
Robert L. Clay, CMU-2014

Fault-Tolerant Computing at Exascale
– A Quiet Revolution in Progress –

Robert L. Clay, Ph.D.
Manager, Scalable Modeling and Analysis Systems

Sandia National Laboratories

CMU Seminar
Feb 19, 2014

Pittsburgh, PA

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security

Administration under contract DE-AC04-94AL85000.

SAND2014-1287P

Robert L. Clay, CMU-2014

First…

A little background about Sandia National Labs

Robert L. Clay, CMU-2014

Sandia National Laboratories: a mission-driven,
multi-program laboratory

VisionVision: Sandia is the provider of innovative, science: Sandia is the provider of innovative, science--based, systemsbased, systems--engineering engineering

solutions to our Nation’s most challenging national security problems. solutions to our Nation’s most challenging national security problems.

Albuquerque,
New Mexico

Livermore,
California

Tonopah Test Range,
Nevada

Kauai Test Facility,
Hawaii

WIPP,
New Mexico

Yucca Mountain,
Nevada

Pantex,
Texas

~8400 employees
>11,000 people
~ 1500 Ph.D. staff
~$2.4B budget

NM
CA

Robert L. Clay, CMU-2014

Sandia is a key U.S. government research
and development laboratory

 Core Purpose: Help our

nation secure a peaceful
and free world through
technology

 Corporate mission
statement: Exceptional

service in the national
interest

 Key mission areas:
• Nuclear Weapons
• Defense Systems
• Energy
• Nonproliferation
• Homeland Security

Robert L. Clay, CMU-2014

Science-Based Engineering

Research Foundations

Computer
Science

Engineering
Science

Micro
Electronics Bio

Strategic Capabilities

High-Performance Computing Microsystems Nanotechnology Extreme Environments

Materials Pulsed Power

http://sciencewatch.com/sciencewatch/ana/fea/
http://sciencewatch.com/sciencewatch/ana/fea/

Robert L. Clay, CMU-2014

Back to the exascale problem…

Science and engineering are the real drivers.

Robert L. Clay, CMU-2014

Exascale simulation will enable fundamental
advances in basic science

• High Energy & Nuclear Physics

• Dark-energy and dark matter

• Fundamentals of fission fusion
reactions

• Facility and experimental design

• Effective design of accelerators

• Probes of dark energy and dark matter

• ITER shot planning and device control

• Materials / Chemistry

• Predictive multi-scale materials
modeling: observation to control

• Effective, commercial technologies in
renewable energy, catalysts, batteries
and combustion

• Life Sciences

• Better biofuels

• Sequence to structure to function

ITER

ILC

Hubble image
of lensing

Structure of
nucleons

These breakthrough scientific discoveries
and facilities require exascale applications
and resources.

Robert L. Clay, CMU-2014

Leadership-class HPC compute capabilities are
required for DOE policy and decision making

Energy: Reduce U.S. reliance on foreign
energy, reduce carbon footprint

Climate change: Understand, mitigate, and
adapt to the effects of global warming

National Nuclear Security: Maintain a safe,
secure, and reliable nuclear stockpile

Exascale computing and beyond is required to simulate complex
phenomena that characterize the DOE mission space

Robert L. Clay, CMU-2014

Exascale computing presents
serious technical challenges

How am I
going to scale
my codes to
exascale?

Robert L. Clay, CMU-2014

Key Technical Challenges

• DOE’s Exascale Initiative Steering Committee and
DARPA identified technology gaps that need to be
addressed to reach Exascale later this decade
 Power, memory and storage, parallelism and locality, resilience,

scalability, programming models

• Co-development (or co-design) of hardware, system
software and applications is a key element of our
strategy
 Codes will need to adapt to manage billion-way parallelism, data

locality, resilience and perhaps energy

Robert L. Clay, CMU-2014

What is HPC Resilience?

• We define resilient HPC as correct and efficient
computations at scale despite system
degradations and failures.

• Resilience is a cross cutting issue:

Hardware

Operating System

System Management

Runtime (Execution Model)

Application / Algorithms

Multi-layer (any/all combinations of the above)

Robert L. Clay, CMU-2014

Why does resilience matter?

• “Without research into new fault management techniques and
the development of supporting resilience technologies, DOE’s
mission critical applications may not be able to run to
completion, or worse, will complete but get the wrong result due
to undetected errors”. — US DOE Fault Management Workshop
Final Report, August 13, 2012.

• “One of the main roadblocks to exascale is the likelihood of
much higher error rates, resulting in systems that fail frequently
and make little progress in computations or in systems that may
return erroneous results. Although such systems might achieve
high nominal performance, they would be useless”. —
Addressing Failures in Exascale Computing, ANL-MCS-TM-332,
March 31, 2013.

Robert L. Clay, CMU-2014

Computers are Reliable Digital Machines,
Aren’t They?

Outlook has improved (e.g., on-node NVM, improved CP/R),
but still not reasonable to assume the systems will be
reliable and static.

Robert L. Clay, CMU-2014

LET’S REVIEW KEY ASSUMPTIONS

Are future computers similar to today’s?

Robert L. Clay, CMU-2014

Some Current HPC Assumptions

Current New

Nodes Persist for duration of job
Will fail,
and so will other HW

Hardware
Can build
sufficiently reliable

Too expensive /
impractical

Program
Model

CSP BSP (MPI)
computing model will
scale

Will not scale far
enough

Machines
Capability fundamentally
different than capacity

Capability = capacity?

We need to rethink the problem,
and the solution!

Robert L. Clay, CMU-2014

So, what are we going to do about it?

• First, analysis to understand the problem (and co-
design).

 SST/Macro performance simulator (Wilke et al)

• Scalable defensive programming (LFLR).

 Local fail, local restart (Heroux and Teranishi)

• Reformulations to handle silent data corruption.

 Robust [PDE] stencils (Mayo et al)

• Alternative, fault-tolerant programming models.

 Pmodels AMT FT programming model (Slattengren
et al)

Scalable, fault-tolerant
computing is the goal.

Robert L. Clay, CMU-2014

Analysis of HPC System Performance

Scalability and resilience studies with SST/macro

Robert L. Clay, CMU-2014

Programming model exploration for
resilience with simulation

Systolic matrix-matrix multiplication involves “synchronous”
migration of matrix blocks.

Start with MPI.

Actual MPI code
Simulator code

With a few linker tricks, you get direct compilation of source code. No DSL! Only
one source to maintain!

Robert L. Clay, CMU-2014

0 500
1000

1500

2000

2500

3000

3500

4000

4500

%
o
f
t
o
t
a
l

Time(ms)

Application Activity Over Time

MPI
Compute
Memory

Programming model exploration for
resilience : simulator results

Fixed-time quanta (FTQ) shows where
app is spending time. Here MPI
“stutters” during synchronous exchange

0 1000

2000

3000

4000

5000

6000

7000

8000

%
o
f

t
o
t
a
l

Time(ms)

Application Activity Over Time

MPI
Compute
Memory

Slow node gradually chokes off
computation due to MPI
synchronization…

If all nodes the same
speed…

If one node
overheats or has
bad DIMM and
slows down…

Synchronous MPI
data exchange

Robert L. Clay, CMU-2014

Programming model exploration:
Sandia asynchronous, task-DAG model

If all nodes the same
speed…

Termination detection/
work stealing needs to
be
optimized

Data movement service
is constant overhead –
single thread dedicated
to communication

If node slows down… With load balancing…

Robert L. Clay, CMU-2014

Asynchronous many-task programming
models are fault tolerant!

Actor Model Matrix Multiplication
(asynchronous, many task)

• Simulation permits
straightforward investigation of
alternative programming models

• Work-stealing approaches will
play a role in dealing with large-
scale machines lacking perfect
homogeneity

• Research Questions:
- Is MPI+X (global checkpoint/restart) enough?
- If not, what programming models can reach what scales?
- If no programming model can reach scales of interest for a given application

without algorithmic changes, how might algorithms be adapted?
- Co-design of architecture tradeoffs between memory, I/O, power, and application

performance

Robert L. Clay, CMU-2014

SST Experiment: Actor Load Balancing

Legend

• Black - iniitializing
• Green – working

– prefetching
• Red – idle
• Purple – work stealing

Asynchronous, task-
based programming
model with work stealing
balances load under
dynamic conditions,
including faults and
degradation.

Robert L. Clay, CMU-2014

SST Network Traffic Visualization with VTK

Robert L. Clay, CMU-2014

Scalable Defensive Programming

Local Fail, Local Restart – Proportionate
Response To Local Failure

Robert L. Clay, CMU-2014

Global Checkpoint/Restart: Disproportional
Response to Local Failures

• Single node failures account for the major HPC system
failures
 85% on LLNL clusters (Moody et al. 2010)

 ~2/3 on Titan (ORNL)

• Short MTBFs due to the increase of error-prone
components
 Titan crashes twice a day

 Will it get worse?

• Current practice of Checkpoint/Restart is a
disproportional response to single node failure
 Kill all processes (global terminate)

 Recovery involves global restart

 Dependent on Global File system to keep application state

We seek a Local Failure Local Recovery
(LFLR) resilient programming model to
allow proportional response to single

node/process failure.

Robert L. Clay, CMU-2014

LFLR Programming Model

Run

Run

Run

P0

P1

P2

RunPx Kill

Kill

Kill

Kill

Restart

Restart

Restart

Restart

Run

Run

Run

RunCrash

RunP0

P1

P2

RunPx

Run

Crash

Notify Error to
everybody

Stand byPx+1 Join

Run as Px

Wait

Notify Error

Run

Run

Checkpoint Restart

Our Approach

Robert L. Clay, CMU-2014

LFLR Architecture

Process Manager

Sparse
Matrix

Vector Mesh

Recovery Manager

Parallel Execution Runtime

Persistent Storage

Application Program

Buddy/Parity
in memory

PDE Solver

• Detect and notify process failure(s)
• Continue program execution with a presence of process failure

• Query for process status
• Manage process assignment for lost work

• Persistent Storage for Application State and data
• Use on node memory of spare process

• Restore the application state and data from process failure

• Provides API for writing resilient application with ease

MPI-ULFM (UTK)
runs through node loss

Spare Process
management

Base class for
Application data

Scientific Data

Robert L. Clay, CMU-2014

P1

LFLR Scalable Recovery

• In-memory checkpoint (persistent-
store)
 Buddy system

• Duplication of each piece

 Dedicated Parity
• Spare processes keep the parity of

distributed data

• The data structure is bind to its
primary source (application state)
 Temporary data structure (matrix) is

never stored in the storage
• Created on the fly

 Reduce the persistent storage size
by 90% (or more)

• Performance
 Fast in in memory persistent data

store

 Good scalability

P0 P2P1 Spare

P0 P2P1 Spare

XOR

XOR

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 1000 2000 3000 4000 5000

S
e
c
o

n
d

s

of Cores

MiniFE (Weak scaling from 40x40x40 for 4PEs)
Dedicated Parity

Failure is Emulated
Group Size = 128 cores

Single Linear system Solve: 6 sec or more

Recover Data All Store

Robert L. Clay, CMU-2014

Reformulating the Problem

“Robust Stencils” – Handling SDC for PDEs

Robert L. Clay, CMU-2014

Error-Correcting Algorithms Can Mitigate
Silent Errors & Offer New Co-design Options

• Even at commodity scale, ECC memory & ECC processors show
the rising need for error correction

• With increasing scale and with power limitations, errors can occur
“silently” without indication that something is wrong

• Numerical algorithms already deal with error from truncation, etc.;
specially designed algorithms can mitigate silent bit flips as well

• These robust stencil algorithms not only address scale-up of
current silent-error rates, but may enable new “lossy” architecture
options with more power-efficient accelerators or reduced latency

ECC memory

Robert L. Clay, CMU-2014

Robust stencils can discard outliers
to mitigate bit flips in PDE solving

• A simple 1D advection
equation ∂u/∂t = ∂u/∂x
illustrates the behavior
of finite-difference
schemes

• The robust stencil here
computes a second-order update
at position i from
one of these subsets after
discarding the most
extreme value:

 { i − 3, i − 2, i − 1, i, i + 1, i + 2, i + 3 }

 { i − 3, i − 2, i − 1, i, i + 1, i + 2, i + 3 }

 { i − 3, i − 2, i − 1, i, i + 1, i + 2, i + 3 }

Simple demo in
Mathematica

Robert L. Clay, CMU-2014

• Focus on silent-error models affecting floating-point

 Relaxing FP correctness may benefit designs (e.g., GPUs)

• Test: During C++ PDE simulation, asynchronously perform raw memory
bit flips in the FP solution array

 Can also be a proxy for processor bit flips that corrupt FP ops

• Compare brute-force triple modular redundancy (TMR)

Here, the robust
stencil provides
substantial bit-flip
tolerance at lower
cost than TMR

Acceptable (3× intrinsic discretization error)

Bit-flip Injection at Machine Level Confirms
Effectiveness of Our Robust Stencil

Robert L. Clay, CMU-2014

Preliminary Weak-Scaling Experiments
Show Favorable Trends for Robust Stencil

• As a research tool for ongoing use, we have implemented a
modular C++/MPI framework for explicit Cartesian PDE solvers

 Captures “halo exchange” pattern in generic form

• Preliminary results from many short runs, 106 grid cells per core

• Further questions:
• How does resilience scale with longer runs and more realistic PDEs?

• How realistic is our way of emulating memory bit flips?

• What happens if bit flips also occur in message communication?

~3× runtime
~5000×

~106×

Manageable overhead

Increasing
resilience
advantage

Robert L. Clay, CMU-2014

Rethinking the Programming Model

Asynchronous, Many-Task Provide Scalability
and Fault Tolerance

Robert L. Clay, CMU-2014

Can asynchronous, many-task programming models
facilitate scalable resilience on extreme-scale

systems?
• Our approach:

 Dynamically scheduled, asynchronous tasks: maximize use of resources by
load balancing and redistributing work from failed nodes

 Locality and minimal data movement: move work to data; multithreaded,
NUMA-aware scheduling on each node in distributed environment

 Automatic data repair: silent data corruption is detected and repaired using triple
modular redundancy or 2D checksums

 Automatic task recovery: transaction-like semantics allow task replay after data
is corrected

Example (right):

Dot product tasks operate on
over-decomposed vectors A
and B to produce result R

R

DPTask1

DPTask2
SumTask…

DPTaskN

A: Chunk1

A: Chunk2

A: ChunkN

B: Chunk1

B: Chunk2

B: ChunkN

… …

AMT programming models enable marching toward
the correct solution in the face of both soft and

hard faults without checkpoint/restart.

Robert L. Clay, CMU-2014

Demonstrated resilience to silent data corruption in
our on-node, task-based conjugate gradient solver

driven by miniFE proxy app

• Automatically detected/corrected multi-bit silent data corruption in user
data structures using triple-modular redundancy for scalars and 2D
checksums for vectors and matrices (application/algorithm agnostic)

 Technique applied selectively by
self-stabilizing CG algorithm in
order to lower protection cost

 0.8% memory overhead on
protected data structures

 20% increase in runtime due
to checksum validation on
every 20th iteration

1

10

100

1000

1 2 4 8 16 32

W
a

ll
ti

m
e

 (
s

e
c

o
n

d
s

)

Threads

Strong Scalability of CG Solve

NUMA-aware OpenMP

Non-resilient FTPM

Resilient FTPM

Benchmarks from SGI Altix UV 10 with four 8-core Nehalem EX and 512 GB globally-shared memory

Robert L. Clay, CMU-2014

• Recent work in this area:
 Dinan, J., A. Singri, et al. (2010). Selective Recovery from Failures in

a Task Parallel Programming Model. 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing (CCGrid): 709-
714.

 Ma, W. and S. Krishnamoorthy (2012). Data-Driven Fault Tolerance
for Work Stealing Computations. 26th ACM international conference
on Supercomputing. San Servolo Island, Venice, Italy, ACM: 79-90.

• Key advantages over other techniques:
 Maintenance of coherent state at frequency less than MTBF

 Relatively simple book-keeping

Task collections are a good first step towards
resilient task-based distributed programming

Robert L. Clay, CMU-2014

7 8 9 10 11 12 13

0 1 2 3 4 5 6

14 15 16 17 18 19 20

• A single collection executes at a time
• Tasks are independent and distributed across nodes
• A global address space is assumed

Task collections are a good first step towards
resilient task-based distributed programming

Robert L. Clay, CMU-2014

7 8 9 10 11 12 13

0 1 2 3 4 5 6

14 15 16 17 18 19 20

• Within a collection nodes execute tasks asynchronously

Task collections are a good first step towards
resilient task-based distributed programming

Robert L. Clay, CMU-2014

7 8 9 10 11 12 13

00 1 2 3 4 5 6

14 15 16 17 18 19 20

• Within a collection nodes execute tasks asynchronously

Task collections are a good first step towards
resilient task-based distributed programming

Robert L. Clay, CMU-2014

7 8 9 10 11 12 13

00 11 2 3 4 5 6

1414 15 16 17 18 19 20

• Within a collection nodes execute tasks asynchronously

Task collections are a good first step towards
resilient task-based distributed programming

Robert L. Clay, CMU-2014

77 8 9 10 11 12 13

00 11 22 3 4 5 6

1414 1515 16 17 18 19 20

• Within a collection nodes execute tasks asynchronously

Task collections are a good first step towards
resilient task-based distributed programming

Robert L. Clay, CMU-2014

77 8 9 10 11 12 13

00 11 22 33 4 5 6

1414 1515 16 17 18 19 20

• Within a collection nodes execute tasks asynchronously

Task collections are a good first step towards
resilient task-based distributed programming

Robert L. Clay, CMU-2014

77 88 9 10 11 12 13

00 11 22 33 44 5 6

1414 1515 16 17 18 19 20

• Within a collection nodes execute tasks asynchronously

Task collections are a good first step towards
resilient task-based distributed programming

Robert L. Clay, CMU-2014

77 88 9 10 11 12 13

00 11 22 33 44 55 6

1414 1515 1616 17 18 19 20

• Within a collection nodes execute tasks asynchronously

Task collections are a good first step towards
resilient task-based distributed programming

Robert L. Clay, CMU-2014

77 88 9 10 11 12 13

00 11 22 33 44 55 66

1414 1515 1616 1717 18 19 20

• Work stealing enables tolerance to variations in the
execution environment

Task collections are a good first step towards
resilient task-based distributed programming

Robert L. Clay, CMU-2014

77 88 9 13

00 11 22 33 44 55 66

1414 1515 1616 1717 18 19 20

• Work stealing enables tolerance to variations in the
execution environment

10 11 12

Task collections are a good first step towards
resilient task-based distributed programming

Robert L. Clay, CMU-2014

77 88 9 13

00 11 22 33 44 55 66

1414 1515 1616 1717 1818 19 20

• Recovery is possible when a node goes down
• A simple lazy scheme ignores faults until task collection

has terminated

1010 11 12

Task collections are a good first step towards
resilient task-based distributed programming

Robert L. Clay, CMU-2014

77 88 9 13

00 11 22 33 44 55 66

1414 1515 1616 1717 1818 1919 20

1010 1111 12

• Recovery is possible when a node goes down
• A simple lazy scheme ignores faults until task collection

has terminated

Task collections are a good first step towards
resilient task-based distributed programming

Robert L. Clay, CMU-2014

77 88 9 13

00 11 22 33 44 55 66

1414 1515 1616 1717 1818 1919 2020

1010 1111 1212

• Recovery is possible when a node goes down
• A simple lazy scheme ignores faults until task collection

has terminated

Task collections are a good first step towards
resilient task-based distributed programming

Robert L. Clay, CMU-2014

77 88 9 10 11 12 13

00 11 22 33 44 55 66

1414 1515 1616 1717 1818 1919 2020

1010 1111 1212

• A global reduction is used to identify incomplete tasks

ta
sk 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

fi
n

is
h

ed

1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1 1 1 1

Global reduction: Highlighted tasks incomplete

Task collections are a good first step towards
resilient task-based distributed programming

Robert L. Clay, CMU-2014

7

8

9

13

• The incomplete tasks are re-distributed to active nodes
• Execution continues until all tasks have finished

Task collections are a good first step towards
resilient task-based distributed programming

Robert L. Clay, CMU-2014

77

88

9

13

• The incomplete tasks are re-distributed to active nodes
• Execution continues until all tasks have finished

Task collections are a good first step towards
resilient task-based distributed programming

Robert L. Clay, CMU-2014

77

88

99

1313

• The incomplete tasks are re-distributed to active nodes
• Execution continues until all tasks have finished

Task collections are a good first step towards
resilient task-based distributed programming

Robert L. Clay, CMU-2014

77

88

99

1313

• The incomplete tasks are re-distributed to active nodes
• Execution continues until all tasks have finished

ta
sk 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

fi
n

is
h

ed

1 1

Global reduction: All tasks complete

Task collections are a good first step towards
resilient task-based distributed programming

Robert L. Clay, CMU-2014

We are extending task collections to support
multiple collections operating concurrently

0 1 2 3 4 5 6

0 1 2 3

7 8 9 10 11 12

4 5 6

13

14 15 16 17 18

7 8 9

• Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
• Increase task parallelism while maintaining critical path

19 20

Robert L. Clay, CMU-2014

0 1 2 3 4 5 6

0 1 2 3

7 8 9 10 11 12

4 5 6

13

14 15 16 17 18

7 8 9

19 20

• Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
• Increase task parallelism while maintaining critical path

We are extending task collections to support
multiple collections operating concurrently

Robert L. Clay, CMU-2014

00 1 2 3 4 5 6

0 1 2 3

77 8 9 10 11 12

4 5 6

13

14 15 16 17 18

7 8 9

19 20

• Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
• Increase task parallelism while maintaining critical path

We are extending task collections to support
multiple collections operating concurrently

Robert L. Clay, CMU-2014

00 1 2 3 4 5 6

0 1 2 3

77 88 9 10 11 12

4 5 6

13

14 15 16 17 18

7 8 9

19 20

• Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
• Increase task parallelism while maintaining critical path

We are extending task collections to support
multiple collections operating concurrently

Robert L. Clay, CMU-2014

00 11 2 3 4 5 6

0 1 2 3

77 88 99 10 11 12

4 5 6

13

1414 15 16 17 18

7 8 9

19 20

• Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
• Increase task parallelism while maintaining critical path

We are extending task collections to support
multiple collections operating concurrently

Robert L. Clay, CMU-2014

00 11 2 3 4 5 6

0 1 2 3

77 88 99 1010 11 12

4 5 6

13

1414 15 16 17 18

7 8 9

19 20

• Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
• Increase task parallelism while maintaining critical path

We are extending task collections to support
multiple collections operating concurrently

Robert L. Clay, CMU-2014

00 11 22 3 4 5 6

0 1 2 3

77 88 99 1010 11 12

4 5 6

13

1414 15 16 17 18

7 8 9

19 20

• Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
• Increase task parallelism while maintaining critical path

We are extending task collections to support
multiple collections operating concurrently

Robert L. Clay, CMU-2014

00 11 22 33 4 5 6

0 1 2 3

77 88 99 1010 1111 12

4 5 6

13

1414 1515 16 17 18

7 8 9

19 20

• Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
• Increase task parallelism while maintaining critical path

We are extending task collections to support
multiple collections operating concurrently

Robert L. Clay, CMU-2014

00 11 22 33 4 5 6

0 1 2 3

77 88 99 1010 1111 1212

4 5 6

13

1414 1515 16 17 18

7 8 9

19 20

• Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
• Increase task parallelism while maintaining critical path

We are extending task collections to support
multiple collections operating concurrently

Robert L. Clay, CMU-2014

00 11 22 33 44 5 6

0 1 2 3

77 88 99 1010 1111 1212

4 5 6

1313

1414 1515 16 17 18

7 8 9

19 20

• Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
• Increase task parallelism while maintaining critical path

We are extending task collections to support
multiple collections operating concurrently

Robert L. Clay, CMU-2014

00 11 22 33 44 5 6

0 1 2 3

77 88 99 1010 1111 1212

44 5 6

1313

1414 1515 16 17 18

7 8 9

19 20

• Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
• Increase task parallelism while maintaining critical path

We are extending task collections to support
multiple collections operating concurrently

Robert L. Clay, CMU-2014

00 11 22 33 44 5 6

0 1 2 3

77 88 99 1010 1111 1212

44 5 6

1313

1414 1515 16 17 18

7 8 9

19 20

• Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
• Increase task parallelism while maintaining critical path

We are extending task collections to support
multiple collections operating concurrently

Robert L. Clay, CMU-2014

00 11 22 33 44 5 6

0 1 2 3

77 88 99 1010 1111 1212

44 5 6

1313

1414 1515 16 17

18

7 8 9

19 20

• Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
• Increase task parallelism while maintaining critical path

We are extending task collections to support
multiple collections operating concurrently

Robert L. Clay, CMU-2014

00 11 22 33 44 55 6

0 1 2 3

77 88 99 1010 1111 1212

44 55 6

1313

1414 1515 16 17

18

7 8 9

19 20

• Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
• Increase task parallelism while maintaining critical path

We are extending task collections to support
multiple collections operating concurrently

Robert L. Clay, CMU-2014

00 11 22 33 44 55 6

0 1 2 3

77 88 99 1010 1111 1212

44 55 6

1313

1414 1515 1616 17

1818

7 8 9

19 20

• Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
• Increase task parallelism while maintaining critical path

We are extending task collections to support
multiple collections operating concurrently

Robert L. Clay, CMU-2014

00 11 22 33 44 55 66

0 1 2 3

77 88 99 1010 1111 1212

44 55 6

1313

1414 1515 1616 17

1818

7 8 9

19 20

• Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
• Increase task parallelism while maintaining critical path

We are extending task collections to support
multiple collections operating concurrently

Robert L. Clay, CMU-2014

00 11 22 33 44 55 66

0 1 2 3

77 88 99 1010 1111 1212

44 55 6

1313

1414 1515 1616 1717

1818

7 8 9

1919 20

• Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
• Increase task parallelism while maintaining critical path

We are extending task collections to support
multiple collections operating concurrently

Robert L. Clay, CMU-2014

00 11 22 33 44 55 66

0 1 2 3

77 88 99 1010 1111 1212

44 55 6

1313

1414 1515 1616 1717

1818

77 8 9

1919 2020

• Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
• Increase task parallelism while maintaining critical path

We are extending task collections to support
multiple collections operating concurrently

Robert L. Clay, CMU-2014

00 11 22 33 44 55 66

0 1 2 3

77 88 99 1010 1111 1212

44 55 6

1313

1414 1515 1616 1717

1818

77 8 9

1919 2020ta
sk 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

fi
n

is
h

ed

1 1

• Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
• Increase task parallelism while maintaining critical path

Global reduction: Critical path tasks complete

We are extending task collections to support
multiple collections operating concurrently

Robert L. Clay, CMU-2014

00 11 22 33 44 55 66

0 1 2 3

77 88 99 1010 1111 1212

44 55 6

1313

1414 1515 1616 1717

1818

77 8 9

1919 2020

• Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
• Increase task parallelism while maintaining critical path

We are extending task collections to support
multiple collections operating concurrently

Robert L. Clay, CMU-2014

00 11 22 33 44 55 66

0 1 2 3

77 88 99 1010 1111 1212

44 55 66

1313

1414 1515 1616 1717

1818

77 88 9

1919 2020

• Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
• Increase task parallelism while maintaining critical path

We are extending task collections to support
multiple collections operating concurrently

Robert L. Clay, CMU-2014

00 11 22 33 44 55 66

0 1

2 3

77 88 99 1010 1111 1212

44 55 66

1313

1414 1515 1616 1717

1818

77 88 9

1919 2020

• Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
• Increase task parallelism while maintaining critical path

We are extending task collections to support
multiple collections operating concurrently

Robert L. Clay, CMU-2014

00 11 22 33 44 55 66

00 1

22 3

77 88 99 1010 1111 1212

44 55 66

1313

1414 1515 1616 1717

1818

77 88 99

1919 2020

• Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
• Increase task parallelism while maintaining critical path

We are extending task collections to support
multiple collections operating concurrently

Robert L. Clay, CMU-2014

00 11 22 33 44 55 66

00 11

22 3

77 88 99 1010 1111 1212

44 55 66

1313

1414 1515 1616 1717

1818

77 88 99

1919 2020

• Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
• Increase task parallelism while maintaining critical path

We are extending task collections to support
multiple collections operating concurrently

Robert L. Clay, CMU-2014

00 11 22 33 44 55 66

00 11

22 33

77 88 99 1010 1111 1212

44 55 66

1313

1414 1515 1616 1717

1818

77 88 99

1919 2020

• Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
• Increase task parallelism while maintaining critical path

We are extending task collections to support
multiple collections operating concurrently

Robert L. Clay, CMU-2014

00 11 22 33 44 55 66

00 11

22 33

77 88 99 1010 1111 1212

44 55 66

1313

1414 1515 1616 1717

1818

77 88 99

1919 2020ta
sk 0 1 2 3 4 5 6 7 8 9

fi
n

is
h

ed

1 1 1 1 1 1 1 1 1 1

• Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
• Increase task parallelism while maintaining critical path

Global reduction: Auxiliary tasks complete

We are extending task collections to support
multiple collections operating concurrently

Robert L. Clay, CMU-2014

Our goal: Discover the right approach for extreme-
scale, fault-resilient computing

Existing programming models are
inherently not fault-resilient

Asynchronous many-task (AMT)
programming models can be fault-resilient

Single Program Multiple Data (SPMD), implicitly
synchronous algorithms cannot recover from

failure nor adapt well to node degradation

Asynchronous execution and redundancy
minimize the impact of node degradation/failure

and benefit scalability even without failure

Global check-points no longer feasible Synergistic with local check-pointing

On future systems we need to
develop methods for:

 Reducing mean time to error

 Fault detection & recovery

 Fault-oblivious algorithms

Exascale systems are expected to experience errors/faults much
more frequently than petascale systems

Robert L. Clay, CMU-2014

Exascale presents serious
challenges to apps developers

How am I
gonna scale
my codes to
exascale?

Robert L. Clay, CMU-2014

Sandia has an active hiring
program in computational R&D

• Student Internships
 Undergraduate and graduate

 Typically summers, but not exclusively

• Hire at all levels
 BS, MS, PhD

 CS and Engineering concentrations

 Full time, Limited term, Postdocs

• In addition to scalable computing, we are very active
in cyber security.

Robert L. Clay, CMU-2014

Acknowledgements

 Rob Armstrong (Robust Stencils)
 Janine Bennett (pmodels)
 Gilbert Hendry (SST/macro)
 Mike Heroux (LFLR)
 Hemanth Kolla (pmodels)
 Jackson Mayo (Robust Stencils)
 Philippe Pebay (SST/macro)
 Nicole Slattengren (pmodels)
 Keita Teranishi (LFLR)
 Jeremiah Wilke (SST/macro)

Robert L. Clay, CMU-2014

Thank You

Robert L. Clay
rlclay@sandia.gov
+1 (209) 610-2929

