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First…

A little background about Sandia National Labs
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Sandia National Laboratories: a mission-driven, 
multi-program laboratory

VisionVision: Sandia is the provider of innovative, science: Sandia is the provider of innovative, science--based, systemsbased, systems--engineering engineering 

solutions to our Nation’s most challenging national security problems. solutions to our Nation’s most challenging national security problems. 
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Sandia is a key U.S. government research 
and development laboratory

 Core Purpose: Help our 

nation secure a peaceful 
and free world through 
technology

 Corporate mission 
statement: Exceptional 

service in the national 
interest

 Key mission areas:
• Nuclear Weapons
• Defense Systems
• Energy
• Nonproliferation
• Homeland Security
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Science-Based Engineering

Research Foundations

Computer
Science

Engineering
Science

Micro
Electronics Bio

Strategic Capabilities

High-Performance Computing Microsystems Nanotechnology Extreme Environments

Materials Pulsed Power

http://sciencewatch.com/sciencewatch/ana/fea/
http://sciencewatch.com/sciencewatch/ana/fea/
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Back to the exascale problem…

Science and engineering are the real drivers.
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Exascale simulation will enable fundamental 
advances in basic science

• High Energy & Nuclear Physics

• Dark-energy and dark matter

• Fundamentals of fission  fusion 
reactions

• Facility and experimental design

• Effective design of accelerators

• Probes of dark energy and dark matter 

• ITER shot planning and device control

• Materials / Chemistry

• Predictive multi-scale materials 
modeling: observation to control

• Effective, commercial technologies in 
renewable energy, catalysts, batteries 
and combustion

• Life Sciences

• Better biofuels

• Sequence to structure to function

ITER

ILC

Hubble image
of lensing

Structure of
nucleons

These breakthrough scientific discoveries 
and facilities require exascale applications 
and resources.
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Leadership-class HPC compute capabilities are 
required for DOE policy and decision making

Energy: Reduce U.S. reliance on foreign 
energy, reduce carbon footprint

Climate change: Understand, mitigate, and 
adapt to the effects of global warming

National Nuclear Security: Maintain a safe, 
secure, and reliable nuclear stockpile

Exascale computing and beyond is required to simulate complex 
phenomena that characterize the DOE mission space
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Exascale computing presents 
serious technical challenges

How am I 
going to scale 
my codes to 
exascale?
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Key Technical Challenges

• DOE’s Exascale Initiative Steering Committee and 
DARPA identified technology gaps that need to be 
addressed to reach Exascale later this decade
 Power, memory and storage, parallelism and locality, resilience, 

scalability, programming models

• Co-development (or co-design) of hardware, system 
software and applications is a key element of our 
strategy
 Codes will need to adapt to manage billion-way parallelism, data 

locality, resilience and perhaps energy
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What is HPC Resilience?

• We define resilient HPC as correct and efficient 
computations at scale despite system 
degradations and failures.

• Resilience is a cross cutting issue:

Hardware

Operating System

System Management

Runtime (Execution Model)

Application / Algorithms

Multi-layer (any/all combinations of the above)
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Why does resilience matter?

• “Without research into new fault management techniques and 
the development of supporting resilience technologies, DOE’s 
mission critical applications may not be able to run to 
completion, or worse, will complete but get the wrong result due 
to undetected errors”. — US DOE Fault Management Workshop 
Final Report, August 13, 2012.

• “One of the main roadblocks to exascale is the likelihood of 
much higher error rates, resulting in systems that fail frequently 
and make little progress in computations or in systems that may 
return erroneous results.  Although such systems might achieve 
high nominal performance, they would be useless”. —
Addressing Failures in Exascale Computing, ANL-MCS-TM-332, 
March 31, 2013.
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Computers are Reliable Digital Machines,
Aren’t They?

Outlook has improved (e.g., on-node NVM, improved CP/R), 
but still not reasonable to assume the systems will be 
reliable and static.
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LET’S REVIEW KEY ASSUMPTIONS

Are future computers similar to today’s?
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Some Current HPC Assumptions

Current New

Nodes Persist for duration of job
Will fail,
and so will other HW

Hardware
Can build 
sufficiently reliable

Too expensive / 
impractical

Program
Model

CSP BSP (MPI) 
computing model will 
scale

Will not scale far 
enough

Machines
Capability fundamentally 
different than capacity

Capability = capacity?

We need to rethink the problem, 
and the solution!
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So, what are we going to do about it?

• First, analysis to understand the problem (and co-
design).

 SST/Macro performance simulator (Wilke et al)

• Scalable defensive programming (LFLR).

 Local fail, local restart (Heroux and Teranishi)

• Reformulations to handle silent data corruption.

 Robust [PDE] stencils (Mayo et al)

• Alternative, fault-tolerant programming models.

 Pmodels AMT FT programming model (Slattengren
et al)

Scalable, fault-tolerant 
computing is the goal.
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Analysis of HPC System Performance

Scalability and resilience studies with SST/macro
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Programming model exploration for 
resilience with simulation

Systolic matrix-matrix multiplication involves “synchronous” 
migration of matrix blocks. 

Start with MPI.

Actual MPI code
Simulator code

With a few linker tricks, you get direct compilation of source code. No DSL! Only 
one source to maintain!
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Programming model exploration for 
resilience : simulator results

Fixed-time quanta (FTQ) shows where 
app is spending time. Here MPI 
“stutters” during synchronous exchange
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Slow node gradually chokes off 
computation due to MPI 
synchronization…

If all nodes the same 
speed…

If one node 
overheats or has 
bad DIMM and 
slows down…

Synchronous MPI 
data exchange
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Programming model exploration:
Sandia asynchronous, task-DAG model

If all nodes the same 
speed…

Termination detection/ 
work stealing needs to 
be
optimized

Data movement service 
is constant overhead –
single thread dedicated 
to communication

If node slows down… With load balancing…
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Asynchronous many-task programming 
models are fault tolerant!

Actor Model Matrix Multiplication 
(asynchronous, many task)

• Simulation permits 
straightforward investigation of 
alternative programming models

• Work-stealing approaches will 
play a role in dealing with large-
scale machines lacking perfect 
homogeneity

• Research Questions:
- Is MPI+X (global checkpoint/restart) enough?
- If not, what programming models can reach what scales?
- If no programming model can reach scales of interest for a given application 

without algorithmic changes, how might algorithms be adapted?
- Co-design of architecture tradeoffs between memory, I/O, power, and application 

performance



Robert L. Clay, CMU-2014

SST Experiment: Actor Load Balancing

Legend

• Black - iniitializing
• Green – working

– prefetching
• Red – idle
• Purple – work stealing

Asynchronous, task-
based programming 
model with work stealing 
balances load under 
dynamic conditions, 
including faults and 
degradation.
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SST Network Traffic Visualization with VTK
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Scalable Defensive Programming

Local Fail, Local Restart – Proportionate 
Response To Local Failure
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Global Checkpoint/Restart: Disproportional 
Response to Local Failures

• Single node failures account for the major HPC system 
failures
 85% on LLNL clusters (Moody et al. 2010)

 ~2/3 on Titan (ORNL)

• Short MTBFs due to the increase of error-prone 
components
 Titan crashes twice a day  

 Will it get worse?

• Current practice of Checkpoint/Restart is a 
disproportional response to single node failure
 Kill all processes (global terminate) 

 Recovery involves global restart 

 Dependent on Global File system to keep application state 

We seek a Local Failure Local Recovery 
(LFLR) resilient programming model to 
allow proportional response to single 

node/process failure.
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LFLR Programming Model

Run

Run

Run

P0

P1

P2

RunPx Kill

Kill

Kill

Kill

Restart

Restart

Restart

Restart

Run

Run

Run

RunCrash

RunP0

P1

P2

RunPx

Run

Crash

Notify Error to 
everybody

Stand byPx+1 Join

Run as Px

Wait

Notify Error

Run

Run

Checkpoint Restart

Our Approach
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LFLR Architecture

Process Manager

Sparse
Matrix

Vector Mesh

Recovery Manager

Parallel Execution Runtime

Persistent Storage

Application Program

Buddy/Parity
in memory

PDE Solver

• Detect and notify process failure(s)
• Continue program execution with a presence of process failure

• Query for process status
• Manage process assignment for lost work

• Persistent Storage for Application State and data
• Use on node memory of spare process

• Restore the application state and data from process failure

• Provides API for writing resilient application with ease

MPI-ULFM (UTK)
runs through node loss

Spare Process
management

Base class for 
Application data

Scientific Data
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P1

LFLR Scalable Recovery

• In-memory checkpoint (persistent-
store)  
 Buddy system

• Duplication of each piece 

 Dedicated Parity 
• Spare processes keep the parity of 

distributed data 

• The data structure is bind to its 
primary source (application state) 
 Temporary data structure (matrix) is 

never stored in the storage 
• Created on the fly

 Reduce the persistent storage size 
by 90% (or more)

• Performance
 Fast in in memory persistent data 

store

 Good scalability

P0 P2P1 Spare

P0 P2P1 Spare

XOR

XOR

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0 1000 2000 3000 4000 5000

S
e
c
o

n
d

s

# of Cores

MiniFE (Weak scaling from 40x40x40 for 4PEs)
Dedicated Parity 

Failure is Emulated
Group Size = 128 cores

Single Linear system Solve: 6 sec or more

Recover Data All Store
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Reformulating the Problem

“Robust Stencils” – Handling SDC for PDEs
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Error-Correcting Algorithms Can Mitigate 
Silent Errors & Offer New Co-design Options

• Even at commodity scale, ECC memory & ECC processors show 
the rising need for error correction

• With increasing scale and with power limitations, errors can occur 
“silently” without indication that something is wrong

• Numerical algorithms already deal with error from truncation, etc.; 
specially designed algorithms can mitigate silent bit flips as well

• These robust stencil algorithms not only address scale-up of 
current silent-error rates, but may enable new “lossy” architecture 
options with more power-efficient accelerators or reduced latency

ECC memory
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Robust stencils can discard outliers
to mitigate bit flips in PDE solving

• A simple 1D advection
equation ∂u/∂t = ∂u/∂x
illustrates the behavior
of finite-difference
schemes

• The robust stencil here
computes a second-order update 
at position i from
one of these subsets after 
discarding the most
extreme value:

 { i − 3, i − 2, i − 1,  i,  i + 1, i + 2, i + 3 }

 { i − 3, i − 2, i − 1,  i,  i + 1, i + 2, i + 3 }

 { i − 3, i − 2, i − 1, i,  i + 1, i + 2, i + 3 }

Simple demo in
Mathematica
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• Focus on silent-error models affecting floating-point

 Relaxing FP correctness may benefit designs (e.g., GPUs)

• Test: During C++ PDE simulation, asynchronously perform raw memory 
bit flips in the FP solution array

 Can also be a proxy for processor bit flips that corrupt FP ops

• Compare brute-force triple modular redundancy (TMR)

Here, the robust
stencil provides
substantial bit-flip
tolerance at lower
cost than TMR

Acceptable (3× intrinsic discretization error)

Bit-flip Injection at Machine Level Confirms 
Effectiveness of Our Robust Stencil
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Preliminary Weak-Scaling Experiments
Show Favorable Trends for Robust Stencil

• As a research tool for ongoing use, we have implemented a 
modular C++/MPI framework for explicit Cartesian PDE solvers

 Captures “halo exchange” pattern in generic form

• Preliminary results from many short runs, 106 grid cells per core

• Further questions:
• How does resilience scale with longer runs and more realistic PDEs?

• How realistic is our way of emulating memory bit flips?

• What happens if bit flips also occur in message communication?

~3× runtime
~5000×

~106×

Manageable overhead

Increasing
resilience
advantage
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Rethinking the Programming Model

Asynchronous, Many-Task Provide Scalability 
and Fault Tolerance
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Can asynchronous, many-task programming models 
facilitate scalable resilience on extreme-scale 

systems?
• Our approach:

 Dynamically scheduled, asynchronous tasks: maximize use of resources by 
load balancing and redistributing work from failed nodes

 Locality and minimal data movement: move work to data; multithreaded, 
NUMA-aware scheduling on each node in distributed environment

 Automatic data repair: silent data corruption is detected and repaired using triple 
modular redundancy or 2D checksums

 Automatic task recovery: transaction-like semantics allow task replay after data 
is corrected

Example (right):

Dot product tasks operate on 
over-decomposed vectors A
and B to produce result R

R

DPTask1

DPTask2
SumTask…

DPTaskN

A: Chunk1

A: Chunk2

A: ChunkN

B: Chunk1

B: Chunk2

B: ChunkN

… …

AMT programming models enable marching toward
the correct solution in the face of both soft and

hard faults without checkpoint/restart.
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Demonstrated resilience to silent data corruption in 
our on-node, task-based conjugate gradient solver 

driven by miniFE proxy app

• Automatically detected/corrected multi-bit silent data corruption in user 
data structures using triple-modular redundancy for scalars and 2D 
checksums for vectors and matrices (application/algorithm agnostic)

 Technique applied selectively by 
self-stabilizing CG algorithm in 
order to lower protection cost

 0.8% memory overhead on 
protected data structures

 20% increase in runtime due 
to checksum validation on 
every 20th iteration
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Strong Scalability of CG Solve
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Non-resilient FTPM

Resilient FTPM

Benchmarks from SGI Altix UV 10 with four 8-core Nehalem EX and 512 GB globally-shared memory
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• Recent work in this area:
 Dinan, J., A. Singri, et al. (2010). Selective Recovery from Failures in 

a Task Parallel Programming Model. 10th IEEE/ACM International 
Conference on Cluster, Cloud and Grid Computing (CCGrid): 709-
714. 

 Ma, W. and S. Krishnamoorthy (2012). Data-Driven Fault Tolerance 
for Work Stealing Computations. 26th ACM international conference 
on Supercomputing. San Servolo Island, Venice, Italy, ACM: 79-90. 

• Key advantages over other techniques: 
 Maintenance of coherent state at frequency less than MTBF 

 Relatively simple book-keeping

Task collections are a good first step towards 
resilient task-based distributed programming
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7 8 9 10 11 12 13

0 1 2 3 4 5 6
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• A single collection executes at a time
• Tasks are independent and distributed across nodes
• A global address space is assumed

Task collections are a good first step towards 
resilient task-based distributed programming
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• Within a collection nodes execute tasks asynchronously

Task collections are a good first step towards 
resilient task-based distributed programming
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77 88 9 10 11 12 13

00 11 22 33 44 55 66

1414 1515 1616 1717 18 19 20

• Work stealing enables tolerance to variations in the 
execution environment

Task collections are a good first step towards 
resilient task-based distributed programming
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• Work stealing enables tolerance to variations in the 
execution environment

10 11 12

Task collections are a good first step towards 
resilient task-based distributed programming
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• Recovery is possible when a node goes down
• A simple lazy scheme ignores faults until task collection 

has terminated

1010 11 12

Task collections are a good first step towards 
resilient task-based distributed programming
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resilient task-based distributed programming



Robert L. Clay, CMU-2014

77 88 9 13

00 11 22 33 44 55 66

1414 1515 1616 1717 1818 1919 2020

1010 1111 1212

• Recovery is possible when a node goes down
• A simple lazy scheme ignores faults until task collection 

has terminated
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resilient task-based distributed programming
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• A global reduction is used to identify incomplete tasks 

ta
sk 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

fi
n
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ed

1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1 1 1 1

Global reduction: Highlighted tasks incomplete

Task collections are a good first step towards 
resilient task-based distributed programming
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• The incomplete tasks are re-distributed to active nodes
• Execution continues until all tasks have finished

Task collections are a good first step towards 
resilient task-based distributed programming
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• The incomplete tasks are re-distributed to active nodes
• Execution continues until all tasks have finished

ta
sk 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

fi
n
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h

ed

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Global reduction: All tasks complete

Task collections are a good first step towards 
resilient task-based distributed programming
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We are extending task collections to support 
multiple collections operating concurrently

0 1 2 3 4 5 6

0 1 2 3

7 8 9 10 11 12

4 5 6
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14 15 16 17 18

7 8 9

• Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
• Increase task parallelism while maintaining critical path

19 20
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• Priority (CriticalPathCollection) > Priority(AuxiliaryCollection)
• Increase task parallelism while maintaining critical path

Global reduction: Auxiliary tasks complete

We are extending task collections to support 
multiple collections operating concurrently
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Our goal: Discover the right approach for extreme-
scale, fault-resilient computing

Existing programming models are 
inherently not fault-resilient

Asynchronous many-task (AMT) 
programming models can be fault-resilient

Single Program Multiple Data (SPMD), implicitly
synchronous algorithms cannot recover from 

failure nor adapt well to node degradation

Asynchronous execution and redundancy 
minimize the impact of node degradation/failure 

and benefit scalability even without failure

Global check-points no longer feasible Synergistic with local check-pointing

On future systems we need to 
develop methods for:

 Reducing mean time to error

 Fault detection & recovery

 Fault-oblivious algorithms

Exascale systems are expected to experience errors/faults much
more frequently than petascale systems
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Exascale presents serious 
challenges to apps developers

How am I 
gonna scale 
my codes to 
exascale? 
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Sandia has an active hiring 
program in computational R&D

• Student Internships
 Undergraduate and graduate

 Typically summers, but not exclusively

• Hire at all levels
 BS, MS, PhD

 CS and Engineering concentrations

 Full time, Limited term, Postdocs

• In addition to scalable computing, we are very active 
in cyber security.
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