
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

miniAero:MPI+X with Kokkos

Ken Franko

SAND2014-1040P

Outline

 Motivation/Challenges

 Mathematical Problem/Numerical Method

 Code Design

 Kokkos Example

 Performance

 Conclusions

2

Relevant Exascale Challenges

 CPU power/memory ratio increasing

 Increased cost of communication

 Heterogeneous Processing

 New devices (Intel Phi and GPUs)

 Uncertainty of future computer architectures

3

See:
The Opportunities and Challenges of Exascale
Computing. ASCAC Report

Goals

 Generate a miniapp representing some basic physics of Aero
problems of interest to Sandia

 Evaluate the use of Kokkos as X in MPI+X

 Measure performance on different architectures including
GPU. (MIC in future)

Equations

5

Mass

Momentum

Energy

Solution Method

6

Flux

Flux 1

Volume 1

Flux 2

Volume 2 Volume 3

• Cell-centered
• 1st order in space
• Flux boundary conditions

Finite Volume:

Explicit RK4 Time Marching

Numerics Summary

 Fully 3D unstructured finite volume

 Runge-Kutta 4th order time marching

 Inviscid Roe Flux

 BCs: Supersonic inflow, supersonic outflow, and tangent flow

Program Design

8

Mesh Generation

MPI Communicated Data/Map

• Face -> Element
Connectivity

• Boundary Conditions
Ghosting ID -> Local ID

Host

Host -> Device
Communication

Device

Simple MPI Implementation

 Decompose in a single direction and use ghosting.

9

Processor Boundary

1->2

1->2

2->1

2->1

1 2

Simple MPI Implementation(2)

 Ghosting data needs to be copied to/from device in order to
send/receive over MPI.

10

Ghosted Data

Ghosted Data

Host

Device All Element Data

HostMirror

Index Map

Ghosted Data

Other Processors

MPI

Kokkos – Data storage

Declaration:

Kokkos::View<double *[5], Device> residual("residual", ncells);

Access:

residual(15, 0)

miniAero examples:

face_cell_conn_

coordinates_

volumes_

11

Kokkos - Functor

12

template <class Device>
struct initialize_constant{

typedef Device device_type;
typedef Kokkos::View<double *[5], device_type > flow_var;

struct Cells<Device> cells_;
flow_var soln_,solnp1_;
double flow_state_[5];

initialize_constant(struct Cells<Device> cells, flow_var soln, flow_var solnp1, double *
flow_state) :

cells_(cells),
soln_(soln),
solnp1_(solnp1)

{
for(int i=0; i<5; ++i)

flow_state_[i]=flow_state[i];
}

Constructor:

Kokkos – Functor(2)

13

KOKKOS_INLINE_FUNCTION
void operator()(int i)const{
for(int j=0; j<5; j++)

soln_(i,j)=flow_state_[j];
for(int icomp=0; icomp<5; icomp++){

solnp1_(i,icomp)=soln_(i, icomp);
}

}
};

Construction and Dispatch:

initialize_constant<Device> init_fields(cells, sol_n_vec, sol_np1_vec, &inflow_state[0]);
parallel_for(nowned_cells, init_fields);

Actual Calculation:

Assembly – Thread safety

Flux

Flux 1

Volume 1

Flux 2

Volume 2 Volume 3

Options
1. Store fluxes at Faces. Two loops – over faces and then over

volumes. Downside: Performance and need to store flux direction
for each volume.

2. Stores fluxes for each face on volume. Two loops – over
faces and then over volumes.
Downside: Increased memory use

3. Atomic operations. Single loop over faces and no additional
memory required.
Downside: Could be slow with large number of conflicts.

Summary of Code

 C++ - lines of code - 3370

 Minimal dependencies – only on Kokkos.

 Mesh and data structures generated on host then moved to
Kokkos Views.

 Physics kernels are functors -> flexible

 Use of templates for device and algorithm choices.

Performance – Node Parallel

 Pre-MPI implementation

 Run on Curie
 16-core 2.1GHz 64bit AMD Opteron 6200 CPU's

 NVIDIA Kepler - Tesla K20X

16

3D Shock Tube Problem

nx = 100, ny = 20, nz = 20, 40000
elements.
500 timesteps

Cell Storage Atomics

Time Speedup Time Speedup

CPU – 1 thread 203s 1x 218s 1x

CPU – 4 threads 91s 2.2x 126s 3.5x

CPU – 8 threads 64s 3.2x 33s 6.6x

CPU – 16 threads 44s 4.6x 16s 13.6x

GPU 7s 29x 6s 36x

Timings on Curie (16 core AMD and NVIDIA Kepler - Tesla K20X)

6.3x 2.7x

Performance:

3D Ramp

nx = 50, ny = 50, nz = 25
62500 elements
500 timesteps
192500 faces
182500 edges

miniAero Conchas

Blade 1-CPU 221s 397.0s

Blade 8-CPU 33s 63.0s

Curie GPU 9s

Performance:

~6.5x

GPU is
~45x faster
than current
single core
Conchas~6.7x

Performance - MPI+X

19

 Mainly to test MPI implementation

 Run on Curie
 16-core 2.1GHz 64bit AMD Opteron 6200 CPU's

 NVIDIA Kepler - Tesla K20X

 Run on Chama
 Dual socket 2.6 GHz Intel Sandy Bridge

MPI+X (GPU)

nx = 1000, ny = 64, nz = 64,
~4 million elements.
5000 explicit RK4 timesteps
Decomposed in x direction
Hybrid MPI/GPU

Setup Run

Nodes (MPI Ranks
and GPU cards)

Time Speedup Time Speedup

1 107s 1x 2723s 1x

2 83s 1.3x 1455s 1.9x

4 50s 2.1x 708s 3.8x

8 35s 3x 369s 7.4x

All timings on Curie (16 core AMD and NVIDIA Kepler - Tesla K20X)

Performance:

3D Ramp Problem - Conchas

nx = 1024, ny = 64, nz = 64,
~4 million elements.
500 explicit RK4 timesteps
Decomposed in x direction

All timings on Chama(16 core dual-socket 2.6 GHz Intel Sandy Bridge)

STK-based Conchas:

Nodes MPI Ranks Runtime(s) Speedup

1 16 2042 1x

4 64 619 3.3x

8 128 324 6.3x

16 256 183 11.1x

32 512 109 18.7x

64 1024 78 26.2x

 0

 10 20 30 40 50 60 70 0
 10

 20
 30

 40
 50

 60
 70

S p e e d U p

Nodes

Conchas
Ideal

MiniAero – MPI+X(Pthreads)

22
 0

 200

 400

 600

 800

 1000

 1200 0
 200

 400
 600

 800
 1000

 1200

S p e e d U p

Processors

MPI only
MPI + PThreads

Ideal

Nodes MPI Ranks Threads/Ran
k

Runtime(s) Speedup

1 1 1 7563 1x

64 1024 1 25 302.0x

64 64 16 12 630.2x

Summary

 Kokkos – Promising for programming on heterogenous
architectures

 Thread safety required

 Finite volume method (explicit) amenable to threading, both
CPU and GPU

 GPU speedups can be huge

 MPI everywhere breaks down

23

Future Plans

 Further performance evaluation (strong/weak scaling, GPU
performance, threading performance)

 Additional Hardware Porting and Testing (MIC, Blue Gene Q,
Titan)

 Smarter mesh decomposition and ghosting

 Simple Linear Solver – Point Implicit Solver

 Additional Physics (viscous, LES, second-order space)

24

Acknowledgements

 Micah Howard – SPARC

 Carter Edwards, Dan Sunderland and Christian Trott – Kokkos
Team

 Co-design project

 Rob Hoekstra and Ryan Bond

 Pat Notz

25

Questions

26

