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Relevant Exascale Challenges

 CPU power/memory ratio increasing

 Increased cost of communication

 Heterogeneous Processing

 New devices (Intel Phi and GPUs)

 Uncertainty of future computer architectures
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See:
The Opportunities and Challenges of Exascale
Computing.  ASCAC Report



Goals

 Generate a miniapp representing some basic physics of Aero 
problems of interest to Sandia

 Evaluate the use of Kokkos as X in MPI+X

 Measure performance on different architectures including 
GPU. (MIC in future)



Equations
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Energy



Solution Method
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Flux

Flux 1

Volume 1

Flux 2

Volume 2 Volume 3

• Cell-centered
• 1st order in space
• Flux boundary conditions

Finite Volume:

Explicit RK4 Time Marching



Numerics Summary

 Fully 3D unstructured finite volume

 Runge-Kutta 4th order time marching

 Inviscid Roe Flux

 BCs: Supersonic inflow, supersonic outflow, and tangent flow



Program Design
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Mesh Generation

MPI Communicated Data/Map

• Face -> Element 
Connectivity

• Boundary Conditions
Ghosting ID -> Local ID

Host

Host -> Device
Communication

Device



Simple MPI Implementation

 Decompose in a single direction and use ghosting.
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Processor Boundary

1->2

1->2

2->1

2->1

1 2



Simple MPI Implementation(2)

 Ghosting data needs to be copied to/from device in order to 
send/receive over MPI.
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Ghosted Data

Ghosted Data

Host

Device All Element Data

HostMirror

Index Map

Ghosted Data

Other Processors

MPI



Kokkos – Data storage

Declaration:

Kokkos::View<double *[5], Device> residual("residual", ncells);

Access:

residual(15, 0)

miniAero examples:

face_cell_conn_

coordinates_

volumes_
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Kokkos - Functor
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template <class Device>
struct initialize_constant{

typedef Device     device_type;
typedef Kokkos::View<double *[5], device_type >  flow_var;

struct Cells<Device> cells_;
flow_var soln_,solnp1_;
double flow_state_[5];

initialize_constant(struct Cells<Device> cells, flow_var soln, flow_var solnp1, double * 
flow_state) :

cells_(cells),
soln_(soln),
solnp1_(solnp1)

{
for(int i=0; i<5; ++i)

flow_state_[i]=flow_state[i];
}

Constructor:



Kokkos – Functor(2)
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KOKKOS_INLINE_FUNCTION
void operator()( int i )const{
for(int j=0; j<5; j++)

soln_(i,j)=flow_state_[j];
for(int icomp=0; icomp<5; icomp++){

solnp1_(i,icomp)=soln_(i, icomp);
}

}
};

Construction and Dispatch:

initialize_constant<Device> init_fields(cells, sol_n_vec, sol_np1_vec, &inflow_state[0]);
parallel_for(nowned_cells, init_fields);

Actual Calculation:



Assembly – Thread safety

Flux

Flux 1

Volume 1

Flux 2

Volume 2 Volume 3

Options
1. Store fluxes at Faces.  Two loops – over faces and then over 

volumes.  Downside: Performance and need to store flux direction 
for each volume.

2. Stores fluxes for each face on volume.  Two loops – over 
faces and then over volumes.
Downside: Increased memory use

3. Atomic operations.  Single loop over faces and no additional 
memory required.
Downside: Could be slow with large number of conflicts.



Summary of Code

 C++ - lines of code - 3370

 Minimal dependencies – only on Kokkos.

 Mesh and data structures generated on host then moved to 
Kokkos Views.

 Physics kernels are functors -> flexible

 Use of templates for device and algorithm choices.



Performance – Node Parallel

 Pre-MPI implementation

 Run on Curie
 16-core 2.1GHz 64bit AMD Opteron 6200 CPU's

 NVIDIA Kepler - Tesla K20X
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3D Shock Tube Problem

nx = 100, ny = 20, nz = 20, 40000 
elements.  
500 timesteps

Cell Storage Atomics

Time Speedup Time Speedup

CPU – 1 thread 203s 1x 218s 1x

CPU – 4 threads 91s 2.2x 126s 3.5x

CPU – 8 threads 64s 3.2x 33s 6.6x

CPU – 16 threads 44s 4.6x 16s 13.6x

GPU 7s 29x 6s 36x

Timings on Curie (16 core AMD and NVIDIA Kepler - Tesla K20X)

6.3x 2.7x

Performance:



3D Ramp

nx = 50, ny = 50, nz = 25
62500 elements
500 timesteps
192500 faces
182500 edges

miniAero Conchas

Blade 1-CPU 221s 397.0s

Blade 8-CPU 33s 63.0s

Curie GPU 9s

Performance:

~6.5x

GPU is
~45x faster
than current
single core
Conchas~6.7x



Performance - MPI+X
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 Mainly to test MPI implementation

 Run on Curie
 16-core 2.1GHz 64bit AMD Opteron 6200 CPU's

 NVIDIA Kepler - Tesla K20X

 Run on Chama
 Dual socket 2.6 GHz Intel Sandy Bridge



MPI+X (GPU)

nx = 1000, ny = 64, nz = 64, 
~4 million elements.  
5000 explicit RK4 timesteps
Decomposed in x direction
Hybrid MPI/GPU

Setup Run

Nodes (MPI Ranks 
and GPU cards)

Time Speedup Time Speedup

1 107s 1x 2723s 1x

2 83s 1.3x 1455s 1.9x

4 50s 2.1x 708s 3.8x

8 35s 3x 369s 7.4x

All timings on Curie (16 core AMD and NVIDIA Kepler - Tesla K20X)

Performance:



3D Ramp Problem - Conchas

nx = 1024, ny = 64, nz = 64, 
~4 million elements.  
500 explicit RK4 timesteps
Decomposed in x direction

All timings on Chama(16 core dual-socket 2.6 GHz Intel Sandy Bridge)

STK-based Conchas:

Nodes MPI Ranks Runtime(s) Speedup

1 16 2042 1x

4 64 619 3.3x

8 128 324 6.3x

16 256 183 11.1x

32 512 109 18.7x

64 1024 78 26.2x
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MiniAero – MPI+X(Pthreads)
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Nodes MPI Ranks Threads/Ran
k

Runtime(s) Speedup

1 1 1 7563 1x

64 1024 1 25 302.0x

64 64 16 12 630.2x



Summary

 Kokkos – Promising for programming on heterogenous
architectures

 Thread safety required

 Finite volume method (explicit) amenable to threading, both 
CPU and GPU

 GPU speedups can be huge

 MPI everywhere breaks down
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Future Plans

 Further performance evaluation (strong/weak scaling, GPU 
performance, threading performance)

 Additional Hardware Porting and Testing (MIC, Blue Gene Q, 
Titan)

 Smarter mesh decomposition and ghosting

 Simple Linear Solver – Point Implicit Solver

 Additional Physics (viscous, LES, second-order space)
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Questions
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