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MOERTEL

 Moertel is a Trilinos package that supplies capabilities for 
nonconformal mesh tying and contact formulations in 2 and 3D.

 Mortar methods are a form of Lagrange multiplier constraint useful for 
contact formulations, mesh tying, and domain decomposition 
techniques.

 Moertel uses the meshes on the tentatively-contacting interfaces to 
build the M and D coupling matrices needed to couple nonconformal
interfaces in a mortar FE formulation.

 Moertel is German for "mortar," pronounced "mor-del." The package 
was developed by Michael Gee, now at TUM.
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Mortar method basics



44

Mortar integration space
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Mortar integration space
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Mortar integration space
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Mortar integration space

 Ultimately, M and D matrices are formed that couple the mortar and 
non-mortar (l and k) surfaces to the Lagrange multipliers
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Two motivating applications

 Mesh tying – solution of the heat equation across a nonconformal
interface

 Coupled thermomechanical contact involving a cylinder within an 
annulus filled with a conductive gas (He)
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Heat equation

 Weak form of heat equation

 Let

 and

 then
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Thermal constraints

 Kuhn-Tucker conditions describe the thermal constraints

 The heat flux across the non-conformal interface is expressed as

 Which results in the Lagrange multiplier constraint equation
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Thermal problem

 We seek solutions to the aggregate constrained problem

 Resulting in the thermal problem in matrix form 
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Performance of thermal model

Linear hear conduction in rectangle Error contours
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Thermomechanical problem

 Transient, nonlinear heat conduction

 Linear elastic model, nonlinear material properties  
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Thermal problem

 Weak form of heat equation

 Let

 and

 then
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Thermal constraints

 Kuhn-Tucker conditions describe the thermal constraints

 The heat flux across the gap is expressed as

 where*

 This is simplified to

*Ross and Stoute
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Thermal problem

 Results in the Lagrange multiplier constraint equation

 We seek solutions to the aggregate constrained problem

 Resulting in the thermal contribution to the global solution
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Mechanical problem

 Weak form

 The system gap vector at the LMs can be written as

 Where
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Mechanical constraints

 Kuhn-Tucker conditions describe the mechanical constraints

 The pressure of the gases (He initially) in the gap changes over time

 Compute aggregate plenum volume by integrating the gap over the 
segment areas

 Equation of state gives transient plenum pressure

 Must also regularize Newton’s method

 The overall pressure in the gap is expressed as
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Mechanical problem

 Results in the Lagrange multiplier constraint equation

 We seek solutions to the aggregate constrained problem

 Resulting in the mechanical contribution to the global solution
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JFNK implemented using Trilinos

IFPACK

NOX Stratimikos / Belos

NOX::Epetra::MatrixFreeTrilinos packages in use:

• Moertel – mortar methods package

• Teuchos, Epetra, Seacas

• Ifpack for preconditioning
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Thermal result

Nonlinear heat conduction from pellet Temperature contours
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In closing

 Please email if you're interested in Moertel, encounter issues, or have 
questions:

Glen Hansen

gahanse@sandia.gov
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