two halves, a pair of rectangles
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with aspect ratio equal to two or a pair of squares will result. While this approach is not as
adaptive as the Clarke and Tutty method with regard to maintaining a uniform number of
particles in each box at a given level, it is somewhat less complex. It is certainly more
adaptive than the quad or oct trees associated with the original Barnes-Hut method.

We close this section by noting that there are a large number of possible variations with
regard to spatial decomposition. For example, in an interesting paper by Niedermeier and
Tavan [17] on the dynamics of proteins produced by electrostatic interactions, the spatial
decomposition is based on the structural features of the proteins themselves. The structural
features of a certain protein allows them to develop an electrostatic model for individual
protein molecules which may then be used in a dynamic analysis of a system of molecules.

3.2 Greengard-Rokhlin Schemes

As mentioned previously, the distinguishing difference between the two methods which
have come to be known as the Barnes-Hut and Greengard-Rokhlin schemes is that in addi-
tion to utilizing far-field expansions the Greengard-Rokhlin scheme also takes advantage
of near-field or local expansions. This idea is clearly presented in a paper by Rokhlin [18]
which predates the work by Barnes and Hut and no doubt formed the basis for the ensuing
work by Greengard and Rokhlin [6], [19] as well as that of Carrier, Greengard, and Rokh-
lin [20]. The Greengard and Rokhlin method allows one to compute the influence of a
cluster of source points on a cluster of target points in a very efficient manner. The Barnes-
Hut method, on the other hand, allows one to compute the influence of a cluster of sources
on a single target point in an efficient manner. '

In the original Greengard-Rokhlin schemes [6], {19], the domain decomposition is non-
adaptive, meaning that the domain is broken up into a set of uniform squares or cubes. The
two-dimensional adaptive domain decomposition used in the work of Carrier, Greengard,
and Rokhlin [20] is identical to that shown in Figure 5 except that there are typically more
than one source point per box. For the adaptive scheme, a somewhat involved procedure is
used to define the separation condition between a particular target box and each of the
source boxes. This procedure determines the way in which sources in a particular source
box influence the target points in a particular target box. In general, each target box at each
level has five possible relationships with each source box in the mesh. A formal descrip-
tion of these *“box lists” will not be given here, but in general, the five lists produce the fol-
lowing types of restrictions on the use of the series expansions:

1. Direct calculations must be made. Multipole and local series expansions cannot be

used.

2. Both multipole and local series expansions can be used.

3. Multipole series expansions can be used, local series expansions cannot.

4, Local series expansions can be used, multipole expansions cannot.

5. Contributions from distant source boxes reside in the parent of the target box.

These lists are illustrated in Figures 7 and 8 for the cross-hatched target boxes. It is
assumed that there are sources in all boxes. In Figure 7a, the list 1, 2, 3, and 4 source boxes
are shown for the 2x2 target box. Figures 7b, 8a, and 8b illustrate how information from
other parts of the domain is brought in through ancestors of the target box in Figure 7a.
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a) Contribution from childless target box’s own box list.
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b) Contribution from childless target box’s parent’s box list.
Figure 7. Box List Example
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d) Contribution from childless target box’s great grandparent’s box list.
Figure 8. Box List Example (continued)
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The Greengard-Rokhlin algorithm is significantly more complex than the Barnes-Hut
algorithm especially when applied in an adaptive manner. It is perhaps for this reason that
there have not been very many extensions to the basic concept. Schmidt and Lee [21]
developed an algorithm for including periodic boundary conditions for the purpose of
evaluating Coulomb potentials in a three-dimensional non-adaptive scheme. Strickland
and Amos [7] used the adaptive technique of Carrier, Greengard, and Rokhlin [20] with a
new kernel to solve for the stream function associated with axisymmetric vortical flow
fields. Strickland and Baty [22] have written an adaptive three-dimensional code for the
vector potential. In order to allow the source and target points to be different sets, hierar-
chical meshes for both the source and target points are constructed by this algorithm. The
authors report that this code is under further development to include the FFT fast shift
algorithms of Greengard and Rokhlin [23]. Aluru [24] has conceptualized a method which
should make’ this and other hierarchical schemes more efficient by effectively removing
redundant nodes in the tree which contain information about the same set of particles.

3.3 Comparison of Methods

In this section we provide a brief comparison of the methods. As noted previously, the
Greengard-Rokhlin algorithm is significantly more complex than the Bames-Hut algo-
rithm and is more memory intensive. The apparent advantage of the Greengard-Rokhlin
algorithm is its execution time of O (N) whereas the Barnes-Hut method executes in
O (NInN) .

There is some dispute in the literature about the O (N) dependance for the Greengard-
Rokhlin algorithm. For instance, Aluru [24] has hypothesized that both methods will exe-
cute in O (NInN) but only after redundant nodes in the hierarchical tree structures are
removed. His argument is based in part on the fact that creation of the tree structure
requires O (NInN) work. However, experience has shown that the amount of time
required to create the tree structure for the Greengard-Rokhlin algorithm is trivial com-
pared to the rest of the calculation. The major portion of the calculation, on the other hand,
tends to scale like O (N) depending on the distribution of the particles. Simulations in
which the particle distributions tend to be non-uniform (especially concentrated along
lines or surfaces) generally execute in O (N) time. While creation of the tree may indeed
require O (NInN) operations, the constant of proportionality apparently is relatively
small.

Blelloch and Narlikar [25] made a direct comparison for the potential problem between
the three-dimensional Barnes-Hut and Greengard-Rokhlin methods. They found that at a
high level of accuracy (RMS-error < 10 5) the Greengard-Rokhlin method was faster
than the Barnes-Hut method for N > 10°* assummg a random distribution of points. At a
lower level of accuracy (RMS-error < 10~ ) the Greengard-Rokhlin method did not out-
perform Barnes-Hut until N > 10°. Both algorithms were implemented on parallel
machines. Thus, we see that the choice of methodology is a function of the number of par-
ticles in the field and the error requirements.

We also note that memory requirements may also play a role. The Greengard-Rokhlin
method requires more memory than the Bames-Hut algorithm since both the far-field and
local expansions for each box at each level must be retained.
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4. PARALLELIZATION

This section discusses briefly two approaches which have been developed to parallelize
the numerical evaluation of the discrete N-body problem given by Equation 2. The paral-
lelization of the N-body problem is currently a very active area of computational research;
therefore, a general discussion is beyond the scope of the present paper.

Over the last several years, a significant amount of research has been directed toward
developing and implementing algorithms to evaluate efficiently the discrete N-body prob-
lem on parallel computers. While some of this work has focused on general parallelization
methods, a great deal of it has emphasized specific computer architectures and codes. Two
techniques applied commonly are hierarchical methods and direct methods. Most parallel-
izations of the N-body problem utilize one or both of these methods. In a general sense,
the hierarchical methods include both the tree method of Barnes and Hut [5] and the fast
multipole method of Greengard and Rokhlin [6] discussed in this paper.

Greengard and Gropp [26] have developed a parallel two-dimensional non-adaptive fast
multipole method for the Encore Multimax 320 computer. In this work, Greengard and
Gropp parallelized the computation of the initial moments and the evaluation of the local
series expansions and found that the main limitation was the coordination of the proces-
sors required in passing information between the different mesh levels. For the details of
the performance of this scheme see [26]. Work on a parallel version of an adaptive fast
multipole method has presented in Singh et al. [27], while Zhao and Johnsson [28] have
developed a parallel three-dimensional multipole method for the Connection CM-2 com-
puter. Work on a parallel version of the tree method of Barnes and Hut has also been pre-
sented, for example see Salmon [29] and Grama et al. [30].

Parallel versions of the direct method have also been developed. This approach makes no
attempt to simplify or reduce Equation 2. An example of this approach is given in the
recent technical note of Stiller et al. [31]. In this work, some simple coding procedures are
given which have been shown to speed up the direct method an order of magnitude on the
massively parallel computer CM-200. A further example of a parallelized direct method
and its application to vortex methods is given by Sethian et al. [32].

5. EXAMPLE CALCULATIONS

In the following examples, we present a mixture of model problems and physical simula- -
tions. In the model problems, the distributions of source and target points are prescribed.
These problems allow one to carefully benchmark the performance of the various methods
in terms of CPU time, accuracy, and the specified geometry. Most of the physical simula-
tions represent an evolutionary process in which the sources and targets may be moving at
each time step. .

5.1 A Two-Dimensional Fast Adaptive Multipole Code

Carrier, Greengard, and Rokhlin [20] developed a two-dimensional adaptive code which is
an extension of the two-dimensional non-adaptive code of Greengard and Rokhlin [6].
This code was used to obtain the potential and electrostatic field due to a distribution of
charged particles. The precision was set so as to yield an RMS etror roughly equal to sin-
gle precision on a VAX-8600 which they were using (10 >t0 10 )
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Figure 9. Benchmark Distributions

Three benchmark source and target distributions which they studied are indicated in Fig-
ure 9. For a benchmark problem in which 25,600 sources and targets were uniformly dis-
tributed in a square, the direct solution required 9694 seconds while the non-adaptive
algorithm required 138 seconds, and the adaptive algorithm required 97 seconds. For a
highly non-uniform distribution in a square, the direct and adaptive methods performed
essentially as before while the non-adaptive algorithm required 2318 CPU seconds. For all
of the points distributed along a curve, the direct solution performed as before, the non-
adaptive algorithm required 152 seconds, while the adaptive algorithm required only 48
seconds. It should be noted that the adaptive algorithm performed as an O (N) algorithm
for this case but not for the other two distributions.

5.2 A Three-Dimensional Fast Adaptive Multipole Code

Strickland and Baty [22] developed an extended version of the three-dimensional Green-
gard algorithm [9]. This algorithm is adaptive and features a box hierarchy for the sources
which may be different from that of the targets. In this code, each component of the vector
potential is first obtained. For the case where the vector potential is used to represent a
blob of vorticity, the curl of the vector potential yields the velocity vector. Thus we see
that this code is required to do more than three times as much work as one which calcu-
lates a simple scalar potential. Three different sets of source and target point distributions
used to benchmark the method are shown in Figure 10. In each case, the number of
sources and targets were both equal to N .

The code was run at a precision such that the RMS error in the magnitude of the velocity
vector would be on the order of 0.1%. The RMS error in the magnitude of the vector
potential was one to two orders of magnitude less than that associated with the velocity
vector. All runs were made on a SUN Sparc 10 workstation. For the cube domain the fast
solver was faster than direct calculations for N >5000 and was an order of magnitude
faster for N = 100, 000 . Computation time for the fast solver was about 8,000 seconds.
For the parallelepiped configuration, the break-even point occurred slightly earlier at
N = 3000 but the CPU times for N = 100, 000 were essentially the same as for the cube
configuration. For the separated cube domain configuration, the break-even occurred at
N = 1000 with the fast solver requiring only 800 seconds of CPU time for
N = 100, 000 . In this later case, the fast solution technique truly performed as an O (N)
algorithm,
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Figure 10. Benchmark Configurations

5.3 Fast Gauss Transform

Greengard and Strain [10] used their fast Gauss transform (case number 3 in table 1) to
make calculations for N sources at N target points for the two geometries shown in Fig-
ure 11. The source and target point locations are congruent. In Figure 11a the points are
distributed uniformly in a unit square while in Figure 11b the points are distributed uni-
formly on a unit circle. Computations using several different levels of precision and num-
bers of source and target points were made. For N = 102,400 the direct solution required
more than 8 days of CPU time on a Sun-4 workstation. Using the fast method, the solution
for the square was obtained in only 9 minutes and the solution for the circle was obtained
in only 1% minutes. Errl?rs normalized by the total source strengths were approximately
5x 10 and 4x10 " for the square and circle respectively.

ol
e b

a) uniform distribution in a unit box b) uniform distribution on a unit circle

Figure 11. Example Fast Gauss Transform Source and Target Distributions
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5.4 An Axisymmetric Bluff-Body Flow

The stream function and velocity components produced by axisymmetric ring vortices are
much more expensive to compute than for those produced by vortices associated with the
two-dimensional planar case. As mentioned previously, Strickland and Amos [7] devel-
oped a fast multipole algorithm based upon the adaptive Carrier, Greengard, and Rokhlin
method [20] but utilizing the kernel associated with the stream function for axisymmetric
ring vortices. This algorithm breaks even for N = 100 and is about 30 to 100 times
faster than the direct solver for N = 10,000 . Precisions for the velocity calculations
were set to produce RMS errors on the order of 0.1%. Errors associated with the stream
function were one to two orders of magnitude lower. The original benchmark studies were
run on a VAX-8600. The CPU time required to compute the field for N = 10,000
ranged from about 400 seconds to about 1350 seconds. Present runs on a SUN Sparc 10
are roughly an order of magnitude faster.

Strickland [33] developed an axisymmetric vortex code to study the flow over parachutes
and other axisymmetric shells which utilizes this fast solver. In the work of Higuchi, Balli-
gand, and Strickland [34] unsteady flow over a disk was simulated and compared with
experimental results. The disk was first accelerated to a constant velocity, held at that
velocity for about three diameters of travel, and then decelerated to rest. In Figure 12,
experimental flow visualization of the wake is shown just after the disk begins to deceler-
ate and just prior to its coming to rest. Also, the experimental drag coefficient C 4 versus
non-dimensional tome T is shown along with simulation data obtained from the fast vor-
tex method (FVM),

Higuchi Disk Flow

«

Simulation versus experimental results

Figure 12. Simulation of Unsteady Flow over a Disk
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5.5 An Astrophysics Simulation

Salmon, Warren, and Winckelmans [35] present a gravitational simulation of the forma-
tion of large scale structures in the universe. The particles in their simulation “represent
the so-called “Dark Matter” which is believed to dominate the mass of the universe.” The
region which they simulated was “a sphere containing 1,099,135 bodies.” Each of these
bodies had a mass of 3.3 x 10" solar masses. A snapshot of the simulation is shown in
Figure 13 at a late period in the evolution after significant clumping has occurred.

They used a Touchstone Delta system to perform the computations. The original Barnes-
Hut scheme was used in which the three-dimensional space was divided into an adaptive
oct-tree and the mass and center of mass provided a two-term multipole. They describe in
some detail the methodology which they used in parallelizing the code. For 512 proces-
sors, approximately 50 seconds was required to compute a single time step with 1 x 10°
bodies. With 32 processors the time increased to approximately 400 seconds per time step.

Figure 13. Clumping of Dark Matter in the Universe

5.6 Flow Past a Pitching Airfoil

The Barnes-Hut method of Van Dommelen and Rundensteiner [13] was used to reduce the
CPU time for a vortex simulation produced by Shih, Lourenco, Van Dommelen, and
Krothapalli [36] of flow over a pitching airfoil. In Figure 14, the vorticity which has been
generated at the airfoil surface is shown as discrete points along with the instantaneous
streamlines. In Figure 15 the calculated streamlines are compared with experimentally
obtained iso-vorticity lines. We note that the streamlines and iso-vorticity lines display the
same flow morphology.
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Figure 15. Calculated Streamlines and Measured Iso-Vorticity Lines
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Reportedly, this simulation required up to 32,000 vortices at the later time steps. The CPU
time for these later steps would have been on the order of several minutes per time step
when running on a CYBER 205 had the fast solver not been used. According to [13], the
computation using the fast solver should be between 13 and 28 times faster.

6. CONCLUSIONS

We have presented an overview of several fast multipole methods and several simulations
which rely upon their use. We believe that these fast algorithms and their extensions repre-
sent a very important numerical tool for the following reasons:
1. There are a very large number of physical and numerical problems which may be cast
in terms of Equations 2 and 4.
2. Many of these problems are intractable without the efficiencies afforded by these fast
methods.
3. In the future, the solution of much larger “N-body” problems will be required in
order2 to advance numerical simulation capabilities. The difference between an
ON?), O(NInN) , and O (N) simulation will become even more important.
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