

Integration Plan for Environmental Monitoring

(with the exception of groundwater monitoring)

Performance Agreement SM 7.2.1

Date Published
March 1997

**Prepared for the U.S. Department of Energy, Richland
Operations Office, Environmental Assurance, Permits, and
Policy Division**

**Prepared by Fluor Daniel Hanford, Inc.
with Rust Federal Services of Hanford Inc.
Effluent and Environmental Monitoring Program**

**Project Hanford Management Contractor for the
U.S. Department of Energy under Contract DE-AC06-96RL13200**

Approved for public release

LEGAL DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

This report has been reproduced from the best available copy.

Printed in the United States of America

DISCLM-2.CHP (1-91)

RELEASE AUTHORIZATION

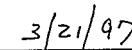
Document Number:	HNF-MR-0535, REV. 0
Document Title:	Integration Plan Required by Performance Agreement SM 7.2.1
Release Date:	3/28/97

This document was reviewed following the procedures described in WHC-CM-3-4 and is:

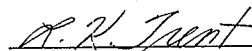
APPROVED FOR PUBLIC RELEASE

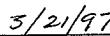
WHC Information Release Administration Specialist:

Chris Willingham
C. Willingham


3/28/97

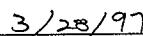
Integration Plan for Environmental Monitoring
(with the exception of groundwater)


Approvals:

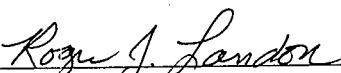

W. D. Adair, Director
Environmental Protection
Fluor Daniel Hanford, Inc.

Date

L. K. Trent, Vice President
Environment, Safety and Health
Fluor Daniel Hanford, Inc.



Date


Concurrence:

R. W. Bryce, Project Manager
Pacific Northwest National Laboratory

Date

R. J. Landon, Manager
Regulatory Support
Bechtel Hanford, Inc.

Date

1
2
3
4
5

This page intentionally left blank.

EXECUTIVE SUMMARY

1 Fluor Daniel Hanford, Inc. and its major subcontractors are in agreement that environmental
2 monitoring performed under the Project Hanford Management Contract is to be done in
3 accordance with a single, integrated program. The purpose of this Integration Plan for
4 Environmental Monitoring is to document the policies, systems, and processes being put in place
5 to meet one key objective: manage and integrate a technically competent, multi-media ambient
6 environmental monitoring program, in an efficient, cost effective manner. Fluor Daniel Hanford,
7 Inc. and its major subcontractors also commit to conducting business in a manner consistent with
8 the International Standards Organization 14000 Environmental Management System concepts.
9

10
11
12 Because the integration of sitewide groundwater monitoring activities is managed by the
13 Environmental Restoration Contractor, groundwater monitoring is outside the scope of this
14 document. Therefore, for the purpose of this Integration Plan for Environmental Monitoring, the
15 Integrated Environmental Monitoring Program is defined as applicable to all environmental media
16 except groundwater.
17

18
19 This document provides recommendations on future activities to better integrate the overall
20 environmental monitoring program, with emphasis on the near-field program. In addition,
21 included is the Fluor Daniel Hanford, Inc. team review of the environmental monitoring activities
22 on the Hanford Site, with concurrence of Pacific Northwest National Laboratory and Bechtel
23 Hanford, Inc. (The narrative provided later in the Discussion Section describes the review and
24 consideration given to each topic.)
25

26 This document was developed to meet the requirements of the Project Hanford Management
27 Contract performance agreement (SM7.2) and the tenets of the U.S. Department of Energy's
28 Effluent and Environmental Monitoring Planning Process. This Plan is prepared for the
29 U.S. Department of Energy, Richland Operations Office, Environmental Assurance, Permits, and
30 Policy Division to complete the requirements specified in the Performance Expectation 7.2.1,
31 within the SM7 Environmental, Safety, and Health section of the Project Hanford Management
32 Contract.
33

1 The verbatim performance agreement is as follows:

2

3

4 **SM7 ENVIRONMENTAL, SAFETY, AND HEALTH. Achieve high performance in**
5 **environmental stewardship at (the) Hanford Site.**

6

7 7.2 Manage and integrate a technically competent, multi-media (with the exception of
8 groundwater) ambient environmental monitoring program, in an efficient, cost effective manner.

9

10 **SM 7.2.1 Submit for RL approval a plan and recommendations for integration of required**
11 **environmental monitoring by April 1, 1997.**

12

13 *The plan should contain a review of the current Hanford effluent and surface environmental*
14 *monitoring activities conducted by or under the direction of FDH, PNNL, and BHI and make*
15 *recommendations on how to best integrate an overall program with special emphasis on the near*
16 *field monitoring program.*

17

18 *The plan should also be consistent with requirements contained in the current version of the*
19 *proposed Rule 10 CFR 834 and DOE Orders 5400.1 and 5400.5. The plan shall address*
20 *commitments to :*

21

- 22 *• A quarterly NESHAP status report.*
- 23 *• A Radionuclide Air Emission Report due June 30 of each year.*
- 24 *• FDH would coordinate with PNNL to produce the site-wide annual report (Hanford*
25 Site Environmental Report).
- 26 *• Abide by 10 CFR 834 when promulgated.*
- 27 *• A preoperational monitoring plan for proposed facilities that generate or handle*
28 radioactive material.

29

30 The continuous efforts to integrate the environmental monitoring activities on the Hanford Site
31 are discussed, as are past and current integration efforts. Recommendations are provided on
32 future activities to maintain or improve the ambient environmental monitoring program. The
33 following summarizes these recommendations.

34

35 **Basic Work Requirements** - No significant changes required. All activities are well defined
36 and currently funded in the current multi-year work plans.

37

- 38 *• Quarterly NESHAP status report--Reported quarterly per the requirements found in the*
39 NESHAP Federal Facility Compliance Agreement.

- *Radionuclide Air Emissions Report*--Working with Bechtel Hanford, Inc. and Pacific Northwest National Laboratory, the Fluor Daniel Hanford, Inc. team will obtain the required certifications and transmit the report to U.S. Environmental Protection Agency, Region 10, and the Washington State Department of Health by June 30th.
- *Hanford Site Environmental Report*--The Fluor Daniel Hanford, Inc. team and its subcontractors will work with Pacific Northwest National Laboratory and Bechtel Hanford, Inc. to provide the required information as indicated in the annual publication schedule.
- *10 CFR 834 Implementation*--A multi-contractor committee will continue to be maintained in readiness for the eventual promulgation of the rule. Implementation work has been put on hold, pending promulgation.
- *Pre-operational Monitoring Plans*--As new facilities or modifications to existing facilities occur, plans will be prepared and monitoring performed.

Program Reviews - The following areas were reviewed for potential methods to improve integration between contractors and among the Fluor Daniel Hanford, Inc. subcontractors. The conclusions, actions, and recommendations are described briefly with target completion date as follows. The notation **Complete** indicates the contractor review has been completed and the integration team will continue with its activities pending direction from DOE-RL.

- **Inform Fluor Daniel Hanford, Inc., Bechtel Hanford, Inc., and Pacific Northwest National Laboratory points of contact.** The Environmental Restoration Contractor, which is Bechtel Hanford, Inc., and Pacific Northwest National Laboratory have indicated their support implementing this *Integration Plan for Environmental Monitoring*. Complete
- **Environmental Monitoring Plan.** The 3-year cycle calls for updating during 1997, and provides an opportunity to identify areas for consistency, efficiency, and any duplication. The schedule is to begin in mid-March and be complete by the end of fiscal year 1997. September 1997
- **Integration Plan for Quality Assurance Program Plans.** It is recommended that each primary contractor be responsible for maintaining a quality assurance program plan. (Note: the Project Hanford Management Contract quality assurance plans include Bechtel Hanford, Inc. emission points and these plans need to be updated. July 1997
- **Integration Plan for Laboratory Statements of Work.** Project Hanford Management Contract laboratory statements of work used for environmental monitoring will be rewritten to reflect the requirements of the Quanterra statement of work. June 1997

- **Integration of Annual Reports.** A review for recommendations regarding the potential combination of the operational environmental monitoring and the environmental release reports was conducted. However, no compelling reason was identified for combining these reports at the present time. Complete
- **Integration of Effluent Procedures.** A sitewide document containing the general procedures used for effluent reporting was considered. It was determined that the benefits would not justify the increased effort and expense needed to maintain and update the procedures document among three major contractors. Complete
- **Past Program Reviews.** A common theme present in all past program reviews was that although progress towards integration of environmental monitoring programs was acknowledged, the need for improved communication among contractors still exists. The Fluor Daniel Hanford, Inc. team will continue to improve communication with the other major Hanford Site contractors, Bechtel Hanford, Inc. and Pacific Northwest National Laboratory through the routine meetings. Complete

Implementation of Improvements. The following recommended actions have the input and concurrence of the other major contractors.

- **Teaming, Routine Meetings, and Consensus.** The Fluor Daniel Hanford, Inc. team (Fluor Daniel Hanford, Inc., Rust Federal Services Hanford, Inc., and Rust Federal Services Northwest) will continue to communicate with Bechtel Hanford, Inc., Pacific Northwest National Laboratory, and the U.S. Department of Energy, Richland Operations Office in an open and timely manner. A multi-contractor team has been assigned the task of determining the purpose, schedule, and agenda for routine meetings concerning environmental monitoring issues. **April 1997**
- **Quarterly Meeting Agenda.** Change frequency to every other month and use an agenda that ensures discussion of cross-cutting issues, e.g., notices of construction and any events or activities that potentially would impact the environment. **April 1997**
- **Integrate Environmental Monitoring Schedules.** Leaving the schedules as now published in separate documents appears to be the most practicable and cost effective approach. **Complete**
- **Integration Plan for Coordinating Preparation of Annual Reports.** There were no serious problems identified in the production schedules. **Complete**
- **Sharing Monitoring Procedures, Databases.** The Pacific Northwest National Laboratory methods differ only slightly from present Fluor Daniel Hanford, Inc. and Bechtel Hanford, Inc. systems. It was determined that developing a sitewide document would require additional effort and funding, with little or no gain in efficiency or consistency, and is not recommended at this time. **Complete**

- **Share Radiological Control Technicians.** This will be pursued only on an 'as-needed' basis. Complete
- **Exchange or Borrow Technical Personnel.** Individual companies will use the specialized expertise and resources within their own companies first, and if needed, request assistance from the other Hanford Site contractors. Such support can be obtained via work orders. Complete
- **Integration Plan for Managing and Using Laboratory Services.** The consolidation of all laboratory services into one contract with a single laboratory was explored. This was determined not to be effective on a sitewide basis, since no single laboratory currently has the capacity to handle all of the environmental samples nor the types of analyses required. Complete
- **Collocation of People.** Collocation of staffing and equipment at the same office location was considered but determined to be not practical. Basic objectives and operating cost expectations are different for Pacific Northwest National Laboratory, Bechtel Hanford, Inc., 'inside the fence' and 'outside the fence' (enterprise) companies. Complete
- **Cross-Training of Personnel.** Future cooperative training arrangements will be used whenever possible. These opportunities will be discussed at the routine meetings to help share the technical expertise of monitoring staffs. Complete

1
2
3
4
5

This page intentionally left blank.

FOREWORD

"Protection of the environment, workers, and the public is the highest priority for members of the Fluor Daniel Hanford team. The safety and well-being of our employees, the public, and the environment must never be compromised in our aggressive pursuit of results and accomplishment of work product."

H. J. Hatch, President
Fluor Daniel Hanford, Inc.

Fluor Daniel Hanford, Inc. and its major subcontractors are in agreement that environmental monitoring performed under the Project Hanford Management Contract is to be done in accordance with a single, integrated program (with the exception of groundwater activities that are managed by Bechtel Hanford, Inc.). Employees of Fluor Daniel Hanford, Inc. are required to conduct work in accordance with this *Integration Plan for Environmental Monitoring* and all subcontractors performing work under the Project Hanford Management Contract are required by subcontract provisions to conduct work in accordance with this *Integration Plan for Environmental Monitoring*. This strategy reflects the commitment of Fluor Daniel Hanford, Inc. team to work together, to streamline processes wherever possible, and to present a unified approach to effluent and environmental monitoring).

This *Integration Plan for Environmental Monitoring* is sufficiently broad to define policy for all major components of the sitewide program. Detailed requirements are established and incorporated into project-specific work plans as the projects are developed.

Fluor Daniel Hanford, Inc. implements its effluent and environmental monitoring program on the basis of recognized standards and practices, as well as applicable U.S. Department of Energy and regulatory requirements. Fluor Daniel Hanford, Inc. and its major subcontractors also commit to conduct business in a manner consistent with International Standards Organization 14000 Environmental Management System concepts (ISO 1996), as the best commercial approach to address the immediate and long-term impact of its products, services, and processes on the environment on the Hanford Site. Fluor Daniel Hanford, Inc. has entered into specific Performance Agreements with the U.S. Department of Energy, Richland Operations Office to rapidly initiate the appropriate systems for International Standards Organization 14000 programs.

The federal *Clean Air Act of 1990*, and Amendments, with the Hanford National Emission Standards for Hazardous Air Pollutants Federal Facility Compliance Agreement (signed February 1, 1994 by the U.S. Department of Energy, Richland Operations Office and the U.S. Environmental Protection Agency) include work priorities and schedules to which U.S. Department of Energy, Richland Operations Office has committed. Much of the work required for compliance with the *Clean Air Act* and the National Emission Standards for Hazardous Air Pollutants Federal Facility Compliance Agreement is within the scope of the Project Hanford Management Contract, and the Fluor Daniel Hanford, Inc. team is fully committed to conduct this work in a safe, environmentally sound, timely, and cost-effective

1 manner. The united goal is to perform work safely. This goal will be attained through the use of
2 a systematic approach that includes defining the scope of work, analyzing the situation at hand,
3 developing and implementing controls, performing the work, while critiquing that work to
4 develop improved work processes.

CONTENTS

1	EXECUTIVE SUMMARY	Summ-1
2		
3		
4	FOREWORD	Foreword-1
5		
6	TERMS	vi
7		
8		
9		
10	1.0 INTRODUCTION AND ORGANIZATION OF THE INTEGRATION PLAN FOR	
11	ENVIRONMENTAL MONITORING	1-1
12	1.1 INTEGRATING PHILOSOPHY	1-1
13	1.2 GOAL OF THE INTEGRATION TASK	1-4
14	1.2.1 Compliance with Environmental Law	1-4
15	1.2.2 Program Plans for Environmental Monitoring	1-4
16	1.2.2.1 Effluent Monitoring	1-5
17	1.2.2.2 Environmental Surveillance	1-5
18	1.2.2.3 Independent Data Verification	1-6
19	1.2.2.4 Other Sources of Effluents	1-6
20	1.2.2.5 Comprehensive Environmental Response, Compensation, and	
21	Liability Act Monitoring	1-6
22	Contractor Roles	1-6
23	1.2.2.6 Contractor Roles	1-6
24	1.3 FLUOR DANIEL HANFORD, INC. LEADERSHIP ROLE	1-7
25	1.4 MANAGEMENT PROCESS AND STRATEGY FOR PROBLEM SOLVING, AND IDENTIFYING AND RESOLVING ISSUES	1-7
26		
27	2.0 DISCUSSION	2-1
28	2.1 BASIC WORK REQUIREMENTS	2-1
29	2.1.1 Quarterly NESHAP Status Report	2-1
30	2.1.2 Radionuclide Air Emissions Report	2-1
31	2.1.3 Hanford Site Environmental Report	2-3
32	2.1.4 10 CFR 834 Implementation	2-3
33	2.1.5 Pre-operational Monitoring Plans	2-4
34	2.2 INTEGRATION PLAN	2-5
35	2.2.1 Program Review	2-5
36	2.2.1.1 Inform Fluor Daniel Hanford, Inc.; Bechtel Hanford, Inc.;	
37	Pacific Northwest Laboratory Points of Contact	2-5
38	2.2.1.2 Environmental Monitoring Plan	2-5
39	2.2.1.3 Integration Plan for Quality Assurance Program Plans	2-5
40	2.2.1.4 Integration Plan for Laboratory Statements of Work	2-6
41	2.2.1.5 Integration of Annual Reports	2-8
42	2.2.1.6 Integration of Effluent Procedures	2-8
43	2.2.1.7 Past Program Reviews	2-9
44		

CONTENTS (cont)

2.2.2	Implementation of Improvements	2-10
2.2.2.1	Teaming, Routine Meetings, and Consensus	2-10
2.2.2.2	Quarterly Meeting Agenda	2-12
2.2.2.3	Integrate Environmental Monitoring Schedules	2-13
2.2.2.4	Integration Plan for Coordinating Preparation of Annual Reports	2-14
2.2.2.5	Sharing Monitoring Procedures, and Databases	2-14
2.2.2.7	Exchange or Borrow Technical Personnel	2-16
2.2.2.8	Integration Plan for Managing and Using Laboratory Services	2-16
2.2.2.9	Collocation of Personnel	2-16
2.2.2.10	Cross-Training of Personnel	2-17
2.2.3	Basic Responsibilities of Each Major Contractor for Effluent and Environmental Monitoring Activities	2-17
2.2.4	Description of Existing Environmental Programs with Responsibilities Related to Sitewide Integration Among Contractors and with Regulatory Agencies	2-18
2.2.4.1	Hanford Environmental Dose Overview Panel	2-18
2.2.4.2	Quality Assurance Task Force	2-18
2.2.4.3	Fluor Daniel Hanford, Inc., Environmental Integration Group	2-18
2.2.5	Criteria Used to Establish and Measure Effluent and Environmental Monitoring Activities	2-19
2.2.5.1	Criteria Used to Ensure Consistency Without Duplication Among Contractors	2-19
2.2.5.2	Effluent and Environmental Monitoring Standards of Measurement and Reporting	2-19
2.2.6	Methods for Documenting Decisionmaking, and How to Enforce the Solutions or Policies	2-20
2.2.6.1	Methods for Decisionmaking	2-20
2.2.6.2	Enforcing the Solutions and Policies	2-22
2.3	SCHEDULE	2-23
3.0	REFERENCES	3-1

1 **APPENDICES**
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

4 A EFFLUENT AND ENVIRONMENTAL MONITORING 5 SELF-ASSESSMENT	A-1
7 B DOE-HQ/EH-24 AUDIT SUMMARY	B-1
9 C DOE-HQ TIGER TEAM ASSESSMENT	C-1
11 D DOE-HQ MARY WALKER SURVEY	D-1

17 **FIGURES**
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

1. Monitoring and Reporting Radioactive Air Emissions	1-3
2. Problem/Issues Management List Development	1-10
3. Hanford Site Environmental Report and Radioactive Air Emissions Report Detail	2-2
4. Waste Sampling and Characterization Facility Laboratory	2-7
5. Environmental Release Summary Database	2-15
6. Methods for Decisionmaking, [Adapted from the Draft Management and Integration Plan (MP-001) (FDH 1997)]	2-21

26 **TABLES**
27
28
29
30
31
32
33
34
35
36

1. Effluent and Environmental Monitoring Intent, Requirements, and Products	1-2
2. Problem Solving/Issues Management Development Process	1-9
3. Critical Problem Management List--Hypothetical Example	1-11
4. Coordination of Sitewide Air & Water Activities Within the PHMC	2-11

TERMS

4	BHI	Bechtel Hanford, Inc.
5	CERCLA	<i>Comprehensive Environmental Response, Compensation, and Liability Act of 1980</i>
6	CFR	Code of Federal Regulations
7	CY	calendar year
10		
11	DESH	Duke Engineering and Services Hanford, Inc.
12	DOE	U.S. Department of Energy
13	DOE-HQ	U.S. Department of Energy-Headquarters
14	DOE-RL	U.S. Department of Energy, Richland Operations Office
15		
16	EAP	Office of Environmental Assurance, Permits, and Policy (DOE-RL)
17	ECO	environmental compliance officer
18	EEM	Effluent and Environmental Monitoring (PHMC does not include groundwater)
19		
20	EES	environmental engineering studies
21	EH-24	Office of Environmental Audit
22	EI	Environmental Integration
23	EIS/ODIS	Effluent Information System/Onsite Discharge Information System
24	EM	environmental management
25	EMP	environmental monitoring plan
26	EMS	environmental management system
27	EPA	U.S. Environmental Protection Agency
28	ERC	environmental restoration contractor
29	ERPP	environmental radiological protection program
30	ERS	environmental release summary
31	ES&H	environment, safety, and health
32		
33	FDH	Fluor Daniel Hanford, Inc.
34	FEB	facility evaluation board
35	FEMP	facility effluent monitoring plan
36	FFCA	Federal Facility Compliance Agreement
37		

1 **TERMS (cont)**
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

FTIR	Fourier transform infrared
FY	fiscal year
GPMP	groundwater protection management plan
HEDOP	Hanford Environmental Dose Overview Panel
HEPA	high-efficiency particulate air
HSER	Hanford Site Environmental Report
ISO	International Standards Organization
M&I	management and integration
MDC	minimum detectable concentrations
MOU	memorandum of understanding
NDA	nondestructive assays
NESHAP	National Emission Standards for Hazardous Air Pollutants
NPDES	National Pollutant Discharge Elimination System
OEMP	operational environmental monitoring program
PAAA	<i>Price Anderson Amendment Act of 1988</i>
PHMC	Project Hanford Management Contract(or)
PNNL	Pacific Northwest National Laboratory
POC	point of contact
QA	quality assurance
QAPP	quality assurance program plans
RAE	radioactive air emissions
RCRA	<i>Resource Conservation and Recovery Act of 1976</i>
RCT	radiological control technician
RDL	required detection limits

TERMS (cont)

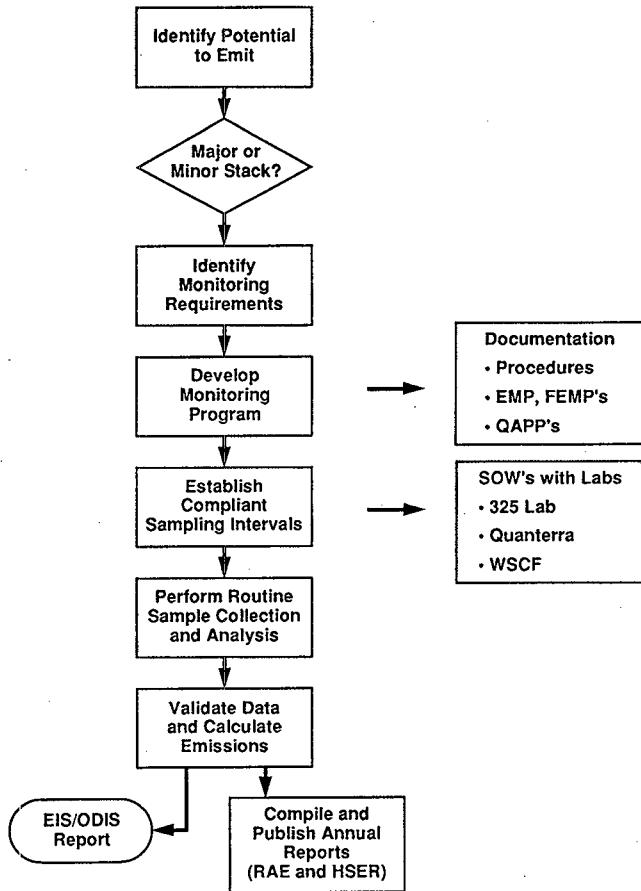
4	RFSH	Rust Federal Services of Hanford Inc.
5	RFSNW	Rust Federal Services Northwest
6	RI/FS	remedial investigation/feasibility study
7		
8	SAP	sampling analysis plan
9	SNF	spent nuclear fuel
10	SOW	statement of work
11		
12	WAC	Washington Administrative Code
13	WDOH	Washington State Department of Health
14	WHC	Westinghouse Hanford Company
15	WSCF	Waste Sampling and Characterization Facility

1 1.0 INTRODUCTION AND ORGANIZATION OF THE INTEGRATION PLAN FOR 2 ENVIRONMENTAL MONITORING

3
4 The effluent and environmental monitoring (EEM) mission is to protect the health and safety of
5 the public, workers, and the environment by providing data concerning exposure to radioactive
6 and hazardous constituents in environmental media. This data is essential to determining (1) if the
7 Hanford Site is in compliance with environmental regulations and (2) if the U.S. Department of
8 Energy, Richland Operations Office (DOE-RL) is successful in accomplishing the mission of risk
9 reduction. Therefore, an effective, verifiable, and documented effluent and environmental
10 monitoring program is directly linked to the success of the DOE-RL mission.

11
12 In general, this Plan leads to few specific new products. Rather, this Plan focuses on improving
13 or enhancing existing processes and products to make these better integrated among the three
14 major contractors: the Pacific Northwest National Laboratory (PNNL), the Environmental
15 Restoration Contractor [Bechtel Hanford, Inc. (BHI)], and the Fluor Daniel Hanford, Inc. (FDH)
16 team. This approach minimizes additional work scope, yet makes sitewide management of
17 effluent and environmental monitoring, as effective and efficient as possible.

18
19 Table 1 summarizes, for each major contractor, environmental monitoring objectives, functional
20 requirements, and products. Figure 1 displays these same elements as a flow chart.


21
22 The scope of this plan, and the specifics of its implementation, will evolve over time and through
23 the direction of the of DOE-RL/EAP. The FDH team will work with DOE-RL to ensure that
24 implementation of this Plan supports key decisions in a timely and effective manner. Stakeholder
25 participation in effluent and environmental monitoring on and around the Hanford Site and, thus,
26 in the evolution of this Plan, is essential to the long-term success of environmental monitoring.
27 As DOE-RL continues defining the stakeholder participation process, FDH will work with the
28 DOE-RL to ensure effective participation.

29 1.1 INTEGRATING PHILOSOPHY

30
31 Integration of a technically competent, multi-media ambient environmental monitoring program,
32 in an efficient, cost effective manner, is an evolutionary process that must be integrated with other
33 ongoing management processes. Implementation will begin in fiscal year (FY) 1997 and continue
34 into FY 1998. Generally, implementation does not require any change in scope, only some
35 adjustments in focus. In some instances (e.g., annual work prioritization), these adjustments only
36 partially can be made in FY 1997 because execution of the management activity is already under
37 way. In such instances, implementation will be completed in FY 1998. Any implementation
38 requiring changes in work scope will be determined by the environmental monitoring team after
39 discussion by all major contractors with DOE-RL at the routine meetings. A key aspect of
40 integration is the ability of the team to make decisions by consensus at the routine or specially
41 scheduled meetings. The environmental monitoring team will be chartered to raise issues that
42 might impact other contractors, and seek solutions to problems with the collective wisdom of the
43 team.

1 Table 1. Effluent and Environmental Monitoring Intent, Requirements, and Products.
2

3	4	5	Objective	Functional requirements	Products	Major contractor roles	Additions/ changes to processes/ products
6	7	Monitoring releases to the environment	Identify monitoring requirements	Environmental Monitoring Plan	PNNL - lead FDH Team - support BHI - support	Update this year, seek efficiencies, consistency, and eliminate any duplications	
8				Facility Effluent Monitoring Plans	Required of all contractors	Annual reviews as required	
9		Develop monitoring program	Quality Assurance Program Plans	PNNL - for their emission points; FDH Team - for both BHI and FDH emission points	Update annually		
10	11	Establish compliant sampling intervals	Statements of Work	PNNL - lead for statement of work with Quanterra; FDH - lead for statement of work with Waste Sampling and Characterization Facility; 325 Laboratory; BHI - review and concur	Update annually		
12	13	Annual reporting of monitoring results	Demonstrate compliance with release limits, e.g., annual offsite dose limits	Hanford Site Environmental Report Radioactive Air Emissions Report to EPA; Effluent Information System/Onsite Discharge Information System Report to DOE	PNNL - lead; FDH and BHI support FDH Team - lead; PNNL and BHI support	Compile data annually Compile data and certify annually	

H96070007.1

Figure 1. Monitoring and Reporting Radioactive Air Emissions.

1 Experience with implementation could result in changes to this Plan. If so, future revisions to this
2 Plan will be required or the changes could be incorporated into the Environmental Monitoring
3 Plan (EMP) during the upcoming revision (DOE/RL-91-50).

4

5

6 1.2 GOAL OF THE INTEGRATION TASK

7

8 The primary goal of the environmental monitoring programs is to protect the public and the
9 environment by monitoring radioactive and hazardous constituents in effluents and the
10 environment around the facilities, the site, and nearby communities. The goals of this Plan are to
11 improve communications and seek efficiencies in all environmental monitoring activities and to be
12 consistent with the goals of the EMP (DOE/RL-91-50).

13

14

15 1.2.1 Compliance with Environmental Law

16

17 A significant goal of the environmental monitoring program is to maintain and improve
18 compliance with federal and state and U.S. Department of Energy (DOE) requirements.
19 Monitoring data are collected, evaluated, and reported to determine their degree of compliance
20 with applicable federal and state regulations and permits. Every environmental monitoring
21 activity must have a regulatory basis, or be directed by DOE policy that is based on public health
22 risk, public confidence, and stakeholder interests. The regulatory bases for virtually all the
23 environmental monitoring activities described in this Plan are given as follows:

24

- 25 • Clean Air Act (40 CFR 61, 40 CFR 70)
- 26 • DOE Orders (5400.1, 5400.5, 5484.1, 5820.2A), (10 CFR 834, 835)
- 27 • Washington Administrative Code (WAC) (246-247, 173-400).

28

29

30 1.2.2 Program Plans for Environmental Monitoring

31

32 The technical bases, design criteria, and rationale for performing DOE-sponsored environmental
33 monitoring on the Hanford Site are documented in the EMP. Therefore, the goals of the EMP are
34 summarized here for information and review.

35 According to DOE Order 5400.1, each DOE site, facility, or activity that uses, generates,
36 releases, or manages significant quantities of hazardous materials will provide a written EMP
37 covering two major activities: (1) effluent monitoring and (2) environmental surveillance. The
38 EMP addresses those activities and consists of a summary of all the facility effluent monitoring
39 plans, near-field environmental monitoring, surface environmental surveillance, groundwater
40 surveillance, and meteorological monitoring.

1 Relevant to the following discussion is the definition of four terms.
2

3

- 4 Far-field--includes both onsite and offsite (near-by communities) areas that are outside of
5 *Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of*
6 *1980* operable units.
- 7 CERCLA operable units--areas designated for cleanup by U.S. Environmental Protection
8 Agency (EPA) under CERCLA.
- 9 Near-field--area between the facility and the facilities boundary fence.
- 10 Facility--a physical plant or project with effluents.

11

12 **1.2.2.1 Effluent Monitoring.** In accordance with the EMP, primary Hanford Site facilities are
13 reviewed annually to update the documentation of potential sources of emissions. Facility effluent
14 monitoring plans (FEMPs) are prepared in a uniform format following the Hanford Site FEMP
15 guidance document (WHC 1992). A FEMP is written for each facility with the potential to
16 release significant quantities of hazardous materials, addressing both radiological and
17 nonradiological effluent monitoring. The FEMPs contain the detailed rationale and design criteria
18 for the effluent monitoring program, extent and frequency of monitoring and measurements,
19 procedures for laboratory analyses, quality assurance (QA) requirements, and program
20 implementation procedures.

21

22 Near-field environmental monitoring is an integral part of effluent monitoring activities at all
23 facilities and certain waste disposal sites. Each facility's FEMP includes a chapter on the near-
24 field monitoring performed around their specific facility. The near-field program evaluates the
25 adequacy of effluent controls or stabilization efforts near a specific facility. The program
26 monitors radiation contamination in air, surface water, groundwater, soil, sediment, vegetation,
27 and biota. The description of these activities contains details or specific references to the
28 rationale and design criteria for the extent and frequency of monitoring and measurements,
29 procedures for laboratory analysis, quality assurance (QA) requirements, and program
30 implementation procedures.

31

32 **1.2.2.2 Environmental Surveillance.** PNNL sitewide environmental surveillance program
33 assesses onsite and offsite environmental impacts and offsite human health exposures. The
34 program monitors air, surface water, sediment, agricultural products, vegetation, soil, and
35 wildlife. Also, PNNL conducts independent onsite surveillance to evaluate the effectiveness of
36 Hanford Site effluent controls.

37

38 Surface environmental surveillance is described in the EMP along with the detailed rationale and
39 design criteria for the environmental surveillance program, extent and frequency of monitoring
40 and measurements, procedures for laboratory analysis, QA requirements, and program
41 implementation procedures. Where possible, existing documents are referenced to minimize
42 duplication. The EMP includes all environmental media, meteorology, and climatology
43 monitoring. Also described is the rationale and design of the meteorology and climatology
44

1 program, including the number and location of stations, instrumentation, forecasting capability,
2 data management, diffusion modeling, and emergency response capability.
3

4 An annual report describing the environmental status of the Hanford Site and the
5 surrounding area is prepared and distributed in accordance with DOE Order 5400.1 and
6 applicable DOE-Headquarter's (DOE-HQ) guidance. This report includes environmental data
7 collected through environmental surveillance projects and also an evaluation of Hanford Site
8 compliance with applicable environmental standards and regulations. In addition, detailed annual
9 reports are prepared on groundwater surveillance, operational environmental monitoring,
10 meteorology, and climatology.
11

12 **1.2.2.3 Independent Data Verification.** The Washington State Department of Health (WDOH)
13 was awarded a grant by DOE-RL in March 1990 to conduct independent surveillance, oversight,
14 and data verification on the Hanford Site. The grant provides funds to WDOH for sample
15 collection, analysis, data compilation and interpretation, and report preparation. The WDOH
16 provides the results of their independent surveillance, data verification, and oversight activities
17 annually.
18

19 **1.2.2.4 Other Sources of Effluents.** In addition to the DOE facilities, private and public
20 operations involving radioactive materials are present both on and near the Hanford Site.
21 US Ecology and Washington Public Power Supply System are the onsite operations; Siemens
22 Nuclear Power Corporation, Battelle Memorial Institute, and the Allied Technology Group are
23 the local offsite users of radioactive material. These operations are licensed by the U.S. Nuclear
24 Regulatory Commission or the WDOH and are not subject to DOE environmental orders, and
25 therefore are not included in the EMP.
26

27 **1.2.2.5 Comprehensive Environmental Response, Compensation, and Liability Act**
28 **Monitoring.** Monitoring at CERCLA operable units is conducted as part of remedial
29 investigation/feasibility studies (RI/FS). These studies are detailed characterization of operable
30 units that will be used as the basis for cleanup/environmental restoration. These studies are
31 conducted by various contractors and are under the management of BHI. RI/FS monitoring for
32 the purpose of characterization is **not** included in the EMP. RI/FS reports are prepared for each
33 operable unit and are readily available. Also, the design of the RI/FS studies and the format and
34 content of the reports are defined by CERCLA procedures.
35

36 Facility and operational monitoring conducted for BHI by the FDH team is included in the
37 appropriate sections of the EMP.
38

39 **1.2.2.6 Contractor Roles.** The EMP describes the environmental monitoring conducted by all
40 Hanford Site contractors. PNNL conducts the environmental surveillance, sitewide groundwater
41 monitoring, meteorology and climatology, and effluent monitoring of their facilities. The FDH
42 team conducts near-field environmental monitoring around facilities, tank farms, and waste burial
43 sites; conducts near-field groundwater monitoring; and effluent monitoring on their facilities. BHI
44 conducts CERCLA monitoring, effluent monitoring on their facilities; and monitoring of
45 optimization of design, conceptual model development, trending, point-of-compliance, and

1 remediation performance evaluation activities. PNNL reviews its monitoring schedule annually,
2 and changes are implemented at the beginning of the calendar year. BHI reviews monitoring
3 responsibilities associated with its activities.

4

5 1.3 FLUOR DANIEL HANFORD, INC. LEADERSHIP ROLE

6

7 FDH, as the Management and Integration (M&I) contractor, is committed to pro-actively
8 managing integrated effluent and environmental monitoring. The environmental, safety, and
9 health (ES&H) risks will be kept to a minimum during operations and will be reduced overall as
10 rapidly as possible. Priority for allocation of resources is determined by DOE-RL and directed to
11 FDH in writing. Implementation will support annual DOE-RL Office of Environment, Safety, and
12 Health (ESH) and EAP written direction in support of the DOE-HQ EM 10-Year Plan and budget
13 and planning guidance, or their equivalent. Programmatic risks, technical workscope, cost and
14 schedule will be monitored closely to identify opportunities for improving project performance.
15 Unacceptable programmatic risks (e.g., because of over reliance on unproven technology) will be
16 avoided by using technology previously established.

18 The authority for implementation of this Plan is derived from the PHMC. This authority, flowing
19 through the newly drafted management and integration plan, ensures actual implementation rather
20 than just delivery of a plan.

22 Further, FDH and its major subcontractors have committed, through contract Performance
23 Agreements, to conduct business in a manner consistent with International Standards
24 Organization (ISO) 14000 concepts. FDH will lead an effort for the FDH Team to implement an
25 ISO 14000-consistent environmental management system (EMS). The EMS implementation plan
26 will identify the actions necessary for the FDH team to meet the ISO 14000 Standard as written.
27 There are no plans to become ISO 14000 registered (certified). The EMS will encompass all
28 facilities and activities managed by the FDH team. This EMS implementation plan will implement
29 and self-assess its activities during FY 1998.

31

32 1.4 MANAGEMENT PROCESS AND STRATEGY FOR PROBLEM SOLVING, AND 33 IDENTIFYING AND RESOLVING ISSUES

34

36 The purpose, scope, and content of the management process and strategy for problem solving and
37 issue resolution are as follows.

38

- 39 • **Purpose:** To provide a tool for FDH management and DOE-RL, with input from
40 environmental monitoring projects, to pro-actively and continuously manage and resolve
41 problems identified in implementing and maintaining an integrated ambient environmental
42 monitoring program.
- 43 • **Scope:** Identified in Table 2 are steps to be taken by senior management to identify and
44 resolve problems or issues that might arise. The problems, or issues, defined as 'critical'
45

1 are those that have the highest likelihood of occurring and the greatest negative impacts
2 to the sitewide integrated environmental monitoring program (defined in terms of
3 problem likelihood and consequences); or that meet one or more of the following criteria:
4

5 - immediate action is required
6 - management of, or solution to, the problem is a very high stakeholder priority
7 - a contract performance agreement is at risk
8 - management of the problem requires extensive and potentially difficult coordination
9 across several PHMC organizations and/or Hanford major contractors

10 Critical problems generally will include any potential for environmental impact, followed
11 by regulatory penalty or notice of violation, which are defined as high-consequence
12 problems.

13 • **Content:** The content of the Problem Solving/Issues Management List is information
14 identified in Table 2, and developed through the following process illustrated in Figure 2.
15 The list can be formatted to meet the needs of individual projects and individual problems
16 that might arise. Table 3 illustrates an example for one hypothetical environmental
17 monitoring problem.

18
19
20
21
22

1
2
3 Table 2. Problem Solving/Issues Management Development Process.

Step	Element	Description
1	Identify problem events	From any number of sources, identify what events pose a problem and generate a list of problem events.
2	Determine responsibility	Identify by name the DOE-RL POC, the responsible FDH manager, the responsible contact.
3	Determine problem likelihood	Assign a rating of low, medium, or high, based on the probability of the problem event occurring. (Quantitative definitions are provided in WHC 1996a.)*
4	Determine consequences	Prepare a list of consequences including any or all types of problems, if the problem event should occur.
5	Identify affected projects/functions	Prepare a list of Hanford Site projects/functions that are affected by the problem event and its consequences.
6	Determine consequence severity	Assign a rating of low, medium, or high, based on how negative the effect will be if a problem event occurs. (Quantitative definitions are provided in WHC 1996a.)*
7	Decide if problem is critical	Using the problem value matrix (WHC 1996a)*, find the qualitative rating located at the intersection between problem likelihood and consequence severity. Designate the problem as Not Critical if the problem value is less than Very High and none of the criteria applies. Designate the problem as Critical if the problem value is Very High, or if one or more of the criteria apply.
8	Develop problem actions	Prepare a list of actions and responsibilities that will be taken to avoid, transfer, share, or control the problem. Identify the current status of each action as Pending, Ongoing, or Complete. Prepare an action plan to ensure the completion of each action.
9	Update problem status	Periodically review the status of the problem and action plans and update all sources of information accordingly.

13
14 The PHMC currently is developing new methodology to replace WHC 1996a.
15
16
17
18
19

Problem Assessment**Problem Analysis****Problem Handling**

Feedback Loop

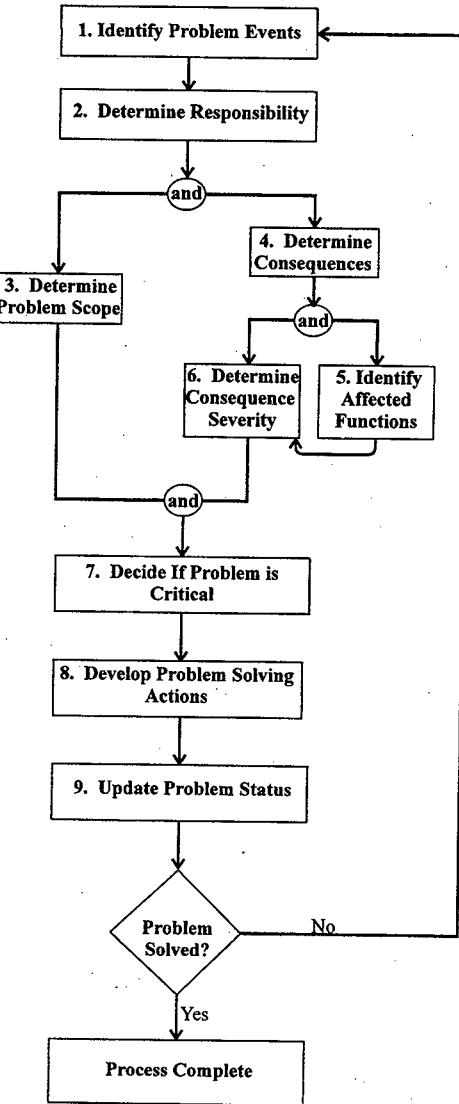


Figure 2. Problem/Issues Management List Development. (The numbered elements correspond to the 'steps' in Table 2.)

Table 3. Critical Problem Management List--Hypothetical Example.

Identification number and description	Critical ? (yes/no)	Problem value	Consequence(s)	Action(s)	Status	Responsible person	Review date
EEM-104 NEAR-FIELD MONITORING IS NOT SUPPORTED OR BEING DONE AS REQUIRED BY DIRECTIVES.							
On May 31, a rapid increase in air concentrations alarmed a continuous air monitor in work area; not monitored as an effluent. No ambient air sampler nearby for confirmation.	Yes	VH	Reduced ability to safely manage and report radioactive releases.	Evaluate need for termination of facility operations.	See attached evaluation in letter report xxxx.	J.J. Jones (FDH)	6/31/97
				Evaluate need for additional monitoring.		D.B. Cooper (DES)	6/31/97

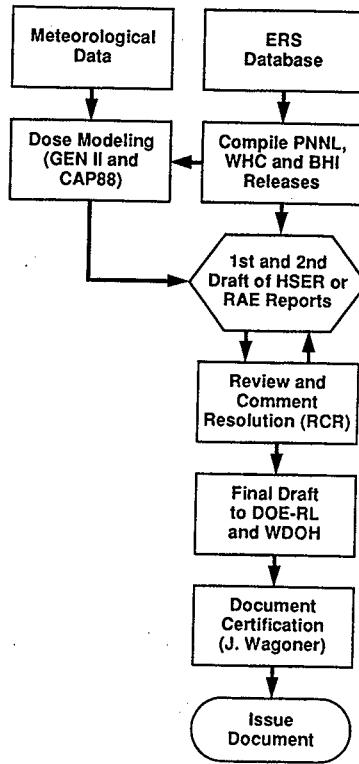
1
2
3
4
5

This page intentionally left blank.

1 **2.0 DISCUSSION**

2 The following narrative summarizes each of the basic commitments listed in the Performance
3 Agreement.

7 **2.1 BASIC WORK REQUIREMENTS**


9 The following activities presently are required by DOE Orders and federal regulations. These
10 activities are being performed by the Effluent and Environmental Monitoring Program, as
11 described in the Environmental Support FY 1997 Multi-Year Work Plan, WBS 1.5.2
12 (WHC 1996b). The following is a summary of how each activity is accomplished.

15 **2.1.1 Quarterly NESHAP Status Report**

17 A quarterly status report is required by the NESHAP FFCA. All activities during a quarter
18 associated with the compliance plan in the FFCA are reported along with planned activities during
19 the next quarter. The agreement between DOE-RL and the Washington State Department of
20 Health (WDOH) and the EPA for satisfaction of the milestone is to send a fax of the report to
21 WDOH before the Friday of the first full week of the month following the month after the quarter
22 ends.

25 **2.1.2 Radiumuclide Air Emissions Report**

27 Effluent samples are collected at specified frequencies and sent to a laboratory for analysis.
28 Sample results are sent to the appropriate effluent monitoring POC who performs the final data
29 verification and validation. The effluent monitoring POC enters the results into the Environmental
30 Release Summary (ERS) database. The ERS UPDATE program calculates the releases from each
31 major operating area. The releases are provided to PNNL, who performs the atmospheric
32 dispersion and dose modeling using CAP88-PC (EPA 1990). All data are incorporated into a
33 draft report, reviewed, and comments resolved. Certification is obtained by all necessary
34 contractors and by DOE-RL. Once certified, the report is transmitted by June 30th to the EPA
35 and WDOH. Figure 3 provides the process flowchart for compiling this annual report.

H96070007.4

Figure 3. Hanford Site Environmental Report and Radioactive Air Emissions Report Detail.

1 2.1.3 Hanford Site Environmental Report

2 3 4 5 FDH is committed to coordinating with the responsible PNNL program to produce the Hanford
6 Site Environmental Report. The FDH team will work with PNNL and BHI to provide the
7 following information as indicated in the annual publication schedule:

- 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 • Provide a draft of the Environmental Compliance Summary section
- Provide a draft of Effluent Monitoring, Near-Field Monitoring, Waste Management, and Chemical Inventory sections
- Review and comment will be provided on all other sections
- Provide peer review comments
- Comment resolution will be provided as required.

FDH will provide DOE-RL, before issuance of the Hanford Site Environmental Report (HSER), a letter of certification for that data provided by the FDH team.

2.1.4 10 CFR 834 Implementation

Title 10 of the Code of Federal Regulations (CFR), Part 834, *Radiation Protection of the Public and the Environment*, codifies DOE Order 5400.5 and promulgates new regulatory requirements. This rule applies to activities conducted by, or for, the DOE that could result in the release of radioactive material to the environment, exposure of members of the public to ionizing radiation, or contamination of the environment with radionuclides from DOE activities (i.e., this regulation has sitewide impacts). The new regulatory requirements under this rule will be subject to the provisions of the *Price-Anderson Amendments Act (PAAA) of 1988*.

To fully demonstrate compliance, 10 CFR 834.5 requires the development of an Environmental Radiological Protection Program (ERPP) plan to be submitted to and approved by DOE. The ERPP plan is required by statute to be submitted to DOE for approval 12 months following the effective date of the Rule, and once the ERPP plan is approved by DOE, the plan becomes the legally enforceable basis for compliance with 10 CFR 834. The ERPP described in the plan consists of an ongoing series of coordinated activities that are conducted to meet the goal of protecting the public and environment from radiation exposure, consistent with the requirements of 10 CFR 834.

In response to this pending new regulation, the FDH team is conducting a project to assess current programs, document the results in a uniform format, and provide an auditable record of the basis for compliance with 10 CFR 834. As part of this effort, a tool for performing self-appraisals was designed to determine the applicability of specific sections (portions) of the rule to each facility, program, or project. The self-appraisal collects information on facilities,

1 programs, and projects through a set of screening questions relating to the requirements of
2 10 CFR 834. The results of this initial compliance screening will directly influence the
3 development of the ERPP and the compliance-driven activities that must follow.

6 2.1.5 Pre-operational Monitoring Plans

8 An environmental study will be conducted to assess environmental parameters before startup of a
9 site, facility, or process that has the potential for significant adverse environmental impact. This
10 study should address all environmental parameters (e.g., meteorology, hydrology, physical
11 geology, and biology), and begin not less than 1 year (preferably 2 years) before startup to
12 evaluate seasonal changes. This study precedes the conceptual design report and can include data
13 acquired in the site selection process, excavation permit process, and *National Environmental
14 Policy Act of 1969/State Environmental Policy Act of 1971* process. (Basis: DOE Order 5400.1,
15 Chapter IV, Page IV-2, Paragraph 3).

17 Pre-operational environmental monitoring reports were issued in 1995 and 1996 for the
18 200 Areas Cross-Site Transfer System; 200 Area Effluent Treatment Facility, State Approved
19 Land Disposal Site, and the Liquid Effluent Retention Facility; and the Solid Waste Operations
20 facilities, including the Central Waste Complex and Waste Receiving and Processing 1.

22 The FDH team will commit to developing pre-operational monitoring plans consistent with the
23 following purposes:

- 25 • Determine and measure the potential impact on the new facility or process from existing
26 contaminated sources (e.g., old waste sites) to ensure that the new facility is not affected
27 by past practices
- 29 • Demonstrate compliance that allows determination of a cost effective level of operational
30 monitoring that will in turn be compliant with regulations following startup of the new
31 facility or process
- 33 • Determine pre-existing environmental conditions within the operating environment
- 35 • Quantify potential contaminant contribution of nearby waste sites to the operational
36 environment
- 38 • Locate source terms with potential to impact the facility or operation
- 40 • Provide data to reduce costs for future monitoring during operations
- 42 • Determine levels of biotic intrusion and potential contaminant transfer pathways
- 44 • Determine differential between existing impacts and potential future impacts

1 • Provide data to determine necessary action for reduction of exposure
2
3 • Substantiate and verify environmental protection standards.

4
5 Pre-operational environmental monitoring in support of new spent nuclear fuel (SNF) project
6 facilities is authorized to start in FY 1997. The completed report presently is scheduled to be
7 transmitted to Duke Engineering Systems Hanford (DESH) by April 30, 1998.

8
9 Pre-operational environmental monitoring determinations for the startup of new facilities with
10 potential for environmental impact will be performed through the FDH team POC. The POC
11 identifies regulatory requirements necessary at each level from planning to startup and on through
12 operation.

13
14 **2.2 INTEGRATION PLAN**

15
16 The following sections summarize the results of the FDH team reviews to date and provides
17 recommendations for consideration and comment by DOE-RL and the other major contractors.

18
19 **2.2.1 Program Review**

20
21 Activities were reviewed by the FDH team in an attempt to find potential improvements in the
22 existing program plans and environmental reports. The reviews were accomplished with the focus
23 on seeking enhancements, corrections, or updates to existing activities. New ideas were solicited
24 for efficiencies, cost savings, consistencies, and to identify any unnecessary duplication of effort.

25
26 **2.2.1.1 Inform Fluor Daniel Hanford, Inc.; Bechtel Hanford, Inc.; Pacific Northwest**
27 **Laboratory Points of Contact.** Messages and meetings have been used to share the purpose of
28 this effort with the major contractors and seek their input and involvement. Both BHI and PNNL
29 POCs have provided their support during this effort, including their invaluable review and input
30 to this plan.

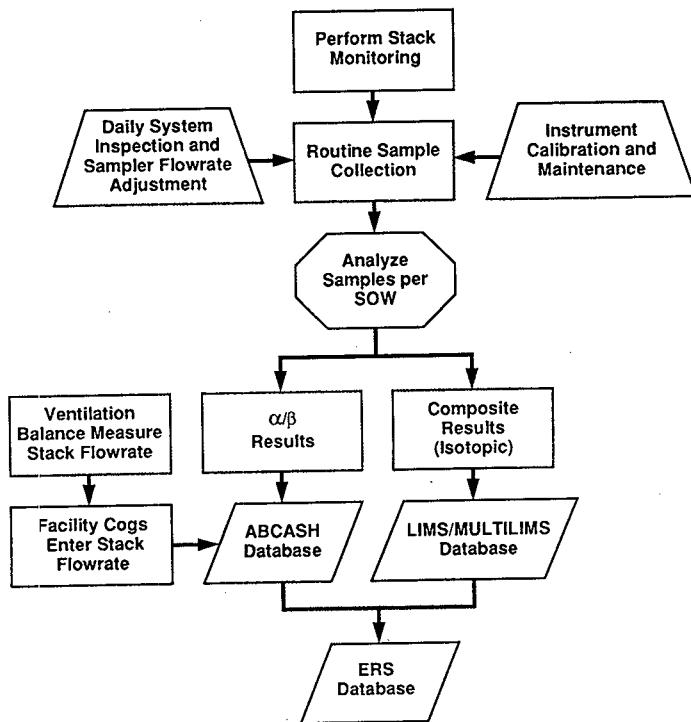
31
32 **2.2.1.2 Environmental Monitoring Plan.** The upcoming 1997 review and update of the EMP
33 (DOE/RL 91-50) will be used by all contractors as an opportunity to identify areas for
34 consistency, efficiency, duplication, etc., as a normal course of plan preparation. The current
35 schedule for updating the EMP starts in mid-March with the EMP completed by the end of
36 FY 1997. The DOE/RL approval and publication must occur before the November 7, 1997
37 deadline.

38
39 **2.2.1.3 Integration Plan for Quality Assurance Program Plans.** The QAPP documents and
40 describes how a program meets its QA objectives. The existing programs for each of the primary
41 contractors on the Hanford Site differ slightly, because there is often more than one way to meet
42 the same objective. It would be difficult to issue and update an integrated QAPP for all Hanford
43 Site contractors. Items such as integrating different terminologies, schedules, inter-contractor

1 relationships, and organizational structures would be time consuming and not cost effective. It is
2 recommended that each primary contractor be responsible for maintaining a QAPP for their
3 portions of the EEM Program. The QAPP prepared by the FDH team includes effluents under
4 BHI management.

5
6 **2.2.1.4 Integration Plan for Laboratory Statements of Work.** The following SOWs were
7 compared for consistency, *Statement of Work for Analytical Services Provided to Westinghouse*
8 *Hanford Company by the Pacific Northwest National Laboratory Analytical Chemistry*
9 *Laboratory, (WHC 1996c); Contract 163589 - Sixth Operational Year Statement of Work*
10 *Effective July 15, 1996 (PNNL 1996); and the Statement of Work for Analytical Services*
11 *Provided by the Waste Sampling And Characterization Facility for the Effluent and*
12 *Environmental Monitoring Program During Calendar Year 1997 (HNF 1997).* Figure 4
13 provides a flow diagram of the collection and analysis process.

14
15 The following minor differences were identified.


16
17 • Turnaround times were not consistent. This varied by as much as 35 to 70 days for
18 individual analyses. Also, it was not clear if the units used in the SOWs were in business
19 days (WHC 1996c and HNF 1997). This needs to be clarified.

20
21 • Laboratories were asked to meet required detection limits (RDL) or minimum detectable
22 concentrations (MDC). These levels were not consistent. The MDC levels were
23 sometimes 2 to 3 orders of magnitude higher than those listed in the Contract 163589
24 SOW (PNNL 1996).

25
26 • Cost for analysis varied for each type of analysis. The methods of indicating cost should
27 be standardized. Gross alpha and beta might be considered one analysis for costing
28 purposes at one laboratory and not at another laboratory.

29
30 • The limits set for precision and accuracy need to be standardized for each SOW. The
31 Contract SOW limits for precision were <20% and was vague as to quantifying the
32 accuracy values (WHC 1996c). The Contract 163589 SOW was detailed in comparison
33 (PNNL 1996).

34
35 The sample flowrate for air samples should be 2 cubic feet per minute for the period of collection
36 unless otherwise indicated. Because the volume of the sample is the basis for determining MDC
37 or RDL, a minimum volume of air sample should be provided, and the units should be consistent
38 [20,000 cubic feet in HNF 1997 and 800 cubic meters in the Contract 163589 SOW
39 (PNNL 1996)].

H96070007.2

Figure 4. Waste Sampling and Characterization Facility Laboratory.

1 **2.2.1.5 Integration of Annual Reports.** The following reports were reviewed:

2

3 • Hanford Site Environmental Report (a summary of multiple reports)

4

5 • Operational Environmental Monitoring Report (detail of near-field

6 monitoring, both for the PHMC and BHI)

7

8 • Environmental Release Report (detail of all environmental releases)

9

10 • Radioactive Air Emissions Report (regulatory format directed by DOE-HQ).

11 The possibility of combining the four annual reports was reviewed, and only two reports offered
12 any perceived advantage from consolidation. These are the Operational Environmental
13 Monitoring and the Environmental Releases reports.

14 The advantages of combining these two reports are that both reports go to the same audience and
15 the data complement each other. The disadvantages of combining these two reports is that the
16 reports are prepared for different purposes and by different programs and contractors. There are
17 no compelling reasons or measurable cost savings identified for combining these reports.
18 Therefore, no changes are recommended at the present time.

19 The reduction of size and/or balance of detail within sections of the four reports was reviewed.
20 Only the operational environmental monitoring report was identified as having an off-balance of
21 detail within sections. Section 3 of the subject report will be reduced in detail, and the
22 groundwater data will be published by BHI and PNNL in a separate report.

23 The use of the Internet (common homepage) was investigated. At the present time, the HSER is
24 available on the Internet. The cost of making the reports available for issuance on the Internet is
25 ~\$8,000 per report according to PNNL, but most persons prefer to have access to hard copy
26 reports. Making the reports available on a common homepage (DOE-RL) would be useful, but
27 might be limited by cost.

28 **2.2.1.6 Integration of Effluent Procedures.** The FDH and BHI effluent reporting procedures
29 are documented (WHC 1996a). The BHI contracts Rust Federal Services Hanford (RFSH) Air &
30 Water Services to calculate and analyze the raw data, and report their airborne releases. PNNL
31 documents their effluent reporting procedures annually with their airborne release calculations.
32 As a result, there does not appear to be any duplication of effort, because PNNL's method of
33 documentation is significantly different than for FDH.

34 The methods used in processing sample data, calculating routine releases, and reporting that
35 information are developed and documented differently by the primary contractors. The general
36 methods for performing this work should be consistent throughout the Hanford Site, with the only
37 differences being attributed to differences in equipment used.

1 Further integration of effluent procedures would help ensure consistent methodologies are used.
2 A sitewide document containing the general procedures used for effluent reporting only appears
3 to help with this integration. The creation of a sitewide effluent procedures document would not
4 reduce the level of effort associated with documenting the methods used for calculating
5 radioactive effluents. The creation of a sitewide procedures document would increase the level of
6 effort and the costs associated with documenting these methods. There are only subtle differences
7 in calculational methods, and the accuracy of data reported to two significant figures is not
8 affected. As a result, the integration of these procedures is not recommended at this time.
9

10 **2.2.1.7 Past Program Reviews.** Since 1986, there have been three major audits of Hanford Site
11 environmental programs, numerous smaller audits and surveys, and several program
12 self-assessments. These audits have had a significant impact on the evolution of the
13 environmental programs on the Hanford Site, and it is important to have a basic understanding of
14 those impacts. Perhaps the greatest accomplishment of these surveys and audits, aside from
15 identifying individual items that needed correcting, has been to instill a mind-set of continually
16 looking for problems and ways to do things better. The outgrowth of these audits has been
17 rigorous self-assessments that generally have anticipated and corrected potential problems. As a
18 result, the Hanford Site surface environmental monitoring program has received praise in recent
19 surveys and audits. Examples are the most recent audit, Office of Environmental Audit (EH-24),
20 and the Westinghouse President's Office audit. A direct result of these audits is that
21 environmental monitoring contractors meet quarterly to share technical developments, changes in
22 regulations, lessons learned, collocation of environmental sampling, and eliminating duplication of
23 effort.
24

25 The most recent self-assessment of the Near-Field Monitoring Program, conducted in 1995,
26 identified the successful closure of integration items found in earlier audits, but more importantly
27 identified changing environmental parameters that need close scrutiny to ensure compliance. The
28 self-assessment was conducted of the Westinghouse Hanford Company's (WHC) Effluent
29 Monitoring and Operational Environmental Monitoring Programs. The assessment was
30 conducted to measure progress towards gaining compliance with findings and suggestions from
31 past audits and surveys such as the US DOE-HQ Environmental Survey of 1986 (also known as
32 the 'Mary Walker Survey'), the Tiger Team Audit, and the DOE-HQ EH-24 Environmental Audit.
33 The impact to the existing environmental monitoring program was not significant. Progress
34 towards integration of environmental monitoring programs by other contractors was noted,
35 through improvement in implementation and communication among contractors was seen as
36 necessary. A summary of the specific notations of the self-assessment are included in
37 Appendix A.
38

39 In May of 1994, the Office of Environmental Audit (EH-24) conducted a routine environmental
40 audit of the Hanford Site. There were no findings directed towards the Operational
41 Environmental Monitoring Program (OEMP) under the direction of Environmental Engineering
42 Studies (EES). In fact, there was praise given to EES for their point-by-point justification of
43 rationale for surface water sampling points as part of self-assessment response actions and
44 thorough self-assessment of the OEMP against the DOE Regulatory Guide DOE/EH-0173T.
45 Also noted was that the Hanford Site maintained an exceptionally high quality of formal

1 documentation, both in procedures and QA. While the EH-24 audit was relatively complimentary
2 of the surface environmental monitoring program, there were 11 areas, primarily in groundwater
3 monitoring, where it was noted that integration could improve. The findings of the audit are
4 summarized in Appendix B.

5
6 In June 1989, the Secretary of Energy announced a 10-point initiative to conduct independent
7 oversight compliance and management assessments of the Environmental, Safety and Health
8 (ES&H) programs at the DOE facilities. To implement that plan, a Tiger Team consisting of
9 individuals who were knowledgeable in ES&H activities was assembled and conducted reviews of
10 DOE sites. In anticipation of this event, the DOE-RL Manager initiated a Hanford
11 Self-Assessment in November 1989 to identify current ES&H conditions before the Tiger Team
12 visit. The Hanford Self-Assessment was issued April 20, 1990 (9001817B) and identified three
13 major causes for existing problems: aging facilities, major changes resulting from the
14 consolidation from eight contractors to four, and a history of inadequate discipline in planning,
15 analysis and corrective action. The Tiger Team Assessment was conducted from May 21, 1990 to
16 July 18, 1990, and a draft report was issued (DOE/EH-0139). Findings of the Tiger Team Audit
17 are summarized in Appendix C.

18
19 The first major inspection, although called a 'survey' rather than an audit, was the DOE-HQ
20 Environmental Survey of 1986 (the so-called 'Mary Walker Survey'), which considered all aspects
21 of environmental monitoring at DOE Sites. On the Hanford Site this survey resulted in
22 58 'findings' that were tracked until closure or incorporation into a subsequent audit. Of these
23 58 findings, five were directed to problems in groundwater monitoring, seven to surface
24 environmental monitoring, and three to integration issues of environmental monitoring. All
25 findings are now closed or incorporated into a more recent audit. The action plan identifying
26 status of closure of the 58 findings is summarized in Appendix D.

27

28

29 **2.2.2 Implementation of Improvements**

30

31 The following activities were reviewed and discussed with peers for consideration and possible
32 implementation. The implementation of any of these activities would require the approval and
33 support of all the major contractors, as well as the DOE-RL.

34

35 **2.2.2.1 Teaming, Routine Meetings, and Consensus.** The integration of the PHMC
36 contractors has become a new challenge. There are efforts to provide a network of effective
37 communications among the many contractors. Clear lines of responsibility are being established
38 for environmental activities. For example, the letter dated November 5, 1996 from FDH to the
39 other subcontractors (FDH 1996) lays out the sitewide coordination responsibilities for FDH and
40 RFSH for environmental monitoring (Table 4). Another example is the system of environmental
41 compliance officers (ECOs) that represent all the facilities and projects on environmental
42 compliance issues. The ECOs meet weekly to share compliance strategies, etc. The ECO
43 meetings can be used to share new requirements, such as 10 CFR 834, and to coordinate a
44 consistent strategy for implementation for all contractors.

45

Table 4. Coordination of Sitewide Air & Water Activities Within the PHMC.

3	4	Effluent and Environmental Monitoring Activity	Fluor Daniel Hanford, Inc. Contact	Rust Federal Services of Hanford Contact	U.S. Department of Energy, Richland Operations Office Contact
5	6	Effluent and environmental monitoring program management	KJ Svoboda	DL Mitchell	Suzanne E. Clarke
7	8	Effluent reporting (radioactive)	JA Bates	BP Gleckler	Hector M. Rodriguez Suzanne E. Clarke
9	10	Effluent reporting (nonradioactive)	KA Peterson	RE Johnson	Hector M. Rodriguez
11	12	National Emission Standards for Hazardous Air Pollutants Federal Facility Compliance Agreement	JA Bates	WE Davis	Hector M. Rodriguez Suzanne E. Clarke
14	15	Radiation protection (environmental monitoring plan, facility effluent monitoring plans, 10 CFR 834)	JA Bates	LP Diediker DW Fritz	Dana C. Ward Roger C. Briggs
18		Near-field monitoring	JA Bates	JJ Dorian AR Johnson	Dana C. Ward

20	21	22	Hanford Environmental Management Program Activity	Fluor Daniel Hanford, Inc. Contact	Rust Federal Services of Hanford Contact	U.S. Department of Energy, Richland Operations Office Contact
23			Air Operating Permit	KA Peterson	BL Curn	Hector M. Rodriguez
24	25	26	Portable Temporary Radioactive Airborne Emission Units	JA Bates	DW Fritz	Hector M. Rodriguez Suzanne E. Clarke
27	28	29	National Pollutant Discharge Elimination System permitting and reporting	JJ Kapadia	LP Diediker JJ Luke	Alex E. Teimouri

30
31
32

1 The FDH team will continue to communicate with PNNL, BHI, and DOE-RL in an open and
2 timely manner. Particular emphasis will be placed on maintaining the relationships with BHI
3 concerning their environmental monitoring needs associated with restoration activities.
4

5 The FDH team, along with BHI and PNNL, will actively participate in the DOE-RL Natural
6 Resource Team meetings, quarterly environmental monitoring exchange meetings, and other
7 routine and special meetings and interfaces. Environmental monitoring issues will be discussed
8 promptly amongst the effected environmental monitoring groups and with DOE-RL.
9

10 The frequency of these ongoing routine meetings was reviewed and determined to be generally
11 adequate when used in conjunction with other separate meetings scheduled to address specific
12 environmental monitoring deliverables or issues. Communications could be improved, however,
13 by increasing the frequency and formality of the quarterly environmental monitoring exchange
14 meetings (refer to Quarterly Meeting Agenda). Other meetings cover site reports such as the
15 Hanford Site Environmental Report and the EMP, new regulations such as 10 CFR 834, analytical
16 services, the WDOH Quality Assurance Task Force, special surveys such as the recent aerial
17 radiological survey of the Hanford Site performed by Bechtel Nevada.
18

19 Continued involvement and an active team role and participation by BHI and DOE-RL
20 Environmental Restoration program representatives are vital to ensure that adequate
21 pre-operational, operational, and post-remediation environmental monitoring (both near- and
22 far-field) are performed for their environmental remediation activities.
23

24 **2.2.2.2 Quarterly Meeting Agenda.** The need to be informed of activities that effect effluent,
25 near-field, and the far-field environment is noted as being very important. Because of the
26 dynamics of the Hanford Site, the Quarterly EMP meetings did not fully meet the need of
27 informing environmental monitoring contractors of activities in a timely fashion. With this in
28 mind, the following schedule and agenda is recommended for the Quarterly Environmental
29 Monitoring meetings:
30

31 • The frequency of the environmental monitoring informational exchange meetings should
32 be increased from quarterly to bi-monthly. The EMP meetings should be scheduled for
33 the second week of all even months.
34

35 • As a minimum, the following topics will be discussed at each scheduled meeting:
36 - events that may have impacted the environment
37 - current and future Notices of Construction, which are *Clean Air Act* permits with
38 WDOH and EPA
39 - the status of 10 CFR 834
40 - the status of the annual reports in progress
41 - highlights of all contractor activities (construction, cleanup, etc.).
42

43 A multi-contractor team has been identified to better document and agree on the purpose of these
44 meetings, and to formalize standing agenda topics.
45

1 **2.2.2.3 Integrate Environmental Monitoring Schedules.** This review was conducted to
2 determine if integration of the environmental monitoring schedules for the FDH team, PNNL, and
3 BHI would be feasible, cost effective, and beneficial to the environmental programs.

4
5 Currently, the following three documents control the environmental monitoring and sampling
6 schedules on the Hanford Site.

7
8 • *Routine Environmental Monitoring Schedule, Calendar Year 1997* (WHC 199d).

9
10 This document provides BHI and the FDH team a schedule in accordance with the
11 WHC-CM-7-5, *Environmental Compliance* and BHI-EE-02, *Environmental*
12 *Requirements*, of monitoring and sampling routines for the Near-Field Monitoring
13 program during calendar year (CY) 1997.

14
15 • *Statement of Work for Services Provided by the Waste Sampling and Characterization*
16 *Facility for Effluent Monitoring during Calendar Year 1997* (HNF 1997).

17
18 This document defines the services the Waste Sampling and Characterization Facility
19 (WSCF) provides EEM throughout the calendar year and identifies the samples EEM
20 plans to submit for analysis in CY 1997. Analysis of effluent (liquid and air discharges)
21 and environmental (air, liquid, animal, and vegetative) samples is required using standard
22 laboratory procedures, in accordance with regulatory and control requirements.

23
24 • *Environmental Surveillance Master Sampling Schedule* (PNL 1995).

25
26 This document contains the planned 1996 schedules for routine collection of samples for
27 the surface environmental surveillance project, drinking water project, and groundwater
28 surveillance project.

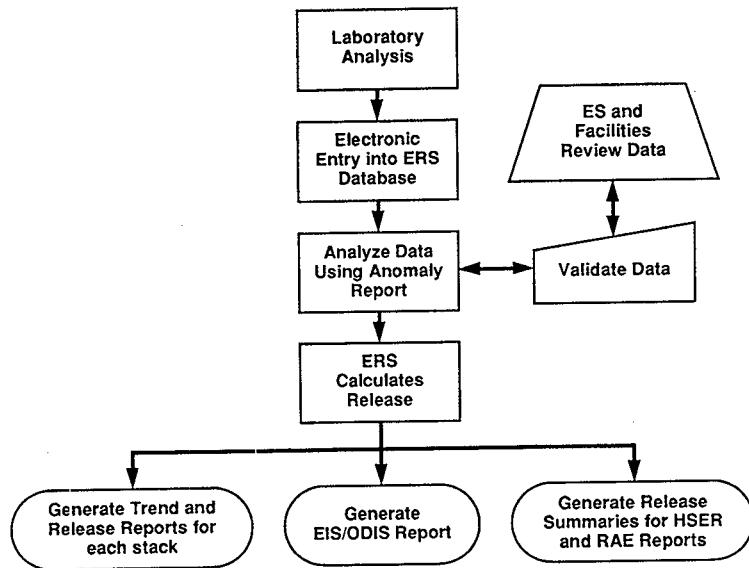
29
30 Three separate programs currently monitor facility effluent and the surface environs; air,
31 soil/sediment, vegetation, animals, and surface water. The effluent monitoring is
32 implemented by RFSH, the near-facility monitoring is implemented by RFSNW, and the
33 environmental surveillance program is under the direction of PNNL. Integrating the
34 schedules for the sampling activities of the three organizations into one document could be
35 done, but not all schedules need to be shared with all persons involved in the various
36 schedules.

37
38 The separate "program" sections would require the same effort as currently being
39 expended by the individual program managers. These separate program sections would be
40 incorporated into a single document and published annually. Additional costs would be
41 incurred incorporating the single document but this cost would be the greatest the first
42 year, which would become a template for subsequent years.

43
44 The benefit of the single document would be as a single comprehensive reference for
45 regulators or public interest groups wanting to know about a sample event and/or to plan

1 a surveillance activity around a sample activity. It could be cumbersome to the individual
2 users as they would have unwanted information that could become confusing and possibly
3 create sampling errors.

5 Weighing the these considerations, it would seem that leaving the schedules as published
6 in separate documents would be the most practicable and most cost effective.


7 **2.2.2.4 Integration Plan for Coordinating Preparation of Annual Reports.** All annual
8 reports currently are coordinated around the preparation of the HSER. The effluent data
9 compilation and dose modeling are carefully scheduled to mesh with the Radiation Air Emissions
10 (RAE) report, which requires doses to be calculated using the EPA approved CAP88
11 (EPA 1990), versus HSER, which uses GENII (PNL 1988). The effluent reporting and near-field
12 monitoring program descriptions and data are summarized in the HSER. The more detailed
13 information and data are included in the corresponding annual reports. The same personnel in
14 PNNL and the FDH team have and should continue to support each other's annual reports
15 alternately throughout the reporting season. There were no serious problems identified in the
16 production schedules.

17 **2.2.2.5 Sharing Monitoring Procedures, and Databases.** The sharing of sampling and
18 monitoring procedures most recently has occurred with the transfer of the 324 and 327 Buildings
19 from PNNL to the FDH team. The procedures are specific for the methods and equipment, i.e.,
20 tritium and radon collection systems. The PNNL methods differ only slightly from past and
21 present FDH team systems. The effluent data path is through the 325 Laboratory and easily is
22 added to the ERS database. The only significant difference is the release calculation for radon
23 that will need to be added to FDH team procedures, or installed in the ERS. The effluent data
24 from BHI already is in the ERS database and the possibility of adding the rest of PNNL's
25 30 stacks offers some advantages in annual reporting.

26 Further evaluation has determined that the integration of effluent procedures, via a sitewide
27 document, would require additional effort and funding. The perceived benefit is very small at this
28 time. As a result, a sitewide effluent procedures document is not recommended.

29 The sharing of databases most likely would reduce the level of effort and help ensure program
30 consistency. The FDH team's and BHI's effluent data and the near-facility monitoring data
31 currently are stored in the ERS database. The ERS database also performs radioactive effluent
32 calculations for the annual reports, eliminating the need to use spreadsheets. Use of the ERS
33 database has been offered to PNNL's effluent monitoring organization. The ERS database can
34 accommodate PNNL's needs, if PNNL should choose the database. Figure 5 displays the process
35 of laboratory results collected and reported by the ERS database.

36 **2.2.2.6 Share Radiological Control Technicians.** The sharing of RCTs is depends on the
37 development of like sampling and training procedures. This was discussed with PNNL personnel
38 and there was concern that this might create union issues, because of different Hanford Atomic
39 Metals Trade Council contracts between PNNL and the FDH team. This suggestion probably is
40 not practical to implement at this time.

H96070007.3

Figure 5. Environmental Release Summary Database.

1 **2.2.2.7 Exchange or Borrow Technical Personnel.** RFSH Air & Water Services, RFSNW
2 Near-Field Monitoring, and PNNL staff will assist each other to the extent practical in completing
3 short-term tasks when the implementing group requires additional expertise or staffing resources.
4 The other companion environmental monitoring groups will be contacted and used to the extent
5 practical, before contracting outside services. This has been done in the past to a certain extent.
6 For example, RFSH Air & Water Services has used RFSNW Near-Field Monitoring to perform
7 nondestructive assays (NDA) using gamma spectrometry of high-efficiency particulate air
8 (HEPA) filters for the 296-T-7, 296-S-15, and 296-A-10 stacks in support of NESHAP effluent
9 sampling compliance evaluations. Another example is the teaming with BHI and PNNL to
10 complete compliance activities for the NESHAP FFCA. Many joint efforts have been completed
11 to deliver products to the EPA and WDOH [e.g., status reports, the memorandum of
12 understanding (MOU), and new sampling methods].

13
14 Understandably, individual contractors will use their specialized expertise and resources within the
15 scope of their site responsibilities, but will use companion organizations in other Hanford Site
16 contractors for assistance. Such support is recommended and will be accomplished using work
17 orders, task orders, or similar funding mechanisms.

18
19 **2.2.2.8 Integration Plan for Managing and Using Laboratory Services.** The use of multiple
20 laboratories creates several logistical problems such as: (1) creating consistent statements of
21 work, (2) ensuring analytical data are equivalent and comparable, (3) obtaining data in an
22 electronic format consistent with the reporting database, and (4) dealing with multiple
23 contracts/SOWs.

24
25 The easiest and most efficient method for managing and using laboratory services would be to
26 consolidate all laboratory services into one contract or SOW. This might not be effective on a
27 sitewide basis, because laboratory-to-customer relations are essential for communication and
28 efficiency. Large contracts usually require a third party to manage the contract and to
29 communicate with the laboratory. The recommendation is this would be more practical to
30 integrate by primary contractor, rather than for the entire Hanford Site. The SOWs for Waste
31 Sampling and Characterization Facility (WSCF) and the 325 Laboratory could benefit from some
32 of the elements in the Quanterra SOW maintained by PNNL. The SOWs will be updated to
33 reflect more of the requirements contained in the Quanterra SOW.

34
35 **2.2.2.9 Collocation of Personnel.** Collocation of staffing and equipment was considered, but it
36 is recommended that this is not practical to pursue at this time. This conclusion is based on the
37 other individual line management, program, and customer interfaces that need to be maintained
38 and are company dependent. Basic company objectives and operating cost expectations are
39 different for PNNL, BHI, FDH managed, and enterprise companies. To be competitive,
40 enterprise companies like RFSNW will require less costly office accommodations, administrative
41 systems, etc.

42
43 Specialized equipment will be shared to the fullest extent practical. Some equipment sharing or
44 even transfers have occurred in the past between PNNL and what is now the FDH team.
45 Examples include the transfer of both the equipment and responsibilities for radiological rail and

1 road surveys to the near-field monitoring group from PNNL; and the loan of PNNL PM-10 air
2 samplers to the FDH team for supporting special NESHPAP and related diffuse and fugitive
3 emissions monitoring.

4
5 The same monitoring protocols and equipment also will be used to the fullest extent practical. To
6 a large degree this has been done in the past. For example, PNNL environmental dosimetry
7 services and environmental dosimeters also are used for FDH-managed environmental monitoring.
8 Standardized portable survey equipment is used on the Hanford Site that is serviced and calibrated
9 by PNNL. Increased focus and emphasis will be placed on this aspect in the future.

10
11 **2.2.2.10 Cross-Training of Personnel.** The possibility of cross-training could entail sharing or
12 loaning personnel for temporary periods to receive either formal classroom or less formal on-the-
13 job training. It is recommended that cross-training or the sharing of training resources be pursued
14 and implemented when cost effective and practical. A recent example of shared cross-training of
15 PNNL and FDH team staff was vendor-provided training covering the use of a Fourier transform
16 infrared (FTIR) spectrometer for ambient air monitoring of volatile organic chemicals. These
17 cooperative training arrangements will be used whenever possible in the future. Such
18 arrangements will be essential to maintain the technical expertise of monitoring staffs under the
19 tight budgets associated with the environmental monitoring activities.

20
21
22 **2.2.3 Basic Responsibilities of Each Major Contractor for Effluent and Environmental**
23 **Monitoring Activities**

24
25 The EMP describes the effluent and environmental monitoring conducted by all three major
26 Hanford Site contractors. For example, PNNL conducts sitewide environmental surveillance,
27 sitewide groundwater monitoring, meteorology and climatology, and effluent monitoring of its
28 facilities. As another example, the FDH team conducts near-field (near facility) monitoring and
29 effluent monitoring of facilities. As a third example, the ERC (BHI) conducts all CERCLA
30 monitoring, effluent monitoring of facilities it manages, and monitoring of optimization of design,
31 conceptual model development, trending, point of compliance, and remediation performance
32 evaluation activities. BHI has made arrangements for the FDH team to provide near-field
33 monitoring and reporting services for the current fiscal year. Where these arrangements have
34 been made, the organization responsible for performing monitoring is identified in detailed
35 descriptions in the appropriate section of the EMP.

36
37 The detailed responsibilities of the primary Hanford Site contractors will need to be described in
38 the EMP (DOE/RL 91-50) to reflect the changes in responsibilities that occurred as a result of the
39 PHMC, which became effective in October 1996. Introduction section of the upcoming
40 revision of the EMP, to be completed by November 1997, will be enhanced to match the detailed
41 description of the program responsibilities now in place for the three major contractors; and will
42 be carried forward into the appropriate sections of the EMP.

1 **2.2.4 Description of Existing Environmental Programs with Responsibilities Related to**
2 **Sitewide Integration Among Contractors and with Regulatory Agencies**

3 There are several existing environmental programs on the Hanford Site that demonstrate sitewide
4 integration among the contractors and regulatory agencies. Several of these are as follows.

5 **2.2.4.1 Hanford Environmental Dose Overview Panel.** The HEDOP was established by the
6 DOE-RL to promote consistency and defensibility of environmental dose calculations on the
7 Hanford Site. The HEDOP has the responsibility for defining standard, documented computer
8 codes and input parameters to be used for radiological dose calculations for the public in the
9 vicinity of the Hanford Site. Only those procedures, models, and parameters previously defined
10 by the HEDOP are used to calculate the radiological doses for reporting in the Hanford Site
11 annual report.

12 **2.2.4.2 Quality Assurance Task Force.** The QA Task Force is an advisory group to the
13 WDOH. It is composed of governmental and industrial organizations responsible for monitoring
14 the effects of radiation on the environment. Task Force members use their expertise to ensure
15 that environmental radiation data are of the highest quality.

16 The Hanford Working Group is one committee of the QA Task Force and is staffed by Task
17 Force members who perform environmental radiation monitoring on, and around, the Hanford
18 Site. Members of this committee work together to assess radiological environmental monitoring
19 data. The group compares radiological environmental monitoring data for locations on and
20 around the Hanford Site; discusses Hanford Site-specific issues, draws conclusions, makes
21 recommendations, and, when appropriate, takes actions. The group promotes the cooperation,
22 coordination, and communication among the environmental radiation programs monitoring on,
23 and around, the Hanford Site. The Hanford Working Group members include: WDOH,
24 DOE-RL, PNNL, RFSNW Environmental Monitoring and Investigations, Washington Public
25 Power Supply System, US Ecology, Inc., Siemens Nuclear Power, ATG Corporation, and the
26 Oregon State Health Department.

27 Since 1985, the Hanford Working Group has coordinated approximately a dozen intercomparison
28 studies based on Hanford Site samples or measurements. Samples are collected, split, and
29 analyzed by the members and a public interest group representative. If results are not consistent,
30 the group evaluates the problem and makes recommendations for long-term solutions.

31 **2.2.4.3 Fluor Daniel Hanford, Inc., Environmental Integration Group.** The FDH
32 Environmental Integration (EI) group is currently the single point of contact for Hanford Site
33 contractors for DOE Hanford Site inspections and audits by the regulatory agencies, except for
34 CERCLA sites. The FDH/EI group receives all requests from the regulatory agencies for
35 inspections and audits, and coordinates these with DOE-RL and the delegated contacts in RFSH
36 and with the responsible Hanford Site contractor.

1 The FDH/EI group also reviews and revises the FDH environmental policy directives manual
2 (WHC 1996a) and other documents to ensure that the affected contractors and/or subcontractors
3 are aware of changes to their work scope and responsibilities. Review, analysis, and responses to
4 proposed rulemaking and decisions involving environmental regulations also are conducted by
5 FDH/EI group to ensure that final rules are analyzed and incorporated into policy documents to
6 ensure compliance.

7

8

9 **2.2.5 Criteria Used to Establish and Measure Effluent and Environmental Monitoring**
10 **Activities**

11 The criteria used to establish and measure EEM activities are described in the following sections.

12

13

14 **2.2.5.1 Criteria Used to Ensure Consistency Without Duplication Among Contractors.**
15 The responsibilities and criteria used to establish and ensure consistency without duplication of
16 effluent and near-field environmental monitoring and surface environmental surveillance activities
17 are included in the EMP.

18

19 Specific criteria used utilized for radiological effluent and environmental monitoring activities are
20 included in "Environmental Regulatory Guide for Radiological Effluent Monitoring and
21 Environmental Surveillance" (DOE/EH-173T). Radionuclide air emissions on the Hanford Site
22 are monitored and reported, and dose calculations performed, in accordance with criteria included
23 in "National Emission Standards for Emissions of Radionuclides Other than Radon from
24 Department of Energy Facilities" (40 CFR 61, Subpart H) and "Radiation Protection-Air
25 Emissions" (WAC 246-247). Hanford Site sources are currently being evaluated for meeting the
26 procedural requirements for flow measurement, emissions measurement, QA, and sampling
27 documentation.

28

29 Where required by FEMP determinations, facility-specific FEMPs are prepared using documented
30 guidance (WHC 1992). FEMPs include a discussion of the design criteria and technical
31 specifications pertaining to the effluent monitoring/sampling systems, including alternate
32 monitoring and assessment methods when different from those specified by the EPA and the
33 DOE 5400-series Orders.

34

35 In accordance with *Clean Air Act* requirements, National Pollutant Discharge Elimination System
36 (NPDES) permitted liquid discharges are monitored and reported per requirements included in
37 Permit No. WA-000374-3 (NPDES 1981). Nonroutine monitoring for nonradioactive
38 constituents [as defined by the *Resource Conservation and Recovery Act* (RCRA) of 1976] are
39 covered in the sampling analysis plans (SAPs). Unplanned releases are evaluated and reported by
40 FDH/EI in accordance with requirements of CERCLA, NPDES, NESHAP/WAC, and DOE
41 Order 232.1.

42

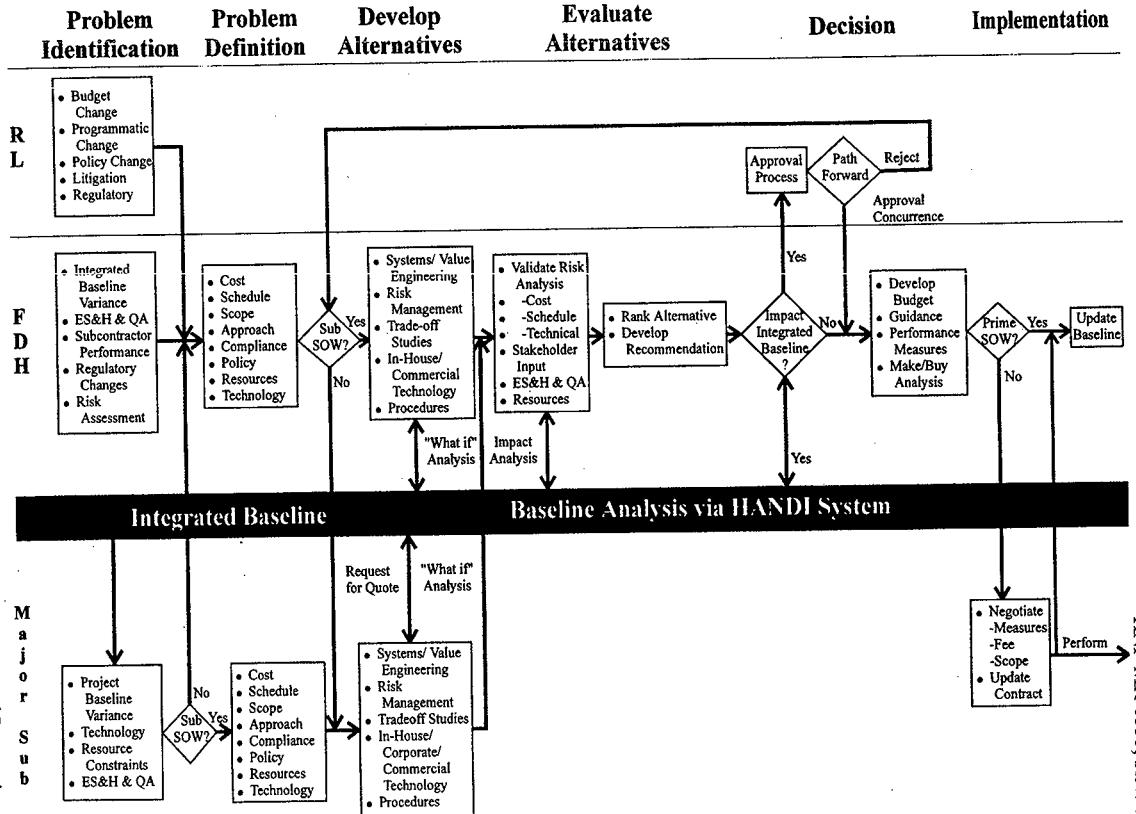
43 **2.2.5.2 Effluent and Environmental Monitoring Standards of Measurement and**
44 **Reporting.** The EMP contains details or specific references to the rationale and design criteria

1 for the extent and frequency of monitoring and measurements, procedures for laboratory analyses,
2 QA requirements, and program implementation procedures.

3
4 The HSER is prepared annually pursuant to DOE Order 5400.1. The report summarizes
5 environmental monitoring data that characterize Hanford Site environmental management
6 performance and demonstrated compliance status. More detailed environmental compliance,
7 monitoring, surveillance, and study reports that might be of value are referenced in the text of the
8 HSER to the extent practical. Examples of such reports include the radionuclide air emissions
9 report, the FDH annual environmental release report, monthly NPDES report, annual operational
10 environmental monitoring report, nonradioactive air emissions report, etc. Reporting formats for
11 these other reports are in accordance with the specific regulatory requirements when applicable.
12 For the routine monitoring reports where formats are not specifically dictated by regulatory
13 requirements, the reports are prepared in accordance with DOE/EH-0173T where applicable,
14 consistent with the environmental monitoring report. Reports covering special monitoring and
15 studies are prepared in accordance with contractor guidelines and good engineering practices.
16
17

18 **2.2.6 Methods for Documenting Decisionmaking, and How to Enforce the Solutions or**
19 **Policies**

20
21 The FDH team decisionmaking process is conducted such that direction and policy decisions flow
22 down and alternative implementation approaches flow up as discussed in the following section
23 and, as illustrated in Figure 6. This two-way information flow draws maximum benefit from
24 corporate best-in-class capabilities. Enforcing the solutions and policies also is discussed in this
25 section.
26


27 **2.2.6.1 Methods for Decisionmaking.** The key functions in the decisionmaking process are
28 (1) subcontractor development of alternatives and (2) FDH analysis of alternatives. The
29 subcontractors have access to the integrated sitewide baseline to perform 'what-if' analyses. The
30 subcontractor submittal of alternatives to FDH include the following:

31
32 • Scope, cost, and schedule information
33 • ES&H, technical, schedule, and cost impacts
34 • Risk mitigation plans
35 • Compliance recommendations
36 • Preferred alternatives with justification.
37

38 FDH reviews the subcontractor's submittals and analyzes the impact of the preferred alternative
39 on the integrated sitewide baseline. FDH also considers inputs from DOE-RL, stakeholders,
40 regulators, and independent experts. If a proposed alternative is detrimental to the integrated
41 sitewide baselining, FDH works with the subcontractor (or other major contractors) to develop an
42 acceptable solution.
43

44 FDH determines the effects of the alternatives on the integrated sitewide baseline. Decisions
45 affecting technical, cost, or schedule baselines are made by FDH with DOE-RL concurrence.

Figure 6 Methods for Decisionmaking. [Adapted from the Draft Management and Integration Plan (MP-001) (FDH 1997).]

1 Decisions requiring formal Change Control Board action are forwarded to DOE-RL using
2 approved procedures.

3
4 Once decisions are made, FDH implements these decisions through contract action with the
5 affected subcontractors. Requirements are added, amended, or modified to incorporate the
6 effects of the decision using the subcontract change mechanisms.

7
8 **2.2.6.2 Enforcing the Solutions and Policies.** FDH has committed to defining projects and
9 performance standards, and contracting with best-in-class companies to perform to those
10 standards. Details of these commitments currently are being documented in the *Draft*
11 *Management and Integration Plan*, MP-001 (latest draft dated February 11, 1997) (FDH 1997).
12 FDH will hold subcontractors responsible for running their projects as they do their businesses.
13 FDH environmental policies and procedures, for compliance by the subcontractors, are distributed
14 in the FDH environmental compliance manual (WHC 1996a). The effluent and environmental
15 activities will be performed largely by RFSH and RFSNW, with formal documentation, i.e.,
16 reports, plans, and SOWs, etc. being reviewed and approved by FDH. The facilities routinely will
17 require permitting for nonroutine activities or modifications to their facility or its effluent
18 monitoring systems. The transmittal of these requests for permits is made to DOE-RL, only after
19 review and approval by the designated FDH POC. FDH will perform oversight of the
20 environmental monitoring activities performed by RFSH and RFSNW through the Facility
21 Evaluation Board (FEB). This also will include the comprehensive auditing of individual facilities
22 by the FEB for compliance with all environmental regulations and the FDH environmental
23 policies.

24
25 The next level of oversight is performed by DOE-RL. At the present time this consists of field
26 surveillances of various EEM activities. In addition, DOE-RL reviews for approval, any formal
27 compliance documentation or external publications that will be sent to other regulatory agencies.
28 This will typically includes annual reports and SOWs with the analytical laboratories.

29
30 Further oversight on radioactive air emissions is provided by the EPA, Region 10, and the
31 WDOH. These agencies enforce compliance with the *Clean Air Act* (40 CFR 61, Subpart H), and
32 the WAC 246-247, respectively. Frequent visits by the WDOH require almost continuous
33 interaction and compliance self-assessment by facilities and the central environmental
34 organizations that compile the sitewide reports for demonstrating compliance with the
35 regulations.

1 2.3 SCHEDULE
2

3	Activity	Date
4	1. Inform FDH, BHI, PNNL points of contact	Complete
5	2. Update Environmental Monitoring Plan	October 31, 1997
6	3. Update Quality Assurance Program Plans	July 31, 1997
7	4. Update Laboratory Statements of Work	June 30, 1997
8	5. Past Program Reviews. The FDH team will continue to communicate with it's subcontractors, BHI, and PNNL through the routine meetings.	Complete
9	6. Change frequency of routine meetings.	April 30, 1997
10	7. Provide new meeting agenda.	April 30, 1997

11

1
2
3
4
5

This page intentionally left blank.

1 **3.0 REFERENCES**

2

3 DOE/EH/OEV-05-P, *Environmental Survey Preliminary Report, Hanford Site, Richland,*
4 *Washington, August 1987*, U.S. Department of Energy, Washington, D.C.

5

6 DOE/EH-0139, *draft Tiger Team Assessment of the Hanford Site*, 1990, U.S. Department of
7 Energy, Washington, D.C.

8

9 DOE/EH-0173T, *Environmental Regulatory Guide for Radiological Effluent*
10 *Monitoring and Environmental Surveillance*, 1991, U.S. Department of Energy,
11 Washington, D.C.

12

13 DOE Order 232.1, *Environmental, Safety, and Health Reporting*, U.S. Department of
14 Energy, Washington, D.C.

15

16 DOE Order 5400.1, *General Environmental Protection Program*.

17

18 DOE Order 5400.5, *Radiation Protection of the Public and Environment*.

19

20 DOE Order 5484.1, *Environmental Protection, Safety, and Health Information Reporting*
21 *Requirements*.

22

23 DOE Order 5820.2A, *Radioactive Waste Management*.

24

25 DOE/RL-91-50, *Environmental Monitoring Plan (EMP) United States Department of Energy*
26 *Richland Operations Office*, Rev. 1, 1994, Richland, Washington.

27

28 Ecology, EPA, and DOE-RL, 1996, *Hanford Federal Facility Agreement and Consent Order*,
29 Washington State Department of Ecology, U.S. Environmental Protection Agency,
30 U.S. Department of Energy, Richland Operations Office, Olympia, Washington, amended
31 periodically.

32

33 EPA, 1990, *The Clean Air Act Assessment Package-1988 (CAP88), A Dose and Risk Assessment*
34 *Methodology for Radionuclide Emissions to Air*, Vols. 1-3, U.S. Environmental Protection
35 Agency, Washington, D.C.

36

37 FDH, 1996, letter dated November 5, 1996 from FDH to subcontractors: "Sitewide Coordination
38 Responsibilities for FDH and RFSH for Environmental Monitoring", Fluor Daniel Hanford,
39 Inc., Richland, Washington.

40

41 FDH, 1997, *Draft Management and Integration Plan*, MP-001, Fluor Daniel Hanford, Inc.,
42 Richland, Washington.

43

1 HNF, 1997, *Statement of Work for Services Provided by the Waste Sampling and*
2 *Characterization Facility for Effluent Monitoring during Calendar Year 1997,*
3 *HNF-EP-0835-2, Richland, Washington.*

4

5 ISO, 1996, *ISO 14000 Standards*, International Organization for Standardization, Geneva,
6 Switzerland.

7

8 NPDES, 1981, National Pollutant Discharge Elimination System Permit No. WA-000374-3
9 (covers two liquid discharges: 100-N and -K Areas).

10

11 PNL, 1988, *GENII - The Hanford Environmental Radiation Dosimetry Software System*,
12 PNL-6584, Pacific Northwest Laboratory, Richland, Washington.

13

14 PNL, 1995, *Environmental Surveillance Master Sampling Schedule*, PNL-10950, Pacific
15 Northwest Laboratory, Richland, Washington.

16

17 PNNL, 1996, *Contract 163589 - Sixth Operational Year Statement of Work Effective July 15,*
18 *1996*, Pacific Northwest National Laboratory, Richland, Washington.

19

20 WHC, 1993, *Operational Environmental Monitoring Manual*, WHC-CM-7-4, Westinghouse
21 Hanford Company, Richland, Washington.

22

23 WHC, 1992, *A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans*,
24 WHC-EP-0438-1, Westinghouse Hanford Company, Richland, Washington.

25

26 WHC, 1996a, *Environmental Compliance Level II Policy Manual*, WHC-CM-7-5, Westinghouse
27 Hanford Company, Richland, Washington.

28

29 WHC, 1996b, *Environmental Support FY 1997 Multi-Year Work Plan WBS 1.5.2*,
30 WHC-SP-1112, Revision 2, Westinghouse Hanford Company, Richland, Washington.

31

32 WHC, 1996c, *Statement of Work for Analytical Services Provided by the PNNL Analytical*
33 *Laboratory (325 Lab)*, WHC-EP-0857-1, Westinghouse Hanford Company, Richland,
34 Washington.

35

36 WHC, 1996d, *Routine Environmental Monitoring Schedule, Calendar Year 1997*,
37 WHC-SP-0098-8, Westinghouse Hanford Company, Richland, Washington.

38

39 *Hanford Site Self-Assessment* was issued April 20, 1990 (9001817B).

40

41 *Operational Environmental Monitoring Program Self-Assessment (#9357245)* issued
42 April 6, 1993.

43

44 WHC *Operational Environmental Monitoring Program (#88700-93-JWS)* issued
45 October 29, 1993.

1 APPENDIX A
2
3
45 **EFFLUENT AND ENVIRONMENTAL MONITORING SELF-ASSESSMENT**
6
7
8
9
10
11
12

In FY 1995, a Self-Assessment was conducted of WHC's Effluent Monitoring and Operational Environmental Monitoring Programs. The assessment was conducted to measure progress towards coming into compliance with findings and suggestions from past audits and surveys such as the DOE-HQ Environmental Survey of 1986 (also known as the 'Mary Walker Survey'), the Tiger Team Audit, and the DOE-HQ EH-24 Environmental Audit. Impact to the existing environmental monitoring program was not significant, even though room for improvement in implementation and communication among contractors always exist.

This self-assessment was conducted to improve compliance and reduce duplication even though the FY 1994 DOE-HQ EH-24 environmental audit credited the Operational Environmental Monitoring and Effluent Monitoring Programs for having "performed thorough self-assessments" (refer to "Routine Environmental Audit of the Hanford Site Richland, Washington," DOE/EH-0403, paragraph 3.7.1) that regularly monitor these goals.

The following tasks were identified and the status of each is identified in italics following the task:

- Perform a study of diffuse sources and their emission potential.

This task is on going and budgeted as part of NESHAPs compliance. Two reports have been published to date with additional studies funded and scheduled.

- Identify potential sources of volatile organic emissions from a comprehensive review of existing data.

This task is ongoing and budgeted. The PNNL managed Surface Environmental Monitoring Program has included hazardous chemical monitors at certain key air samplers. Other hazardous waste monitoring is conducted by various contractors at specific projects and information is shared at DOE-RL sponsored Quarterly Technical Exchange Meetings.

- Provide recommendations for evaluating biological transport of radioactive contamination on and adjacent to facilities and waste handling, storage, and disposal sites.

This task is ongoing as budgets allow but is not routinely funded. Permanent sampling locations have been selected and samples collected in 1995 and 1996 in the 200 Areas with other areas to follow as budgets allow.

1 • Document the status of outdoor radioactive surface contamination on the Hanford Site.
2

3 *The document, "Status of Outdoor Radiological Contamination at the Hanford Site" has*
4 *been issued to assist all contractors in cleaning up contaminated sites. A schedule with*
5 *input from all involved contractors is published yearly and a quarterly report summarizes*
6 *the status of surface and underground contamination.*

7 • Review training requirements and policy implementation.
8

9 *Training is monitored, scheduled, and updated regularly; required courses are provided*
10 *sitewide by the different contractors to avoid duplication. Required training is tracked*
11 *within each contractor organization and scheduled as necessary. Examples include*
12 *intercontractor provision of respiratory protection (mask fits provided by Hanford*
13 *Environmental Health Foundation to all Hanford Site contractors followed by hands-on*
14 *training provided during hazardous materials management and emergency response*
15 *training), radiological protection training (Hanford Technical Training Center operated by*
16 *DynCorp), hazardous waste worker training (provided at the Hazardous Materials*
17 *Management and Emergency Response facility operated by FDH using instructors from*
18 *various contractors), and habitat evaluation procedures (offered through PNNL by*
19 *instructors brought in for the duration of the course).*

20 • Management assessments should focus on how well the integrated QA program is
21 working and should identify management problems that hinder the organization from
22 achieving its objectives in accordance with quality, safety, and environmental
23 requirements.
24

25 *The quarterly technical exchange meetings, hosted by DOE-RL EAP, with the various*
26 *contractors represented, allow the managers to verify integration, where appropriate,*
27 *throughout the Hanford Site.*

28 • Provide input, concurrent with PNNL, to improve and update the EMP before the
29 required date of November 11, 1994 as specified in DOE Order 5400.1.
30

31 *The EMP was updated on schedule to reflect changing contractor (BHI) roles on the*
32 *Hanford Site. The EMP is scheduled for update by November 1997 to reflect continued*
33 *changes in contractors (i.e., FDH and subcontractors).*

34 • Interface with facility ECOs to evaluate compliance issues in accordance with agreed
35 upon schedules.
36

37 *All facilities have ECOs within the internal management system and meetings to discuss*
38 *common problems and lessons learned are held regularly.*

39 • Manage the OEMP, including tasks in five areas (General Environmental Studies,
40 Nonradioactive Air Monitoring, Effluent Monitoring System Line Loss Studies, Routine
41

Operational Environmental Monitoring, and Special Operational Environmental Monitoring) in accordance with DOE requirements for the Hanford Site.

The OEMP is operated in accordance with DOE requirements (DOE/EH-0173T). Nonradioactive air emission monitoring studies and line loss studies have been completed and appropriate changes made.

- Query customers to determine level of satisfaction with services provided by the various environmental organizations.

Questionnaires to determine satisfaction with services provided by the environmental organizations have been circulated to each customer and are used to implement needed changes.

- Complete and document the results of implementation of chartered responsibilities to ensure no holes developed as the result of new contractor transition.

Assurance that all contractors are in compliance with appropriate regulations, avoiding duplication, and sharing of technical information is accomplished through the quarterly technical exchange meeting of the EMP representatives. The meeting is chaired by DOE EAP and attended by representatives from PNNL, BHI, and the FDH team.

- Review and update the QAPP to ensure quality of environmental sample data

The OEMP OAPP is reviewed annually and updated as needed.

1
2
3
4
5

This page intentionally left blank.

APPENDIX B

DOE-HQ/EE-24 AUDIT SUMMARY

In May of 1994, the Office of Environmental Audit (EH-24) conducted a routine environmental audit of the Hanford Site. There were no findings directed towards the WHC OEMP under the direction of EES. In fact, there was praise given to EES for their point-by-point justification of rationale for surface water sampling points as part of self-assessment response actions and thorough self-assessment of the OEMP against the DOE Regulatory Guide DOE/EH-0173T. The WHC goals to maintain an exceptionally high quality of formal documentation, both in procedures and QA, was among the best in DOE.

Key Findings

- **Environmental Program Integration.** There is not adequate integration and/or coordination of many environmental management activities among the contractors and DOE-RL.
- **Program Oversight and Control.** There is inadequate oversight and control of the Hanford environmental program by DOE-RL.

The audit team did find several areas that required integration of programs or where duplication of programs were evident. Examples of areas that supported the need for programmatic integration included the following.

- Hanford Site waste minimization required semiannual reporting that was done by WHC. However, each of the contractors maintained pollution prevention awareness programs as well as standalone procedures.
- The groundwater monitoring activities were performed under multiple programs by multiple organizations.
- The groundwater monitoring programs had not fully integrated sampling efforts to identify joint sampling opportunities to reduce costs and to minimize purgewater and to investigative derived wastes.
- There was not a clear and consistent justification of monitoring wells owned and sampled by the separate programs.
- The public and regulators have expressed concern that there is no single entity on the Hanford Site responsible for groundwater issues and strategy.

- 1 • Although the Hanford Training Council was working to develop a comprehensive,
2 integrated training program, many of the environmental training activities remained to be
3 integrated.
- 4
- 5 • DOE-RL and the contractors had not implemented an environmental as low as reasonably
6 achievable program for comprehensive evaluations of activities and facilities.
- 7
- 8 • At least three separate, contractor-developed tracking systems operated on the Hanford
9 Site and DOE-RL managers appeared to borrow from all three, depending on the specific
10 area of oversight.
- 11
- 12 • Poor communications within environmental programs resulted in two examples of
13 potential or perceived redundancy with the sitewide water table measurements by both
14 PNNL and WHC and the completion of separate sitewide groundwater models by PNNL
15 and WHC.
- 16
- 17 • A comprehensive, integrated self-assessment program that involves all levels of
18 organization had not been developed.
- 19

20 The last of the remedial activities were completed by September 1995.

APPENDIX C

DOE-HQ TIGER TEAM ASSESSMENT

In June 1989, the U.S. Secretary of Energy announced a 10-point initiative to conduct independent oversight compliance and management assessments of the ES&H programs at DOE facilities. To implement that plan, a Tiger Team consisting of individuals knowledgeable in ES&H activities was assembled. In anticipation of this event, the DOE-RL Manager initiated a Hanford Site self-assessment in November 1989 to identify current ES&H conditions before the Tiger Team visit. The Hanford Site self-assessment was issued April 20, 1990 (9001817B) and identified three major causes for existing problems; aging facilities, major changes resulting from the consolidation from eight contractors to four, and a history of inadequate discipline in planning analysis and corrective action. The Tiger Team Assessment was conducted from May 21, 1990 to July 18, 1990, and a draft report was issued (DOE/EH-0139).

TIGER TEAM FINDINGS

The primary findings of the Tiger Team assessment were that the Hanford Site was in "a positive improvement slope, but far from achieving ES&H expectations or excellence." The primary reasons were contractor changes, anxiety over jobs, negative public and political comments, a new mission, etc. In summary, "these simultaneous changes have been a substantial challenge for Hanford leadership..." "Adding to management's challenge is an increasingly demoralized work force." Many of these same problems exist today, 7 years later. The assessment identified a total of 105 findings and 266 concerns, none of which warranted a cessation of activities.

Specific Findings

With regard to WHC Environmental Monitoring, a number of findings were called out, many of which required integration efforts with the other prime contractors, PNNL and ICF Kaiser Hanford Company. Examples of those that warranted major attention were as follows:

- A/CF-1 Effluent Stack sampling deficiencies
- A/CF-5 Air emissions from U-Plant
- A/BMPF-2 Absence of an air emissions inventory
- A/BMPF-3 Line losses in sampling systems
- A/BMPF-4 Ambient air monitoring deficiencies
- A/BMPF-8 Releases exceeding WHC internal guidelines
- RAD/CF-1 Deficiencies in the WHC and PNNL radiological monitoring programs
- RAD/CF-4 Hanford dose assessments are not based on current land use data
- SSB/CF-1 Radioactivity contaminated soil control program deficiencies.

1 Examples of other findings that were more easily correctable or only peripherally involved WHC
2 Environmental Monitoring included the following:

- 3 • A/CF-3 Fugitive dust emissions from ash storage areas
- 4 • A/CF-6 Registration of airborne sources
- 5 • A/BMPF-7 HEPA Filter program deficiencies
- 6 • SW/CF-2 Incomplete information of NPDES permit application
- 7 • SW/CF-4 Discharge of sewage to the ground
- 8 • SW/CF-7 Incomplete sampling protocols
- 9 • SW/BMPF-1 Contradictory records retention requirements
- 10 • SW/BMPF-2 Inadequate monitoring of drinking water at point of use
- 11 • SW/BMPF-3 Inadequate review of the NPDES discharge monitoring reports
- 12 • WM/BMPF-1 Outdoor storage of waste equipment with smearable contamination
- 13 • WM/ICF-6 Noncompliance with DOE Order 5820.2A, *Radioactive Low-Level*
14 *Waste Management*
- 15 • QA/CF-4 Deficiencies in the PNNL oversight of the U.S. Testing Contract
- 16 • QA/CF-1 Chain-of-custody procedure not being followed completely
- 17 • QA/CF-2 Deficiencies in the WHC surface water sample collection program
- 18 • RAD/CF-2 Decontamination and decommissioning program deficiencies
- 19 • IWS/CF-1 Incomplete characterization and tracking of inactive waste sites
- 20 • IWS/BMPF-2 Incomplete distribution of annual environmental report.

21 With regard to broader management issues that impacted WHC Environmental Monitoring, these
22 included the following:

- 23 • M-3 Tri-Party Agreement program management
- 24 • M-4 ES&H prioritization and implementation plan
- 25 • M-7 Inefficient use of resources.

1 **RESPONSE**

2
3 With regard to some of the Tiger Team findings, an immediate response was provided when
4 contractor management considered that there was an error in the assessment, an issue had not
5 been adequately reviewed, or the scope and/or the mandate for correction resided solely with
6 DOE. For most of the other findings, response and correction systems were set up to deal with
7 each finding. These included the QUEST (audit monitoring system), certification of corrective
8 action completion, action plan re-assessments (which included budget planning), and progress
9 assessment issued by DOE-HQ in April 1992.

10
11 With regard to WHC Environmental Monitoring, a number of the findings were resolved in
12 revisions to the *Operational Environmental Monitoring Manual* (WHC 1993), which addressed
13 numerous issues related to air monitoring protocols, integration with PNNL, chain-of-custody
14 requirements, sampling and reporting procedures, instrument calibration, etc. A follow-up effort
15 of significance was the issuance of the *Operational Environmental Monitoring Program Self-*
16 *Assessment* (#9357245) issued April 6, 1993. This document identified the compliance status of
17 mandatory requirements promulgated by the *Environmental Regulatory Guide for Radiological*
18 *Effluent Monitoring and Environmental Surveillance* (DOE/EM-0173T) with the existing
19 programs. This self-assessment identified areas where improvements or changes were needed in
20 technical adequacy, best management practices, integration with PNNL staff, interfaces with
21 DOE-RL, and reduction in overlapping aspects of monitoring programs.

22
23 Another effort in response to the Tiger Team findings and self-assessments was the review of the
24 *WHC Operational Environmental Monitoring Program* (#88700-93-JWS) issued
25 October 29, 1993. The principle thrust of this review was to document the technical rationale for
26 specific sample locations as identified in RAD/CF-1. Also, some minor areas of duplication with
27 PNNL were identified and corrected by the close of CY 1993.

28
29 One of the final issues to be closed out was finding A/BMPF-3 concerning line losses in sampling
30 systems. Final action represented closure on all the Tiger Team technical findings that were the
31 responsibility of the WHC Environmental Monitoring Programs.

32
33 **SITE/CONTRACTOR INTEGRATION**

34
35 While the Tiger team findings based on specific technical issues have all been resolved, generic
36 issues that were more convoluted and affected or involved the Hanford Site as a whole have been
37 more difficult to manage. Site/contractor integration is one of these issues. The reasons cited for
38 difficulty in achieving excellence were contractor changes, anxiety over jobs, negative public and
39 political comments, and low worker morale, which are still afflicting the work force today. One
40 of the major difficulties cited in the Tiger Team report was the consolidation of eight contractors
41 to four and the inherit problems associated with that change. Now, in 1997, the Hanford Site
42 again is challenged by contractor changes of a greater magnitude, going from four contractors to
43 as many as 10, plus enterprise companies. As stated in the Tiger Team findings, "Hanford's need
44 45 for monitoring and controlling their environmental program in the future will be essential."

1 A major concern of the Tiger Team was that with the resource constraints (money and
2 manpower), the scope (entire Hanford Site), complexity, and "number of organizational entities
3 involved" (four contractors), there was still no plan to develop an integrated sitewide ES&H Plan.
4 At the time, WHC and PNL accepted the challenge to integrate their programs and reduce
5 overlap with a MOU. With the advent of the ERMC and the numerous contractor represented by
6 the PHMC, the need for an integrated plan is even more essential to ensure that monitoring and
7 surveillance are not fractured into a plethora of small entities. There are a number of specific
8 areas where the more pervasive aspects of integration for ES&H activities are needed and will be
9 even more vital in the near future. These include the following issues identified by the Tiger Team
10 findings.

- 11 • Long-term storage of radioactive and mixed wastes at the tank farms and low-level
12 burial grounds potentially threaten the environment.
- 13 • Radioactive contaminated soil is spreading faster than it is being cleaned up.
- 14 • Clear accountability has not been established for program management.
- 15 • DOE-RL has no strategic management plan.
- 16 • Hanford Site contractors have not conducted regular, critical, self-appraisals of
17 activities.
- 18 • Deficiencies in monitoring and characterizing exposure to toxic chemicals and physical
19 agents.
- 20 • The integration and prioritization of ES&H activities are inadequate.
- 21 • Management's ability to achieve ES&H goals is inhibited by inadequate monitoring
22 assessment and corrective action implementation.
- 23 • There is no sitewide integrated approach to surface decontamination, stabilization and
24 remedial actions.
- 25 • Use of resources is inefficient.
- 26 • The multitude of ES&H goals necessitates an effective prioritization effort, but past
27 monitoring and appraisal efforts have not expected excellence.
- 28 • The lack of an integrated approach by all contractors for laboratory contracts including
29 QA/QC procedures, data compatibility, etc.
- 30 • The impact on the environment from each facility should be minimized.

- 1 • The integrated approach is lacking with regard to biological agents (i.e., vectors of
2 disease).
- 3 • No QA program and inadequate integration of health hazard monitoring.
- 4 • Integration of monitoring for nonradiological hazardous wastes.
- 5 • The Hanford Site does not have an updated, fully-integrated soil contamination control
6 program plan that takes into account programmatic responsibility, initial determination
7 procedures, etc. As a result of not having a comprehensive, integrated procedural
8 system, inconsistent methodologies are occurring in various HP field operations.
- 9 • There are no physical barriers or design features in place at cribs, ponds, or ditches to
10 deter land and/or burrowing animals and birds from entering facility perimeters in order
11 to minimize the spread of contamination or biotransport of radioactively-contaminated
12 material. Evidence that transport of these materials continues to migrate beyond posted
13 areas consists of radioactively-contaminated animal feces, urine, and tumbleweeds,
14 which are removed as discovered.
- 15 • DOE-RL should distribute all contractor's Annual Environmental Reports to all local,
16 state, federal agencies, and Hanford Advisory Board members, as well as to individuals
17 with significant interests in operations and environmental impacts.
- 18 • No single environmental document (whether an environmental impact statement or other
19 publicly available analysis) provides a comprehensive assessment of the environment of
20 the Hanford Site. Nonradiological impacts, including both hazardous and nonhazardous
21 materials, may not have been as comprehensively considered as possible in *National
22 Environmental Policy Act of 1969* documents. Some cumulative impacts (e.g., effects
23 of hazardous materials, beneficial effects from continuing resource protection, and
24 incremental effects of additional waste disposal) may be overlooked, undertreated, or
25 unnecessarily qualitative.
- 26 • A sitewide ES&H Prioritization and Implementation Plan would provide order when
27 considering the magnitude of the Hanford Site mission and the need to integrate the
28 interrelated activities of the five (now 10) organizations involved. Technical support at
29 the Hanford Site comprises a large number of disciplines supplied by an even larger
30 number of organizational elements.
- 31 • The dispersion of roles and responsibilities among the various DOE-RL contractors
32 increases the number of players involved in any one activity, thus inherently increasing
33 the opportunities for error and ultimately reducing efficiency and timeliness.
- 34 • There are a number of areas which would benefit from sitewide solutions to common
35 problems. Currently, each contractor is approaching these problems separately,
36 developing their own procedures and process which may not be consistent. This results

1 in wasteful use of resources in the initial development and possibly the continued need
2 for resources to cross train individuals on the differing systems that may result from the
3 lack of a consistent approach. A sitewide system of establishing priorities against
4 Hanford ES&H objectives would more effectively direct resources.
5

6 Other issues that were not identified by the Tiger Team assessment, which will require continued
7 and improved efforts with regard to Hanford Site integration, include environmental resource
8 protection, issuance and implementation of the biological resources management plan, issuance
9 and implementation and integration of the Hanford Site biological resources mitigation strategic
10 plan and an integrated approach to potential lawsuits brought against the DOE and its contractors
11 with regards to concerns and issues such as those raised by the current 'Downwinders' legal
12 actions.
13

14 In summary, many of these issues currently are, and will continue to be, major concerns. Many of
15 the complex integration issues addressed by the Tiger Team assessment in 1990 remain as
16 challenges in 1997. The increase in the number of contractors will certainly present a continuing
17 challenge. The following summary statement from the Tiger Team assessment document certainly
18 applies to future efforts.
19

20 "The extensive acreage of contaminated soil and the inability to prevent migration of radioactivity
21 to uncontaminated areas will require commitment of extensive resources in the future."
22

23 That statement appears true for many of the issues to be resolved to ensure excellence in the
24 current mission for the Hanford Site.

APPENDIX D

DOE-HQ MARY WALKER SURVEY

The Action Plan is a report of the status of remedial actions taken to correct the 58 findings reported in *Environmental Survey Preliminary Report, Hanford Site, Richland, Washington*, DOE/EH/OEV-05-P, August 1987, which resulted from the Environmental Survey conducted from August 8 through September 5, 1986 by the DOE-HQ. The 58 findings were grouped into one of four categories (from the most serious, Category I, immediate threat to human life, to the least serious, Category IV, administrative noncompliance) and included:

0 - Category I Findings

10 - Category II Findings

25 - Category III Findings

23 - Category IV Findings

23 - Category IV Findings

Remedial actions have been initiated on all 58 findings, with work completed or scheduled in the Tri-Party Agreement (Ecology et al. 1996) on 51 findings and work partially completed on seven findings. Many of the findings are included in the Tri-Party Agreement and remedial actions scheduled and tracked in that document are considered here as being completed. However, none of these findings have been closed officially by DOE-HQ. The status of these findings as described in the draft *Tiger Team Assessment of the Hanford Site*, DOE/EH-0139, July 18, 1990 are included in this document. The Tiger Team phrase "Non Issue" was apparently an expression that the finding was not within the scope of the Assessment rather than an opinion that the finding should be closed.

The 58 findings were tracked on WHC's Quality Environmental Safety Tracking (QUEST) system database.

1
2
3
4
5

This page intentionally left blank.

DISTRIBUTION

	MSIN
<u>U.S. Department of Energy, Richland Operations Office</u>	
S. E. Clarke	A5-15
J. B. Hall	A5-15
P. W. Kruger	A5-54
J. E. Rasmussen	A5-15
D. C. Ward	A5-15
<u>Bechtel Hanford, Inc.</u>	
R. J. Landon	H0-18
J. G. Woolard	H0-17
<u>Fluor Daniel Hanford, Inc.</u>	
W. D. Adair	H6-21
J. A. Bates	H6-36
R. C. Brunke	H6-21
C. C. Chamberlain-Dow	B3-70
C. G. Mattsson	H5-20
S. M. Price	H6-23
W. E. Toebe	H6-22
L. K. Trent	H8-67
B. D. Williamson	B3-15
<u>Pacific Northwest National Laboratory</u>	
R. W. Bryce	K6-91
R. L. Dirkes	K6-75
Hanford Technical Library	K1-11
<u>Rust Federal Services of Hanford Inc.</u>	
W. E. Davis	H6-36
L. P. Diediker (10)	H6-36
D. W. Fritz	H6-36
B. P. Gleckler	H6-36
E. M. Greager	H6-36
J. J. Luke	H6-36
D. E. McKenney	H6-06

Rust Federal Services of Hanford Inc. (cont)

D. L. Mitchell	H6-29
K. M. Quigley	H6-06
D. L. Renberger	T3-04
D. B. VanLeuven	H6-10
R. T. Wilde	H6-10
J. A. Winterhalder	H6-21

Rust Federal Services Northwest

P. K. Brockman	H1-11
J. J. Dorian	H6-30
A. R. Johnson	H6-20
B. M. Markes	H6-20
S. M. McKinney	S3-24
R. M. Mitchell	H6-29
C. J. Perkins	S3-24

Lockheed Martin Services, Inc.

Central Files	A3-88
DPC	H6-08
EDMC	H6-08