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First...

A little background about Sandia National Labs
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~ w1 Sandia National Laboratories: a mission-driven,

multi-program laboratory

~8400 employees
>11,000 people
~ 1500 Ph.D. staff
~$2.4B budget

Albuquerque,
New Mexico

California

o S

Yucca Mountain, W|PP Kauai Test Facility, Pantex, Tonopah Test Range,
Nevada New Mexico Hawaii Texas Nevada

Vision: Sandia is the provider of innovative, science-based, systems-engineering
solutions to our Nation’s most challenging national security problems.
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Sandia is a key U.S. government research

and development laboratory

- Core Purpose: Help our
nation secure a peaceful
and free world through
technology

- Corporate mission

statement: Exceptional
service in the national
interest

- Key mission areas:
* Nuclear Weapons

Defense Systems

* Energy

Nonproliferation

Homeland Security
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http://sciencewatch.com/sciencewatch/ana/fea/
http://sciencewatch.com/sciencewatch/ana/fea/

Back to the exascale problem...

Science and engineering are the real drivers.
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advances in basic science

High Energy & Nuclear Physics
- Dark-energy and dark matter

- Fundamentals of fission fusion
reactions

Facility and experimental design
- Effective design of accelerators
- Probes of dark energy and dark matter
- ITER shot planning and device control

Materials / Chemistry

- Predictive multi-scale materials
modeling: observation to control

- Effective, commercial technologies in
renewable energy, catalysts, batteries
and combustion

Life Sciences
- Better biofuels
- Sequence to structure to function

These breakthrough scientific discoveries
and facilities require exascale applications
and resources.
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Hubble image
of lensing

Scientific Grand Challenges

FOREFRONT QUESTIONS IN NUCLEAR SCIENCE AND
THE ROLE OF COMPUTING AT THE EXTREME SCALE

January 26-28, 2009 + Washington, D.C.

Exascale simulation will enable fundamental

Structure of
nucleons

Thermonuclear SM
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Exascale computing and beyond is required to simulate complex

Energy: Reduce U.S. reliance on foreign
energy, reduce carbon footprint

Climate change: Understand, mitigate, and

adapt to the effects of global warming

National Nuclear Security: Maintain a safe,
secure, and reliable nuclear stockpile

phenomena that characterize the DOE mission space

Robert L. Clay, CMU-2014

Leadership-class HPC compute capabilities are
required for DOE policy and decision making

Sandia
National
Laboratories



w .
" Exascale computing presents
serious technical challenges

How am |
going to scale
my codes to
exascale?
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Key Technical Challenges

 DOE’s Exascale Initiative Steering Committee and
DARPA identified technology gaps that need to be
addressed to reach Exascale later this decade

- Power, memory and storage, parallelism and locality, resilience,
scalability, programming models

« Co-development (or co-design) of hardware, system
software and applications is a key element of our
strategy

- Codes will need to adapt to manage billion-way parallelism, data
locality, resilience and perhaps energy
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What is HPC Resilience?

* We define resilient HPC as correct and efficient
computations at scale despite system
degradations and failures.

* Resilience Is a cross cutting issue:
<~Hardware
<+Operating System
+~System Management
<~Runtime (Execution Model)
<Application / Algorithms
<~Multi-layer (any/all combinations of the above)
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Why does resilience matter?

« “Without research into new fault management techniques and
the development of supporting resilience technologies, DOE’s
mission critical applications may not be able to run to
completion, or worse, will complete but get the wrong result due
to undetected errors”. — US DOE Fault Management Workshop
Final Report, August 13, 2012.

* “One of the main roadblocks to exascale is the likelihood of
much higher error rates, resulting in systems that fail frequently
and make little progress in computations or in systems that may
return erroneous results. Although such systems might achieve
high nominal performance, they would be useless”. —
Addressing Failures in Exascale Computing, ANL-MCS-TM-332,
March 31, 2013.
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Computers are Reliable Digital Machines,
Aren’t They?

Checkpoint trend isn’t good

Percent of Execufion for Checkpoints (Traditional FS) .Z. T—
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Qldfield et al., Modeling the Impact of Checkpoints on Next-Generation
Systems. MSST, 2007

Machine utilization is going to zero! (Not really) ‘

Outlook has improved (e.g.,
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MTTI is shrinking as # cores grows

Failure at LANL: 140,000 Interrupt Events on 21
Platforms Show Remarkably Similar Trends

Application MTTI for Averages Across Platforms (2006)
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on-node NVM, improved CP/R),

but still not reasonable to assume the systems will be

reliable and static.
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LET’S REVIEW KEY ASSUMPTIONS

Are future computers similar to today’'s?
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Some Current HPC Assumptions

AT ATA

Will fail, s
and so will other HW

Nodes Persist for duration of job

Can build Too expensive /
Hardware g : : )
sufficiently reliable impractical
ANACDh DD /MDIN * '-%

1 We need to rethink the problem, |
and the solution!

Capability fundamentally
different than capacity

Machines Capability = capacity?

R
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So, what are we going to do about it?

* First, analysis to understand the problem (and co-
design).
- SST/Macro performance simulator (Wilke et al)
» Scalable defensive programming (LFLR).
Le : . i

 Ref Scalable fault tolerant n.
Al Computlng |s the goal
 Pmodels AMT FT programming model (Slattengren
et al)
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Analysis of HPC System Performance

Scalability and resilience studies with SST/macro
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Programming model exploration for
resilience with simulation
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Systolic matrix-matrix multiplication involves “synchronous”
migration of matrix blocks.
Start with MPI.

Actual MPI code

for (int iter=@; iter < niter; ++iter){

/** Prefetch next iteration */

MPI_Isend(left_block, nelems_left_block, MPI_DOUBLE,
row_send_partner, row_tag, MPI_COMM_WORLD, &regs[@]);

MPI_Isend(right_block, nelems_right_block, MPI_DOUBLE,
col_send_partner, col_tag, MPI_COMM_WORLD, &reqs[1]);

MPI_Trecv(next_left_block, nelems_left_block, MPI_DOUBLE,
row_recv_partner, row_tag, MPI_COMM_WORLD, &reqs[Z2]);

MPI_Irecv(next_right_block, nelems_right_block, MPI_DOUBLE,
col_recv_partner, col_tag, MPI_COMM_WORLD, &regs[3]);

DGEMM('T", 'T', nrows, ncols, nlink, 1.9, left_block, nrows,
hght_block, ncols, @, product_block, nrows);

With a few linker tricks, you get direct compilation of source code. No DSL! Qjply.
one source to maintain!

220

Simulator code

for (int iter=@; iter < niter; ++iter){

/*¥% Prefetch next iteration */

MPI_Isend(left_block, nelems_left_block, MPI_DOUBLE,
row_send_partner, row_tag, MPI_COMM_WORLD, &reqs[@]);

MPI_Isend(right_block, nelems_right_block, MPI_DOUBLE,
col_send_partner, col_tag, MPI_COMM_WORLD, &reqs[1]);

MPI_Irecv(next_left_block, nelems_left_block, MPI_DOUBLE,
row_recv_partner, row_tag, MPI_COMM_WORLD, &reqs[2]);

MPI_Irecv(next_right_block, nelems_right_block, MPI_DOUBLE,
col_recv_partner, col_tag, MPI_COMM_WORLD, &reqs[3]);

DGEMM(C'T", 'T", nrows, ncols, nlink, 1.8, left_block, nrows,
}“ight_block, ncols, @, product_block, nrows);
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- Programming model exploration for
resilience : simulator results

Synchronous MPI
data exchange

-lMemor¥
= Compute
MPI

Fixed-time quanta (FTQ) shows where
app is spending time. Here MPI
“stutters” during synchronous exchange

If all nodes the same
speed...
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Programming model exploration:

Sandia asynchronous, task-DAG model
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work stealing needs to
be
optimized
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speed... o

Data movement service
is constant overhead —

single thread dedicated
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Asynchronous many-task programming

models are fault tolerant!

Actor Model Matrix Multiplication
(asynchronous, many task)

Parallel Efficiency Comparison

« Simulation permits

straightforward investigation of R //.’r/"/'/.

alternative programming models N //-/
« Work-stealing approaches will o€ e -
play a role in dealing with large- 0. . .
scale machines lacking perfect o2l o Systatio Atgorithm
— Perfect Load Balancing

homogeneity

1 10 100 1000
Number of Nodes

* Research Questions:
- Is MPI+X (global checkpoint/restart) enough?
- If not, what programming models can reach what scales?
- If no programming model can reach scales of interest for a given application
without algorithmic changes, how might algorithms be adapted?
- Co-design of architecture tradeoffs between memory, 1/0O, power, and application
performance
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SST Experiment: Actor Load Balancing

Legend
Black - iniitializing
Green — working a 5
— prefetching P \
Red - |d|e y . ra(ksu\i}\\ \ = racks[i\w\
Purple — work stealing ) -y [ = \
| \\ /// —— N o
\ oy
i = [\ \ P e R
T S .
Asynchronous, task- L = . |
based programming = \ e g -
- : = <
model with work stealing | N =
balances load under = N\ =
dynamic conditions, = =, L
including faults and = = J
degradaton. | L '*
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SST Network Traffic Visualization with VTK
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Scalable Defensive Programming

Local Fail, Local Restart — Proportionate
Response To Local Failure

Robert L. Clay, CMU-2014
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Global Checkpoint/Restart: Disproportional
Response to Local Failures

« Single node failures account for the major HPC system
failures
= 85% on LLNL clusters (Moody et al. 2010)
- ~2/3 on Titan (ORNL)

 Short MTBFs due to the increase of error-prone
components
- Titan crashes twice a day
- Will it get worse?

» Current
disprop| We seek a Local Failure Local Recovery
.- Kill alll (LFLR) resilient programming model to
. Recovd allow proportional response to single
node/process failure.

= Depeng

Sandia
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= LFLR Programming Model

Checkpoint Restart

PO Ru Kill Restart

n Run
P1 Run Kill Restart Run
Run

P2 Restart
Notify Error to
~| everybody
W_ Kill Restart
Our Approach

"
s
- e

A

VAT
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il LFLR Architecture

PDE Solver Application Program

¥

p
Scientific Data «  Provides API for writing resilient application with ease }

Base class for
Application data

Buddy/Parity  Persistent Storage for Application State and data

Spare Process
management

runs through node loss |* Continue program execution with a presence of process failure

- TS ndia
2 0 _
Robert L. Clay, CMU-2014 d (7) glonal )
oratories

P
MPI-ULFM (UTK) « Detect and notify process failure(s) J




LFLR Scalable Recovery

* In-memory checkpoint (persistent-
store)
= Buddy system
- Duplication of each piece
= Dedicated Parity

- Spare processes keep the parity of
distributed data

« The data structure is bind to its
primary source (application state)

= Temporary data structure (matrix) is
never stored in the storage

- Created on the fly
= Reduce the persistent storage size
by 90% (or more)
* Performance

= Fast in in memory persistent data
store

= Good scalability

Robert L. Clay, CMU-2014
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MiniFE (Weak scaling from 40x40x40 for 4PEs)
Dedicated Parity
Failure is Emulated
Group Size =128 cores
Single Linear system Solve: 6 sec or more
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Reformulating the Problem

“Robust Stencils” — Handling SDC for PDEs
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Error-Correcting Algorithms Can Mitigate
Silent Errors & Offer New Co-design Options

 Even at commodity scale, ECC memory & ECC processors show

the rising need for error correction
¢ ECC memory

« With increasing scale and with power limitations, errors can occur
“silently” without indication that something is wrong

 Numerical algorithms already deal with error from truncation, etc.;
specially designed algorithms can mitigate silent bit flips as well

Error Stable Correction

k |

Interpolation
X2 1| X |x+1|x+2|—= x-2 X o |x+1|x+2 X2 x-1] X |x4+1|x+2—| x-2 | x-1]| X [x+1|x+2

n . . . ]
r" * .'d u .r' * ."
. - . . ET w . ;- ' . . A"
| | |

 These robust stencil algorithms not only address scale-up of
current silent-error rates, but may enable new “lossy” architecture
options with more power-efficient accelerators or reduced latency
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Robust stencils can discard outliers
to mitigate bit flips in PDE solving

« A simple 1D advection
equation dulot = dulox
illustrates the behavior
of finite-difference
schemes

 The robust stencil here
computes a second-order u
at position i from
one of these subsets after
discarding the most
extreme value:

- {i-3, i-1, i+1,
{0 Q-2 i j+2
- i=1, i, i+1

Robert L. Clay, CMU-2014

Average glitches
per time step

0.1

Lax—Wendroff

Lax—Wendroff )
) ) ) Robust stencil
with viscosity
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Simple demo in
Mathematica
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Bit-flip Injection at Machine Level Confirms
Effectiveness of Our Robust Stencil

Focus on silent-error models affecting floating-point

= Relaxing FP correctness may benefit designs (e.g., GPUs)

bit flips in the FP solution array
= Can also be a proxy for processor bit flips that corrupt FP ops

Relative memory use

3
| I
I

Standard Robust

—

Relative runtime

E].-II

Standard Robust

mmhmm

Robert L. Clay, CMU-2014

1.000 :
0.500 !

o o

© o

90%ile RMS deviation
from exact solution

0.001 |

100 :
050 :

o O
[ Q=N
a1 O

Compare brute-force triple modular redundancy (TMR)

Standard Robust

Acceptable (3x intrinsic discretization error)

10710 10 10® 1077 107°
Error probability per bit per standard time step

Test: During C++ PDE simulation, asynchronously perform raw memory

Here, the robust
stencil provides
substantial bit-flip
folerance at lower
cost than TMR
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Preliminary Weak-Scaling Experiments
Show Favorable Trends for Robust Stencil

« As aresearch tool for ongoing use, we have implemented a
modular C++/MPI framework for explicit Cartesian PDE solvers

- Captures “halo exchange” pattern in generic form
« Preliminary results from many short runs, 10° grid cells per core

28 10-5,

3.0 ¢ x * . :EE i | . . .
= ”s Robust g 2 - Robust
= . &5 101 |~5000x  ncreasing
220 ~3x runtime S & - S 6
= Eg 9 resilience ~10°x
© < 10
= 15 o8 advantage
a 1 D \\4 - . ﬂ}ﬁ
- ~ '—-—'_'_-_-_-' = - m = _

B Standard E 2 10~ | o .
205 Manageable overhead £3 | Standard
1 5 10 50 100 5001000 =< 1 5 10 50 100 5001000
Cores Cores

* Further questions:
- How does resilience scale with longer runs and more realistic PDEs?
- How realistic is our way of emulating memory bit flips?
- What happens if bit flips also occur in message communication?

Robert L. Clay, CMU-2014
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Rethinking the Programming Model

Asynchronous, Many-Task Provide Scalability
and Fault Tolerance

Robert L. Clay, CMU-2014
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Can asynchronous, many-task programming models
facilitate scalable resilience on extreme-scale
systems?

* Our approach:

= Dynamically scheduled, asynchronous tasks: maximize use of resources by
load balancing and redistributing work from failed nodes

= Locality and minimal data movement: move work to data; multithreaded,
NUMA-aware scheduling on each node in distributed environment

= Automatic data repair: silent data corruption is detected and repaired using triple
modular redundancy or 2D checksums

= Automatic task recovery: transaction-like semantics allow task replay after data
is corrected

AMT programming models enable marching toward

Example the correct solution in the face of both soft and
Dot proc hard faults without checkpoint/restart. R
over-dec

and B to produce result R ' -
A: ChunkN
- DPTaskN ey
B: ChunkN

Robert L. Clay, CMU-2014 N gthreads  {§z)
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Demonstrated resilience to silent data corruption in

our on-node, task-based conjugate gradient solver
driven by miniFE proxy app

» Automatically detected/corrected multi-bit silent data corruption in user
data structures using triple-modular redundancy for scalars and 2D
checksums for vectors and matrices (application/algorithm agnostic)

Strong Scalability of CG Solve ) . )
1000 = Technique applied selectively by

self-stabilizing CG algorithm in
order to lower protection cost

100

= 0.8% memory overhead on
protected data structures

Walltime (seconds)

-
o

= 20% increase in runtime due
=+=NUMA-aware OpenMP to checksum validation on
e@i=Non-resilient FTPM . .
—e=Resilient FTPM every 20 iteration

1 1 1 1 1
1 2 4 8 16 32
Threads

Benchmarks from SGI Altix UV 10 with four 8-core Nehalem EX and 512 GB globally-shared memory

Sandia
ﬂ'l National

Laboratories

Robert L. Clay, CMU-2014




——
Task collections are a good first step towards
resilient task-based distributed programming

 Recent work in this area:

= Dinan, J., A. Singri, et al. (2010). Selective Recovery from Failures in
a Task Parallel Programming Model. 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing (CCGrid): 709-
714,

= Ma, W. and S. Krishnamoorthy (2012). Data-Driven Fault Tolerance
for Work Stealing Computations. 26th ACM international conference
on Supercomputing. San Servolo Island, Venice, Italy, ACM: 79-90.

- Key advantages over other techniques:
= Maintenance of coherent state at frequency less than MTBF
= Relatively simple book-keeping

) i
- ationa
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b
Task collections are a good first step towards
resilient task-based distributed programming

* Asingle collection executes at a time
* Tasks are independent and distributed across nodes
* A global address space is assumed
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Task collections are a good first step towards
resilient task-based distributed programming

* Within a collection nodes execute tasks asynchronously
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Task collections are a good first step towards
resilient task-based distributed programming

Q000000 - -

_—

0000000

 Work stealing enables tolerance to variations in the
execution environment

Robert L. Clay, CMU-2014
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Task collections are a good first step towards

resilient task-based distributed programming

 Work stealing enables tolerance to variations in the
execution environment

Robert L. Clay, CMU-2014
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Task collections are a good first step towards
resilient task-based distributed programming

 Recovery is possible when a node goes down
 Asimple lazy scheme ignores faults until task collection
has terminated
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Task collections are a good first step towards

resilient task-based distributed programming

 Recovery is possible when a node goes down
 Asimple lazy scheme ignores faults until task collection
has terminated
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resilient task-based distributed programming

 Recovery is possible when a node goes down
 Asimple lazy scheme ignores faults until task collection
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Task collections are a good first step towards

resilient task-based distributed programming

Global reduction: Highlighted tasks incomplete

e —
O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
= e —
111111100011101111111
= - -

* Aglobal reduction is used to identify incomplete tasks
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Task collections are a good first step towards
resilient task-based distributed programming

 The incomplete tasks are re-distributed to active nodes
* Execution continues until all tasks have finished

Robert L. Clay, CMU-2014
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Task collections are a good first step towards
resilient task-based distributed programming

 The incomplete tasks are re-distributed to active nodes
* Execution continues until all tasks have finished
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Task collections are a good first step towards

resilient task-based distributed programming

Global reduction: All tasks complete

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 The incomplete tasks are re-distributed to active nodes
* Execution continues until all tasks have finished
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L We are extending task collections to support
multiple collections operating concurrently

* Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
* Increase task parallelism while maintaining critical path
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T O000

* Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
* Increase task parallelism while maintaining critical path

Sal .[['a
Robert L. Clay, CMU-2014 @ (M) e




S We are extending task collections to support
multiple collections operating concurrently

T O000

* Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
* Increase task parallelism while maintaining critical path

Sal .[['a
Robert L. Clay, CMU-2014 @ (M) e




S We are extending task collections to support
multiple collections operating concurrently

* Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
* Increase task parallelism while maintaining critical path

Sal .[['a
Robert L. Clay, CMU-2014 @ (M) e




S We are extending task collections to support
multiple collections operating concurrently

* Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
* Increase task parallelism while maintaining critical path

Robert L. Clay, CMU-2014




S We are extending task collections to support
multiple collections operating concurrently

T OO0

* Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
* Increase task parallelism while maintaining critical path

Robert L. Clay, CMU-2014




S We are extending task collections to support
multiple collections operating concurrently

T OO0

* Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
* Increase task parallelism while maintaining critical path

Robert L. Clay, CMU-2014




S We are extending task collections to support
multiple collections operating concurrently

T OO0

* Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
* Increase task parallelism while maintaining critical path

Robert L. Clay, CMU-2014




S We are extending task collections to support
multiple collections operating concurrently

* Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
* Increase task parallelism while maintaining critical path

Robert L. Clay, CMU-2014




S We are extending task collections to support
multiple collections operating concurrently

— 000

* Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
* Increase task parallelism while maintaining critical path

Robert L. Clay, CMU-2014




S We are extending task collections to support
multiple collections operating concurrently

* Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
* Increase task parallelism while maintaining critical path

Robert L. Clay, CMU-2014




o idiare extending task collections to support

multiple collections operating concurrently

0000000
o o000

0O00000D0D0OOO
00O

* Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)

* Increase task parallelism while maintaining critical path

Robert L. Clay, CMU-2014




o idiare extending task collections to support

multiple collections operating concurrently

0000000

Q0000000000
T OO00O

* Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)

* Increase task parallelism while maintaining critical path

Robert L. Clay, CMU-2014




o idiare extending task collections to support

multiple collections operating concurrently

000

* Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)

* Increase task parallelism while maintaining critical path

Robert L. Clay, CMU-2014




o idiare extending task collections to support

multiple collections operating concurrently

T O00

* Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)

* Increase task parallelism while maintaining critical path

Robert L. Clay, CMU-2014




o idiare extending task collections to support

multiple collections operating concurrently

T OO0

* Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)

* Increase task parallelism while maintaining critical path

Robert L. Clay, CMU-2014




o idiare extending task collections to support

multiple collections operating concurrently

* Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)

* Increase task parallelism while maintaining critical path

Robert L. Clay, CMU-2014




We are extending task collections to support
multiple collections operating concurrently

Global reduction: Critical path tasks complete

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

* Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
* Increase task parallelism while maintaining critical path

Sandia
!11 National
Laboratories

Robert L. Clay, CMU-2014




o idiare extending task collections to support

multiple collections operating concurrently

* Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)

* Increase task parallelism while maintaining critical path

Robert L. Clay, CMU-2014




o idiare extending task collections to support

multiple collections operating concurrently

O0O000O0OO
O ¢ )(d\

* Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)

* Increase task parallelism while maintaining critical path

Robert L. Clay, CMU-2014




oo extending task collections to support

multiple collections operating concurrently

* Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)

* Increase task parallelism while maintaining critical path

Robert L. Clay, CMU-2014




o idiare extending task collections to support

multiple collections operating concurrently

00000

T QOO

* Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)

* Increase task parallelism while maintaining critical path

Robert L. Clay, CMU-2014




o idiare extending task collections to support

multiple collections operating concurrently

0000000
00

0000000000
00000

* Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)

* Increase task parallelism while maintaining critical path

Robert L. Clay, CMU-2014




o idiare extending task collections to support

multiple collections operating concurrently

OO0 DDOO0OO
QO

Q00000 O0OO0OODO
COOOO

* Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)

* Increase task parallelism while maintaining critical path

Robert L. Clay, CMU-2014




&We are extending task collections to support

multiple collections operating concurrently
M M M\ M M MAN M\

Global reduction: Auxiliary tasks complete

= o
= =
= N
= w
= I
= U
= (o))
= ~
= 00
= Vo)

* Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
* Increase task parallelism while maintaining critical path

Sandia
National
Laboratories

Robert L. Clay, CMU-2014



sur goal: Discover the right approach for extreme-
scale, fault-resilient computing

Exascale systems are expected to experience errors/faults much
more frequently than petascale systems

On future systems we need to
develop methods for:

= Reducing mean time to error
= Fault detection & recovery
= Fault-oblivious algorithms

Existing programming models are Asynchronous many-task (AMT)
inherently not fault-resilient programming models can be fault-resilient
Single Program Multiple Data (SPMD), implicitly Asynchronous execution and redundancy
synchronous algorithms cannot recover from minimize the impact of node degradation/failure
failure nor adapt well to node degradation and benefit scalability even without failure
Global check-points no longer feasible Synergistic with local check-pointing
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-
Sandia has an active hiring

program in computational R&D

« Student Internships
- Undergraduate and graduate
= Typically summers, but not exclusively

 Hire at all levels
- BS, MS, PhD
- CS and Engineering concentrations
= Full time, Limited term, Postdocs

* In addition to scalable computing, we are very active
in cyber security.
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Thank You

Robert L. Clay
riclay@sandia.gov
+1 (209) 610-2929
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