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" THE CHEMISTRY OF BORON AND TITANIUM DIBORIDE FORMATION:
DECOMPOSITION OF TiCly AND BCl3 IN HYDROGEN AND HELIUM*®

THOMAS H. OSTERHELD AND MARK D. ALLENDORF
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Livermore, CA 94551-0969

ABSTRACT

Measurements of the decomposition of mixtures of boron trichloride (BCl3), titanium
tetrachloride (TiCly), and hydrogen at elevated temperatures are presented. The decomposition of
BCl3 with hydrogen appears to drive the chemistry in this system. The species depositing boron
on the surface contains at least 2 chlorine atoms. Once deposited, the surface chlorine is removed
by reaction with hydrogen to form HCI and, presumably, surface B-H bonds.

* This work was supported by the DoD Advanced Research Projects Agency.
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INTRODUCTION

The chemical vapor deposition (CVD) of boron by the decomposition of boron trichloride
(BCl3) in hydrogen (Hp) (Reaction 1) is of intense interest for the manufacture of boron fibers,
which are used to reinforce polymeric and metallic composites [1]. The reaction of BClz with
TiCly and Hj to generate TiBy (Reaction 2) is also of interest for the manufacture of coatings to
protect ceramic fibers from chemical attack during composite processing:

BCl3 + gHz =B(c) + 3HCI (1)
2BCl3 + TiCly + 5Hy = TiB, + 10HCI )

In general, what is known or proposed about the chemistry in these systems has arisen from
equilibrium calculations and modeling of the deposition process [2-7]. Two of these reports
suggest that BClH may form in the gas phase but not BCIH3 [2, 5], and that BCI;H may play a
role in the deposition process.

In this work, we used a high-temperature flow reactor (HTFR) equipped with a mass
spectrometer to monitor the concentrations of gas-phase species during the reaction of BClz and/or
TiCly as a function of temperature, residence time, and mixture composition. The data obtained
suggest that a surface reaction involving BCl3 and Hj is responsible for BCl3 removal from the gas
phase and for accelerated rates of TiCly reaction in the presence of these two gases. The
experiments also demonstrate that BHCI forms, confirming the earlier prediction. The results are
used to identify several reactions that occur during the deposition process.

EXPERIMENTAL METHODS

A schematic of the HTFR is shown in Figure 1. Reactions occur within a 100-cm long
graphite tube (5.0 cm ID) enclosed within a water-cooled, insulated vacuum chamber. Three
independently controlled graphite heating elements surround the tube and heat the gases flowing
within it to temperatures up to 1500 K. Reactor pressure is measured and controlled (to + 0.1
torr) by a pressure transducer coupled to a throttle valve in the vacuum line. BCl3 and TiCly enter
the HTFR through a water-cooled injector and mix with the preheated carrier gas. The injector is
movable, allowing the reactant residence time to be varied with respect to a quartz probe used for
sampling. Delivery of gases to the reactor is controlled by calibrated mass flow controllers. Initial
concentrations of 2-7% for BCl3 and TiCls4 were used. For TiCly, the vapor pressure above a
temperature-controlled liquid reservoir was used to drive a mass flow controller.

Gases are extracted from the HTFR by a quartz sampling probe inserted into the center of the
flow in the diagnostic region. The pressure inside the probe was maintained at 2.0 + 0.1 torr by a
pressure transducer/throttle valve combination. Once extracted by the probe, the gases flow past a
200-pm orifice attached to an Extrel EXM-500 quadrupole mass spectrometer system where a

small portion is expanded into the mass spectrometer for analysis using 70 eV ionization energy.
The accuracy of the mass and peak height calibration was verified by measuring the mass spectra
of perfluorotributylamine and boron trichloride.




insert injector P decrease residence time

withdraw injector -t increase residence time

Figure 1: Schematic of high-temperature flow reactor experiment.

In a typical experiment, a carrier gas consisting of helium or hydrogen (or a mixture of the two)
entered the reaction tube and was preheated to the reactor temperature by the first heating element.
BCl3 and/or TiCls were then mixed with the hot carrier gas, following transport to the reactor
through the injector. Under the experimental conditions adopted here, both mixing and thermal
equilibration of the injected species with the preheated carrier gas are rapid compared with the time
allowed for reaction to occur. Gas residence times were determined from the average convective
velocity, assuming plug-flow conditions [8].

Concentrations were measured for each species relative to the m/z 40 signal from an internal
standard of argon. The calibration factors for BCl3 and TiCly relative to argon were determined
from known concentrations of these gases under non-reacting conditions. The calibration factor
for HCl relative to argon was calculated from the relative ionization cross-sections, after correcting
for the isotopic distribution of each species and fragmentation of HCI in the mass spectrometer.
Since pure BCIpH is not available and its ionization cross section is unknown, the calibration factor
for this molecule was estimated by assuming that one mole of BCIyH is generated for each mole of
BCl3 observed to react in HTFR experiments at low temperatures (300-500 °C; a reasonable
assumption--see Reaction 3 and the Discussion section). The calibration factor is the average of
several measurements in this temperature range, all of which gave similar numbers. BCl3 and
TiCl4 were monitored by their molecular-ion signals at m/z 116 and 190 respectively; HCl was
monitored by its molecular ion signal at either m/z 36 or 38, and BCloH was monitored by its
fragment ion at m/z 47 (BCIH*).

RESULTS AND DISCUSSION

Experiments in helium demonstrate that the unimolecular decomposition of BCl3 and TiCly is
negligible. At temperatures up to 1363 K and a total pressure of 40 torr, no decomposition of
either species is observed for residence times between 0 and 330 ms. This result is not surprising
for BCl3, given its large bond dissociation energy (BDE) (118 kcal mol-! [9]). However, it
suggests that Ti-Cl BDE of 82.4 kcal mol-! for TiCl4 calculated from heats of formation given in
the JANAF Tables [10] is too low [11].

In contrast, both BCl3 and TiCl4 react in the presence of hydrogen, with BCl3 reacting more
rapidly than TiCl4. Concurrent formation of HCI is also detected, with the amount formed
increasing with residence time. Rates for these reactions were extracted from concentration data
obtained at two different gas residence times (i.e., two different injector positions) by assuming



simple first-order kinetics (the actual kinetics are likely more complex) and are given in Table I.
These results indicate that BCl3 is responsible for the initiation of chemical reactions in this system,
since it reacts readily on its own in hydrogen and is required for significant TiCl4 decomposition to
occur. Most of the remainder of this paper will therefore concentrate on the reactions of BCls.

Table I: Dependence of decomposition rate on initial mixture composition (20 torr).

Reaction kpciz (5D | kricia (s | Temp. (K)
BCl3 + TiCly +He — products <0.16 571 <0.16 51 1363
BCl3 + Hy — products ~1.5-3¢1 1263
TiCly +Hy — products ~0.06 s°1 1263
BCl3 + TiCls +Hy — products ~2-3s1 |~04-08s1 1263

In addition to detecting HCI as a reaction product, small amounts of BCIyH are also found
when BClj3 reacts with hydrogen (Figure 2) (the non-zero HCl signal at time zero is due to reaction
of BCl3 with adsorbed water in the gas-transfer lines). This provides experimental confirmation of
earlier reports [2, 5] that this molecule forms when BCl3 reacts with hydrogen. No other boron-
containing species were detected, including BCIHj,. Identification of the BCIoH product was not
straightforward, since the major molecular-ion peaks at m/z 82 and 84 are obscured by isotopes of
the much larger BCly* signal produced by BClz. Although the ratio of the m/z 82 signal (which
includes contributions from 11B35CIyH+ and 10B35CI37CI+) to the m/z 116 signal (11B35Cl5+)
increases as a function of residence time, suggesting that a product is being formed, the changes
are small and difficult to quantify. However, the signal at m/z 47, which corresponds to the
BCIH* fragment of BCIpH, has only a minor contribution from BCl3 fragmentation and can thus
be used to quantify the amount of BCIoH formed. Contributions to m/z 47 are also possible from
BCIlHj; however, the parent-signal of BCIH; at m/z 50 does not exhibit the same residence-time
behavior as the signal at m/z 47. We thus conclude that no BCIHj is formed.
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Figure 2: Dependence of BCl3, BCIoH, and HCI signals on residence time at 973 K and 22 torr
for 7% BCls and 67% Ha.




Thus, the net reaction between BCl3 and Hj can be described by Reaction (3):

BCl3 + Hp <> BCIxH + HCl AH°(298 K) = 15.8 kcal mol-! 3

Although Reaction 3 involves only gas-phase species, ab initio calculations (discussed in detail
elsewhere [11]) performed to determine upper limits for this reaction rate indicate that the gas-
phase reaction is too slow to account for the observed rate of BCl3 loss. Radical-based chemistry
involving hydrogen atoms can also be eliminated because the temperatures are too low to produce

significant H-atom concentrations. Thus, we conclude that Reaction 3 must be a surface-catalyzed
process.

Experiments in which the BCl3 signal is monitored as a function of residence time suggest that
Reaction 3 approaches an equilibrium. This is shown in Figure 3, where it can be seen that the
BCl3 concentration initially decreases as a function of residence time, then levels off at a distinctly
non-zero value at residence times greater than 300 msec. The three curves in Figure 3 also show
that the final concentration of BCI3 depends on the Hj concentration, with higher concentrations of
Hj causing more BClj to react. The observed BCl3 concentrations are in reasonable agreement
with the concentrations predicted by equilibrium. Table II compares the extent of decomposition
observed experimentally for 3.3% BCl3/33% Hp (in helium) to that calculated from the equilibrium
constant determined by AG" [9] for Reaction 3 .
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Figure 3: Dependence of BCl3 signal on residence time at 963 K and 42 torr for 3% BClzina
mixture of helium and hydrogen. The three different data sets denote different
hydrogen concentrations.



Table II: Comparison observed percent BCl3 reacted with equilibrium prediction.

Temperature (K) AG’ (kcal mol-1) ABCIl3 (equilibrium) 2 ABCI3 (observed)
673 11.5 44 % ¢ 5-6%
773 11.0 8.7 % 8-9 %

2 Calculation accounts for the non-zero input concentration of HCI.

The dependence of the BCl,H signal on residence time shown in Figure 2 indicates that this
species must undergo additional reactions, since its concentration reaches a maximum between 50
and 150 msec. No new boron-containing gas-phase species are detected, however, as the BCl,H
disappears. Thus, a surface reaction is likely responsible for BCIH removal from the gas phase.
To support this conclusion, we now describe experiments in which the concentrations of BCl3 and
HCI were simultaneously monitored as a function of injector position. The results show (Figure 4)
that two molecules of HCI are evolved for every molecule of BCI;H consumed.

In these experiments, BCl3 was injected at 690 °C into preheated carrier gas composed of 67%
hydrogen/33% helium. At the beginning of an experiment, the injector was fully withdrawn from

the reactor (see Figure 1), maximizing both the residence time of BCl3 (1) and the surface area to
which it is exposed. This corresponds to the clock time # = 0 minutes and residence time 7= 0.48
seconds in Figure 4.. At this point, BCl3 reacts with hydrogen via Reaction 3 to generate HCI and
BCI2H (not shown for clarity). Later in the experiment (¢ = 5.7 min), the injector was fully
inserted into the reactor, reducing 7 to essentially to zero (hydrogen, however, was still flowing

through the entire length of the reactor). As a result, the concentration of BCl3 increased while the
concentration of HCI decreased. The magnitude of the concentration change for both species is

approximately the same (ABCl3 = 8000 ppm and AHCI = 9000 ppm), indicating that, initially, one

mole of HCI is generated for each mole of BCl3 that decomposes. Thus, these observations are
consistent with the stoichiometry of Reaction 3.
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Figure 4: Dependence of the BCl3 and HCl signals as several reaction parameters are changed
at 963 K and 42 torr with 3% BCl3/67% H,/30% He. The x-axis indicates elapsed
time of the experiment and has no relation to the residence time of BCl3 in the reactor.




At a still later time in the experiment (¢ = 12 min) the hydrogen in the carrier gas was replaced
by helium. This has little effect on the BCl3 concentration, since BCl3 is no longer consumed by
Reaction 3 because of the reduction in 7 that occurred at £ = 5.7 min. However, a dramatic drop in
the HCI signal is observed. This indicates that hydrogen, which continued to flow through the
entire length of the reactor, reacts with adsorbed chlorine-containing species on the walls, forming
HCI. Quantitatively, the removal of hydrogen from the carrier gas results in a change in the HC]
concentration (AHCI = 15,000 ppm) that is approximately twice the amount of BCl3 that reacts

(ABCl3 = 8000 ppm) to produce BCIoH. Thus, the reaction of BCIpH with the reactor walls
results in the formation of one or more adsorbed species containing a total of two chlorine atoms,
consistent with the amount of HC] evolved by reaction with Hp.

When TiCly is added to the system HCI generation occurs even more rapidly, with the, full
theoretical yield of HCI molecules (three from BCl3 and four from TiCly) detected for each
molecule of TiCl4 or BCl3 that reacts. This was determined by an experiment similar to that
described in Figure 4. Figure 4 shows, however, that when TiCly is not present, only one
equivalent of HCI is formed by changing the residence time of BCl3. Thus, TiCl4 must react with
adsorbed boron species to yield products that react more readily with hydrogen to generate HCI.

CONCLUSIONS

Several conclusions relevant to CVD processes that use BCl3 can be drawn from these
experiments. First, reactions can occur between BCl3 and Hj on the surface that produce a new
gas-phase species, BCIpH. Although this is hardly a new concept in surface science, it does run
counter to the often-made assumption in CVD modeling that reactions of gas-phase species with
the deposition surface are irreversible and result in the deposition of one or more atoms. In the
case examined here, the product molecule that desorbs is later readsorbed by the reactor walls,
presumably depositing boron on the surface. Thus, even though gas-phase reactions may be slow,
surface processes can create new species that alter the composition of the gas-phase and,
consequently, change the relative concentrations of species forming the deposit. A second, related
conclusion is that BCl3 must be adsorbed by the surface for BCloH to form. No evidence of this
was found in the experiments in helium carrier gas; evidently, the amount adsorbed is too small for
a concentration change to be observed. The amount is sufficient, however, for BCI;H to be
immediately produced when Hj is introduced into the carrier gas. A third conclusion is that BCl3
adsorption appears to chemically activate the surface, since TiCly reacts faster in the presence of
both BCl3 and Hj.

The reactions that appear to occur between BClz and H can be summarized as follows:

BCl3 + surface <> Cl3B-(surf) 4)
Hj + Cl3B-(surf) <> CloHB-(surf) + HCl )
BClpH + surface «» CloHB-(surf) 6)
Clp(X)B-(surf) + Hy <> H-BCI(X)-(surf) + HCI @)

10



In these equations, X represents H, Cl, or another boron atom on the surface and "surf" indicates
an atom (presumably boron) on the surface. Reaction 5 may occur as written; however, it is also
possible that Hy must be adsorbed prior to reaction with an adsorbed BCl3 molecule. It is
conceivable that Reactions 6 and 7 involve a 1,2-elimination with a transition state such as the one
shown in Reaction 8 (Y represents H, Cl, or a surface boron atom):

H X
/3
Cl;B-H + X-BY-(surf) <> Cl,B —BY—(surf) «> BCly-BY-(surf) + HX )

The heat of reaction for these processes is not known. However, ab initio calculations indicate that
the analogous gas-phase reactions, in which either Ha or HCI are eliminated, are endothermic by
modest amounts; ~4 kcal mol-1 and ~20 kcal mol-1, respectively [11]. If the thermodynamics of
the surface reaction are similar, typical CVD temperatures should provide sufficient energy for
Reaction 8 to proceed at rates that are fast on the time scale of many deposition processes.

The nature of the reactions subsequent to Reaction 8 that remove chlorine from the surface and
incorporate boron into the lattice are not clear from the experiments conducted here. We are
currently performing additional ab initio calculations to evaluate the feasibility of potential
deposition mechanisms, based on analogous gas-phase reactions. Additional experiments will also
be required to fully characterize the relevant deposition chemistry.
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