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InGaN Morphology Evolution and
Relationship to Light Emission

m-rmmr-:

L

Custom MOCVD growth to investigate InGaN morphology

Hypothesis: InGaN film structure influences the quantum efficiency of InGaN QW films.
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Growth differences between GaN and InGaN are, lower Both the dynamic diffraction fit and lack of change in K in the
temperature, higher NH;, no H,, slower growth rate (less total MO). k-space map indicate that the InGaN QW are coherently strained.
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Custom growth followed by structural verification (XRD and AFM) and optical
characterization (PL and variable temperature PL to measure internal quantum efficiency)
allows correlation between InGaN structure and quantum efficiency.

Determining Step Height Distributions on InGaN Underlayers with AFM

Use Power Spectral Density to Determine Smoothing Mechanism
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Example 1: MQWSs with Different GaN Barrier Growth Temperatures

Lower GaN barrier growth T increases
Higher GaN barrier growth temperature reduces V-defects in green MQWs the frequency of multi-layer steps

After only 6 nm of InGaN growth the
frequency of multi-layer steps increases.

A series of InGaN underlayers were grown on GaN templates ranging from 6 nm
thick up to 173 nm. The InGaN thickness and indium concentration were verified
by XRD and dynamic diffraction analysis. Metallic indium was removed using HCI.
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InGaN underlayers increase the short length scale MQWs on dilute indium InGaN Underlayers grown at both 790 °C and 880 °C both
PSD analysis shows lower GaN barrier growth T Higher GaN barrier growth T reduces Higher GaN barrier growth T produces roughness via a surface diffusion mechanism (n=4). underlayers produce increased increase the internal quantum efficiency of MQW

compared to MQWs grown directly on GaN.

is smoothed by surface diffusion (n=4). the PL emission intensity. smoother InGaN/GaN interfaces (n=2) PL emission.
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Future work: Further correlation between InGaN morphology and PL emission Conclusions for InGaN morphology and PL studies
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Calculated autocorrelation (right) of AFM scans (left) to determine if
direction and degree of step meandering can be quantified.
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