
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Success Story
Using Advanced Verification

Techniques to Increase Effectiveness

Mentor Graphics Corporation Sales Kickoff 2014

Jason Michnovicz (jmichno@sandia.gov)
Microelectronics R&D S&E

Sandia National Laboratories

With contributions from T.J. Mannos, Vivian Kammler, Jae Joon Chang, Ratish Punnoose

02/19/2014

SAND2014-1250P

mailto:jmichno@sandia.gov

Outline

 Sandia National Laboratories

 Requirements Tracing – Our Strategy
 ReqTracer

 Verification Techniques – An Overview

 Our Experiences
 SystemVerilog Assertions

 Formal Verification

 Universal Verification Methodology (UVM)

 Unified Coverage Database (UCDB)

02/19/2014 2

SANDIA NATIONAL LABORATORIES
Some background information about

02/19/2014 3

Sandia National Laboratories

 U.S. Department of Energy R&D Labs

 Wide variety of research activities
 Nuclear weapons security

 Energy

 Climate

 Cybersecurity

 Pulsed power

 Robotics

 Microsystems

 Radiation effects

02/19/2014 4

High Rigor ASIC Flow Example

No Offering

Competitor Product

Mentor Product

Physical Design and Prototyping

Post-Layout Simulation FPGA Prototype Chip Finishing DRC & LVS

Analysis

Code Reviews Static Code Analysis Formal Verification Formal Equivalence

Verification

Simulation SystemVerilog Assertions Universal Verification Methodology

Design

RTL Capture Schematic Capture Synthesis Place & Route

Validation

Formal Reviews Document Reviews
Requirements

Tracing
Configuration
Management

Verification
Management

02/19/2014 5

Mentor Verification Products
Product Mentor Competitor Do Not Use

Certe Testbench Studio X

FormalPro X

HDL Designer (DesignChecker) X

HDL Designer (other features) X

Questa ADMS X

Questa Sim X

Questa Formal X X

Questa CDC X

Questa CodeLink X

Questa CoverCheck X

Questa Verification Mgt. X

Questa inFact X

ReqTracer X

Veloce Emulator X

02/19/2014 6

REQUIREMENTS TRACING
(USING REQTRACER)

How we implemented

02/19/2014 7

Design Lifecycle

Plan

Write

Review

02/19/2014

Plan

Write

Review

Plan

Code

Review

Plan

Write

Review

Plan

Code

Review

Compatibility Definition (CD)

Hardware Description Document (HDD)

Hardware Implementation (RTL)

Hardware Verification Plan (HVP)

Hardware Tests (Testbenches)

8

Previous Strategies:
The Shall Statement

 Visual Basic parser to look
for “shall” statements in
Microsoft Word document

 Hard to maintain or
modify for other projects

 Format highly constrained
(MS Word input, MS Excel
output)

 Any ID linking had to
manually entered and
modified as needed; run
the macro once – no
dynamic changes

02/19/2014 9

Previous Strategies:
The spreadsheet (“Excel hell”)

 Assigned ID’s to individual requirements

 Separate matrix for tracking simulations, test validation

 Manually create reports, hyperlinks

02/19/2014 10

Choosing ReqTracer
 Needed requirements mapping solution compatible with customer

databases; hardware design tool integration a plus

 Newer tool (2010), but based on Geensoft Reqtify
 Reqtify now owned by Dassault Systèmes

 Core technology provided to Mentor Graphics and LDRA

 Mentor Graphics ReqTracer and LDRA TBReq developed from there

02/19/2014 11

ReqTracer Management View

02/19/2014 12

Benefits from ReqTracer

 Common Needs Addressed

 Wide variety of parsing options

 Wide variety of analyzable file formats

 Fewer Files to Maintain

 Eliminates manual syncing of documents and spreadsheets

 Data accessible through generated reports

 Easy-to-Access Traceability Metrics

02/19/2014 13

Results from ReqTracer

 Problem: Determine Whether...

 More requirements are necessary

 The existing tests are sufficient

 Solution: Report Generation

02/19/2014 14

Requirement Trend Analysis
Coverage Link Current Goal

HDD to CD 100% 100%

HVP to HDD 100% 100%

RTL to HDD 100% 100%

TB to HVP 69% 100%
Hardware Verification Plan

Compatibility Definition Document

Hardware Description Document

RTL Code

Testbench Code

100%

100%100%

69%

02/19/2014 15

Pitfalls in ReqTracer

 False sense of security

 Partial coverage reported as full coverage by default

 Back to square one (Excel hell) if any numbers change

 Report generation GUI is cumbersome

 Only saves time on large tasks

 Limited documentation

 Mystery fields in the GUI

 Lack of introductory guide for scripting (OTScript)

02/19/2014 16

Making the Most of ReqTracer
ReqTracer works best when:

 ReqTracer compatibility is in mind from the start

 Parser-friendly writing of specifications

 Parser-friendly writing of code

 Highly specific requirement defining

 Static requirement numbering

 There is a large number of requirements

 Time spent on report-writing interface pays off

02/19/2014 17

VERIFICATION METHODOLOGIES
An overview of

02/19/2014 18

Verification Types

 Classic: Directed Simulation, Code Coverage

 Advanced: SVA, UVM, Formal, UCDB
 SystemVerilog Assertions (SVA)

 Universal Verification Methodology (UVM)

 Formal Verification

 The Unified Coverage Database (UCDB)

02/19/2014 19

Advanced Verification - Why

 Thoroughness
 Tests corner cases (UVM)

 Describes bug conditions (Formal)

 Reusability
 Constructs can be used across methodologies (SVA/UVM/Formal)

 Environment can be used across designs (UVM)

 Object-oriented techniques can be used in full force (UVM)

 Insight
 Encourages new ways of thinking about the design

 Exposes the logical organization of the design

02/19/2014 20

Reusability

Product Simulation SVA UVM Formal

ModelSim X

Questa Core X X

Questa Prime X X X

Questa Formal X X

Assertions developed in SVA can be reused in
UVM and Formal as verification needs grow.

02/19/2014 21

Pass/Fail

Assertions

Division of Labor

 Design and verification
responsibilities owned by
independent teams

 Deficiency reports are
filed as bugs are found

 Tracked on TeamForge

 Directed, Constrained
Random, and Formal tests
cover HVP

 Unified Coverage
Database (UCDB)
generated using either
Questa Core or Questa
Prime

Hardware
Description
Document

Hardware
Verification

Plan Develop UVM
Architecture

Directed Tests Formal Tests

Assertions

Random Tests

Code
Coverage

Functional
Coverage

Pass/Fail

Assertions

Code
Coverage

Functional
Coverage

UCDB UCDB UCDB

Design Formal UVM

02/19/2014 22

Advanced Verification – Success!

During early adoption of these techniques, advanced types of
verification found 39% of recorded deficiencies in a design using
them in parallel with classic techniques.

02/19/2014

75 Verification-Driven
Deficiency Reports

(Categorized by
First-to-Find
Verification

Methodology)

Directed
52%

FPGA
10%

Formal
21%

UVM
8%

SVA
9%

23

SYSTEMVERILOG ASSERTIONS
Our experiences with

02/19/2014 24

Basics of SystemVerilog Assertions

 Define Sequences of Events

 Express Properties in Terms of Sequences

 Assert Properties
 Check validity at specific points in time (procedurally)

 Check validity at all points in time (concurrently)

 Cover Sequences and Properties
 Count occurrence at specific points in time (procedurally)

 Count occurrence at any point in time (concurrently)

02/19/2014 25

Benefits of SVA-Based Verification

 Faster Verification
 Faster error alerts

 Reusability across verification methods

 Thoroughness
 Persistent property checking

 Support for complex property definitions

02/19/2014 26

Results from using SVA
 Insight

 Most issues were found when writing the assertions and realizing they
would fail, not when actually running the assertions

 “Once we started writing assertions, we started thinking
about our design in different ways.”

02/19/2014 27

SVA Example - Questa

Formal View

Assertion Thread View

Waveform View

02/19/2014 28

Drawbacks of SVA Language

 Support
 Constructs with limited vendor support

 Driven by demand, not language reference manual

 Example: “checker” block

 Inconsistent between tools

 Example: “assume” statement in a non-formal context

02/19/2014 29

FORMAL VERIFICATION
Our experiences with

02/19/2014 30

Basics of Formal Verification

 Prove Properties of a System
 User provides properties to assume and properties to assert

 State space is restricted by the assumed properties

 Formal tool explores the state space of the DUT

 Tries to reach the target properties in a mathematically provable way

 Three possible results returned by a formal analysis attempt

1. Property is proven true

2. Property is proven false, and a counterexample is provided

3. Attempt is inconclusive given the time

– Add more assumptions

– Partition the design further

– Refine the requirement

02/19/2014 31

Benefits of Formal Verification

 Exhaustive
 A formal result is a proof, not a simulation

 Provides Counterexamples
 Failures are illuminated, not just uncovered

 Formal tool provides a sequence of events that leads to the failure

02/19/2014 32

Results of Using Formal Verification

 Gives Insight into Design
 Shows how the design is logically partitioned

 Shows which parts of design are exercised by which assertions

 Shows how blocks of the design can be replaced with abstractions for
higher-level verification

 “It’s like shining a black light on your design. You can’t see
everything, but what you can see really shows up.”

02/19/2014 33

Results of Using Formal Verification

 Good for Security Applications
 “Always”/”never” results

 Good for Naturally Partitioned Designs
 Lowest levels of hierarchy

 Constructs that translate naturally to “assume” statements

 Modes of operation

 Hierarchy with proven abstractions

 “We weren’t even thinking of other techniques.”

02/19/2014 34

Formal: Catching a Bug

 Always (Reliability)
 The output will always transition following an authorized event

 Never (Security)
 The output will never transition unless an authorized event has

occurred.

authorized_event |=> $rose(output)

$rose(output) |-> $past(authorized_event)

Result: the circuit was shown to pass invalid data for one cycle following an alarm.

02/19/2014 35

Formal: Questioning an Assumption

Processor
(Master)

Local Bus

Slave Slave Slave

Simplifying assumption: the
processor, acting master, will never
read data from the same address it
wrote to in the previous address
cycle.

Question: Does this simplifying
assumption always hold true?

Result: the assumption was proven to always hold true, under all conditions.

02/19/2014 36

Formal: Proving Robustness
 Will the circuit behave properly in the presence of faults?

DUT

C
o

m
m

o
n

 o
u

tp
u

ts

R
e

d
u

n
d

a
n

t
in

p
u

ts
Fault targets

 Assertions
1. If the inputs do not match, the output will be inhibited.

2. If there is a single fault, property #1 will still hold.

 Findings
• Formal methods combined with fault injection found issues with fault

tolerance that would not have been found with other techniques

• Found problematic implementation of the correct design!

02/19/2014 37

Drawbacks of Formal Verification

 Impractical for Some Designs
 State space is enormous

 Counters, memories are especially vulnerable

 Limited support for ways to work around this problem

 Learning Curve
 Learn how to write formally verifiable properties

 Learn how to partition a design into formally verifiable blocks

 Learn how to use assumptions to restrict a problem

 (Still much easier than UVM!)

02/19/2014 38

THE UNIVERSAL VERIFICATION
METHODOLOGY (UVM)

Our experiences with

02/19/2014 39

Basics of UVM

 Constrained Random Verification

 Transaction-Level Modeling

 Complex Framework of Reusable Verification Components
 UVM Class Library

 Prepackaged components (agents, monitors, sequencers, drivers, etc.)

 Founded on object-oriented programming concepts

 Supports register layer modeling

 Intended to be highly extensible and reusable

 UVM Macros

 Streamline transaction-level operations

 Streamline reporting

02/19/2014 40

Benefits of UVM

 Extensibility
 Override classes to support alternate design

 Override classes to change stimulus

 Reusability
 Reuse framework in future designs and other tests

 Test different architectures without rewriting tests

 Test at an RTL-free level of abstraction

 Test a similar architecture with a completely different bus protocol

 Test a second spin of the design with different timing constraints

 Exercise new demands on the design without copying lots of code

 “We adopted UVM because modification of the requirements made it
hard to leverage from prototype versions.”

02/19/2014 41

Benefits of UVM

 Casts a Wide Net
 Well-positioned to deal with increasingly complex systems

 Finds corner cases that directed simulation does not look for

 Implement intelligent constraints and then run random transactions

 “We adopted UVM because success at first cut became critical for
overall cost and development time reduction.”

 Well Documented
 852-page UVM Class Reference

 Standardized
 Accellera UVM 1.1 Standard

02/19/2014 42

UVM Design Architecture

02/19/2014 43

Results from Using UVM

 Finding: Unexpected Behavior in SPI Subsystem
 Only occurred:

 In certain modes

 With certain parameter values

 Transmitting certain patterns of data

 An interaction we weren’t testing for!

02/19/2014 44

Drawbacks of UVM
 Very Steep Learning Curve

 Large framework of verification components to put in place

 Building a thorough checker is like redesigning the DUT

 Many classes, methods, and macros in the reference manual to learn

 Lots of “gotchas”

 e.g. Override the “body” method, but never call it directly

 Lots of redundant options - not clear which approaches are equivalent

 Hard to Debug
 An error might be:

 Faulty verification framework

 Faulty checker

 Faulty DUT

 In the finding in last slide, it took two weeks to determine it was a DUT
issue!

02/19/2014 45

THE UNIFIED COVERAGE DATABASE
(UCDB)

Our experiences with

02/19/2014 46

Basics of UCDB

 Mentor Graphics File Format

 Database File Generated by the Verification Tool

 Contains a Wide Variety of Coverage Data
 Code coverage

 Covergroups

 Assertions

 Formal results

 Can be Customized, Restricted, Merged, and Post-Processed

 Recently (2012) Standardized in Accellera UCIS 1.0 Standard
 UCISDB – Unified Coverage Interoperability Standard Database

02/19/2014 47

Benefits of UCDB

 Fewer Files
 All types of coverage in the same file

 Can be merged into a single database

 User-Defined Scope
 Can be limited to only the design units of interest

 Can be restricted to limit file size

 Post-Processing Features
 Customizable merging

 Test ranking

 Annotated code

02/19/2014 48

Results of Using UCDB

 Merge and Report Features Increased Efficiency
 Division of labor

 Easier missing coverage reporting

 Easier statistics tracking

 Future Direction: Integrate UCDB Data Into ReqTracer

02/19/2014

HVP

CD

HDD

RTL

Testbenches

100%

100%100%

69%
Questa Test Plan

UCDB

??%

??%

49

UCDB Flow

Pass/Fail

Assertions

Directed Tests Formal Tests

Assertions

Random Tests

Code
Coverage

Functional
Coverage

Pass/Fail

Assertions

Code
Coverage

Functional
Coverage

T1.ucdb

T2.ucdb

T3.ucdb

F1.ucdb

F2.ucdb

F3.ucdb

R1.ucdb

R2.ucdb

R3.ucdb

Merge.ucdb

Post-
Process

RESULTSRESULTS

02/19/2014 50

Coverage Tracking
Coverage Type Current Goal

Statement 99% 100%

Branch 97% 100%

Toggle 94% 100%

Expression 97% 85%

Covergroup 86% 100%

02/19/2014 51

Drawbacks of UCDB

 Complicated Post-Processing
 Data won’t make sense without:

 The right collection options

 The right exclusions

 The right merge options

 Limited Support
 Only recently standardized as UCISDB

 (Non-Mentor) Vendor support is limited

02/19/2014 52

Conclusion
Advanced Verification Techniques are:

 A Lot of Work

 ... For a Big Payoff!

02/19/2014

Directed
52%

FPGA
10%

Formal
21%

UVM
8%

SVA
9%

53

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Questions?

02/19/2014

