Removing Field Objects from Worklet Parameters - Daxtoolkit http://www.daxtoolkit.org/index.php?title=Removing_Field_Ob...

SAND2012- 6714P

Removing Field Objects from Worklet
Parameters

From Daxtoolkit

Currently in the master branch, worklets take "field objects" as parameters. These objects serve as
handles to query fields. However, these objects are currently less important than I originally thought they
would be. For example, they cannot be used to independently pull point field values. It was found to be
more efficient to pull them all en mass, and it was seldom useful to pull only one.

Encouraged by other designers, I have explored the possibility of not using field objects at all. Instead,
values are passed directly to worklets when invoked.

Contents

= | Obvious changes to worklets

= 2 Removing ExecutionAdapter

= 3 Simultaneous use of multiple container types
= 4 Point coordinates (and implicit arrays)

» 5 Changed nature of work objects

= 6 Changed Schedule parameters

= 7 Acknowledgements

Obvious changes to worklets

Obviously, this change requires the prototype of all worklets to change. For example, the Square worklet
changes from

template<class CellType, class FieldType, class ExecutionAdapter>
'DAX_WORKLET void Square(

dax: :exec: :WorkMapField<CellType, ExecutionAdapter> &work,
dax::exec::FieldIn<FieldType, ExecutionAdapter> &inField,
dax::exec::FieldOut<FieldType, ExecutionAdapter> &outField)

FieldType inValue = work.GetFieldValue(inField);

FieldType outValue = inValue * inValue;
work.SetFieldvalue(outField, outVvalue);

1of4 8/1/12 8:32 AM



Removing Field Objects from Worklet Parameters - Daxtoolkit http://www.daxtoolkit.org/index.php?title=Removing_Field_Ob...

template<class FieldType>

'DAX_WORKLET void Square(const FieldType &inValue,
! FieldType &outValue)

{

! outValue = invValue * inValue;

As can be seen, the declaration changes significantly. First, the parameters take far less typing. Second,
the field values do not need to be retrieved by a secondary query. Third, for reasons described later
several template parameters like CellType and ExecutionAdapter no longer need to be declared.

I am lying here a little bit in that this declaration for a worklet is not exactly compatible with the final
version. As described later, worklets have become functors.

Removing ExecutionAdapter

The ExecutionAdapter is a recent addition that was introduced to allow field access to adapt to both a
DeviceAdapter and ArrayContainerControl (both of which may effect how arrays are accessed). Since
all field values are queried before the worklet is called, the worklet itself no longer needs to have a
template parameter that points to how field arrays are accessed.

Apart from array typedefs, the only other facility ExecutionAdapter provided (and the only one I can
currently foresee needing) is a RaiseError method that allows error reporting to be based on the devices
abilities. Although the serial device adapter had a special version that threw an exception, all other
implementations used a universal method of writing to a shared array, which was checked after all
threads finished. It seems easier for everyone to simply use this universal method for all device types
and get rid of the pain of an ExecutionAdapter entirely.

Simultaneous use of multiple container types

One limitation of the ExecutionAdapter that is much more severe than I originally anticipated is that it
constrains all arrays for a given worklet invocation to be the same type. If this were not the case, then
worklet designers would have to necessarily have a separate template parameter for each parameter.

However, because fields and arrays are queried before the worklet is invoked, then this restriction can be
mostly lifted. It is still necessary for "glue" code that invokes the worklet from the control environment,
but this can all be internally written. In the future, the list of template parameters will probably itself be
templates (not unlike the boost tuple metastructure).

Point coordinates (and implicit arrays)

Now that we can use ArrayHandle objects using different types of containers simultaneously, we have
the option of creating special containers for special purposes. In particular, we can create separate
containers with different access patterns or completely implicit arrays.

One simple example of an implicit array is an array of some size with the same value everywhere (say,

20of4 8/1/12 8:32 AM



Removing Field Objects from Worklet Parameters - Daxtoolkit http://www.daxtoolkit.org/index.php?title=Removing_Field_Ob...

5). One way to implement this is to allocate the array and initialize all values to 5. But a much more
efficient method is to create a special ArrayPort that returns 5 for any call to Get.

A much more practical example of an implicit array is that for point coordinates of uniform grids. From
the compact description of a uniform grid's topology, origin, spacing, and extent, any point coordinate is
easily computed. Previously to implement this important implicit array we had a special version of field
objects for point coordinates and special methods to get point coordinates of uniform grids. Now instead
the UniformGrid class has a GetPointCoordinates method that returns an ArrayHandle just like the
UnstructuredGrid class. The difference, however, is that UniformGrid's ArrayHandle has a container that
implicitly generates the point coordinates.

Changed nature of work objects

The previous implementation of work objects spent most of its interface in providing the query functions
for getting and setting field values. It acted as the gatekeeper to the field arrays. However, with field
values queried before the worklet call, none of these are necessary. The only thing really used in the
work objects is the RaiseError method, which holds enough state to find the shared error string.

Since the work objects are so stripped down, I took the opportunity to implement a suggestion given a
few months back of making worklets be actual functors that inherit from the work object. The
advantages of this is that it is easier for templated methods to discover the worklet type and that the
worklets can hold some state that can be propagated to all invocations (for example, the min/max values
in threshold).

Because worklets are inheriting from them, the names of the work objects were changed to worklet (to
support the is-a relationship). There is a WorkletBase class (in the internal namespace), and all actual
worklet types are trivial subsets of WorkletBase.

As alluded to before, because worklets are functors, their declarations change accordingly. So the real
implementation of the Square worklet is

class Square : public dax::exec::WorkletMapField

o

public:

template<class ValueType>

DAX EXEC_EXPORT

void operator() (const ValueType &invValue,
ValueType &outValue) const

{

outValue = inValue * inValue;

Changed Schedule parameters

This idea of holding state within a functor object has lead to another suggested change, which is the
removal of the parameters argument to the DeviceAdapter's Schedule function. This simplifies the

3of4 8/1/12 8:32 AM



Removing Field Objects from Worklet Parameters - Daxtoolkit http://www.daxtoolkit.org/index.php?title=Removing_Field_Ob...

scheduling a bit and discourages the practice of having separate parameters and functor methods.

Acknowledgements

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

r—F Sandia U.S. DEPARTMENT OF

National A EN ERGY

Laboratories &%

Retrieved from "http://www.daxtoolkit.org/index.php
/Removing_Field_Objects_from_Worklet_Parameters"

» This page was last modified on 1 August 2012, at 14:32.

4 of 4 8/1/12 8:32 AM



