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Framework Implementation

Bayesian calibration

Problem Description (within the . . . .
context of a validation hierarchy): 1) Sample vectors DS, DY", DS", DY" of
» Determine where and how much Simulated Annealing lengths n.q,n,1, Ngy, Ny, respectively

EalaNiopes | EEhineRR il Design variables: 2) Perform three calibrations

boxes (or nodes) in the hierarchy N.y, Ngy , Nyg, Ny,
Integrated Effects Integrated Effects
Tests Tests Tests

to characterize the uncertainty in
Seperate Effects Seperate Effects |
Tests Tests Tests

the parameters needed for
Characterization Characterization Characterization Characterization
Tests Tests Tests Tests Model Reliability Distributions Sample Prediction Distributions ‘

Pr(Y;|0) 7(0)
[Pr(Yp|0) m(0)de

m(0]Yp) =

Available data
(decreases up the hierarchy)

No experimental data available at
the system level

Experimental and interpretational complexity
(increases up the hierarchy)

system-level prediction

. | i | Incorporate validation
o Family of Prediction CDFs

» After calibration, perform validation
» Calculate P(G,) and P(G,)

Problem Statement -t .

» Propagate through H
f@|Df,D;,D,Dy)=P(G)P(G,) [ (0| Df,D5)
+P(G)P(G,) f(0]Dy)

Dy D D¢, Diand Y, = 10X + 2X% + 0.5X3 il e +P(G)P(G))/ (O] Df)
DS§, Dy and Y, = 10X + 2X? + X3 P(G)P(G)) f(0)
DE Y Z = 10X + 2X* + 2X3

System
Prediction

Calibration Objective vs. Total Calibration Objective vs. Total
Calibration Points Validation Points
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* Given two “nodes” in the validation hierarchy and a system level model,
* Predict the optimal number of calibration and validation experiments that will simultaneously:

— Minimize prediction uncertainty by parameter uncertainty reduction (calibration) and
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— allowing conservatism for epistemic uncertainties from models and data (validation)
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Validation Objective vs. Total Validation Objective vs. Total
Calibration Points Validation Points

Optimal Test Selection Fram e
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Combined Objective Function Value

Discrete optimization ’ o

(simulated annealing)

* Select an initial iterate for the decision variables and take
random walks

* Accept all new iterates with smaller objective function values
and accept larger objective function values with probability

according to 5
Af d 1 ,-“ A :, / v‘.‘.?; - A ‘ ;; i i l-P | N[ Te o ‘
P = exp(_ ?) ° . k ) 5 : ] ": b | _. » )
validation are balanced

Reduce temperature (T) at each iteration such that the
probability of accepting worse iterates decreases
k\“ Af: Change in obj. function
T= Tn 1- E

Ty: Initial temperature

k: Current iteration no.

K: Total no. of iterations
a: Rate of temp. decrease

Conclusions and Path Forwar

Probabilistic validation
(model reliability metric for sparse data) Bayesian calibration
* C(Calibrated models may be overconfident .
o | (parameter uncertainty
* Perform validation to assess model performance outside . . .
domain including data uncertainty)

Use probabilistic validation to incorporate the result into
predictions

e This framework enables a decision maker to:
— understand the trade-offs between the number of experiments at different levels of a hierarchy and

Difference between prediction and observation described by — the effect on uncertamty in the DFEdICUOnS Space

measurement error (may also include model discrepancy)

P(G) = P(IY,n,(X,0) — Yp(X)| < &) (Model reliability) : : . : .
ity Al > ot s * High level observations are made relative to this example:
moael parameters

P(G): Model reliability e . 1 ] . . . ) .. .
Update distribution of & with data ¥y 2 model output — Additional calibration data points reduce uncertainty in the prediction by reducing parameter

&: Chosen tolerance £, > Measurement noise

_ _Pr(¥ple)n(6) Vip 7 TR uncertaint
m(8|Yp) = [ Pr(Yp|@)m(8)de y

Additional observations tend to reduce parameter — Additional validation points reduce the epistemic uncertainty about the prediction arising from inability
g Aty to assess the model with sparse data

e Path forward:

4 L 4 L 2 ¢
0 bj eCtlve Fu n Ctlo n Fo rm u Ia — Connect experimental decision making with model improvement decisions

— Connect framework to system-level risk decision making

Calibration Validation e How much UQ is enough (budget selection)?
min E (E [VCI,T' (Z)]) min E (Var [E (Z)])  What is the appropriate validation tolerance?

nq1,No,N3,MNy . nq,Np,N3,My
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