
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

ApplicationApplication--Level Data ServicesLevel Data Services
Approved for Public Release SAND2010Approved for Public Release SAND2010--XXXXPXXXXP

Staging Meeting

July 16, 2010

Ron Oldfield
Sandia National Laboratories

Sandia National Laboratories
Projects supported by ASC and LDRD programs

SAND2010-4677P

ApplicationApplication--Level Data ServicesLevel Data Services
Our I/O Research is About Reducing I/OOur I/O Research is About Reducing I/O

Application-Level Data Services
– Leverage available compute/service node

resources for I/O caching and data processing

Network Scalable Service Interface (Nessie)
– Developed for the Lightweight FS Project

– Framework for HPC client/server development

– Designed for scalable data movement

– Asynchronous RPC-like API

Examples
– Preprocessing for seismic imaging

– netCDF caching service

– SQL Proxy for HPC/Database Integration

– CTH Particle tracking

– Sparse-matrix viz, real-time network analysis

Client Application
(compute nodes) I/O Service

(compute/service nodes)

Raw
Data

Processed
Data

Lustre File
System

Cache/aggregate
/process

Visualization
Client

2

ApplicationApplication--Level Data ServicesLevel Data Services
We did this for Salvo Seismic Imaging (circa 1996)We did this for Salvo Seismic Imaging (circa 1996)

Salvo’s I/O Partition
– Partition of application processors

(used separate MPI Communicator for I/O)

– Used for FFT, I/O cache, and interpolation

– Async I/O allowed overlap of I/O and
computation (pre-process next step)

Results
– +10% nodes led to +30% in performance

– Modeling I/O and compute costs helped find
the right balance of compute and I/O nodes

Contacts: Ron Oldfield, Curtis Ober

{raoldfi,ccober}@sandia.gov

Migration
(compute nodes) I/O Partition

(compute nodes)

Frequency
Data

Time traces

I/O
Nodes

FFT

Oldfield, et al. Efficient parallel I/O in seismic imaging.
The International Journal of High Performance Computing
Applications, 12(3), Fall 1998

ApplicationApplication--Level Data ServicesLevel Data Services
NetCDF I/O Cache NetCDF I/O Cache

NetCDF Caching Service
– Service aggregates/caches data

and pushes data to storage

– Async I/O allows overlap of I/O
and computation

Client Application
(compute nodes) NetCDF Service

(compute nodes)

NetCDF
requests

Processed
Data

Lustre File
SystemCache/aggregate

Motivation
– Synchronous I/O libraries require app to wait

until data is on storage device

– Not enough cache on compute nodes to handle
“I/O bursts”

– NetCDF is basis of important I/O libs at Sandia
(Exodus)

4

ApplicationApplication--Level Data ServicesLevel Data Services
CTH Fragment DetectionCTH Fragment Detection

Motivation
– Fragment detection requires data from every

time step (I/O intensive)

– Detection process takes 30% of time-step
calculation (scaling issues)

– Integrating detection software with CTH is
intrusive on developer

CTH fragment detection service
– Extra compute nodes provide in-line processing

(overlap fragment detection with time step
calculation)

– Only output fragments to storage (reduce I/O)

– Non-intrusive

• Looks like normal I/O (spymaster interface)

• Can be configured out-of-band

Status
– Developing client/server stubs for spymaster

– Developing Paraview proxy service

CTH
(compute nodes)

Fragment-Detection
Service

(compute nodes)

Raw
Data

Fragment
Data Lustre File

System

Detect
Fragments

Visualization
Client

spymaster

Fragment detection service provides
on-the-fly data analysis with no
modifications to CTH.

5

ApplicationApplication--Level Data ServicesLevel Data Services
A Database Service for NISAC/NA Database Service for NISAC/N--ABLEABLE

• Model economic impact of disruptions in infrastructure

– Changes in U.S. Border Security technologies

– Terrorist acts on commodity futures markets

– Transportation disruptions on regional agriculture and
food supply chains

– Optimized military supply chains

– Electric power and rail transportation disruptions on
chemical supply chains

• Compute and data challenges
– Models economy to the level of the individual firm

– Model transactions from 10s of millions of companies

– Simulation data ingested into DB for analysis

– DB ingest is bottleneck (10x time to simulate data)

– Time to solution is critical… want answers in hours

Hybrid Architecture Evolution for Hybrid Architecture Evolution for
Database ServicesDatabase Services

Research Questions (yet to be answered)

– What ingest rates will keep up with scientific workloads?

– Where are bottlenecks? Between host and S-BLADE?

– What software/networking infrastructure will resolve the bottlenecks?

An evolving architecture to support rapid ingest for HPC workloads

1) Stage data to FS during sim, bulk load to DB after. (post-processing)

2) SQL Server sends ODBC requests to remote Netezza (slow network to host)

3) SQL Server becomes host (fast access to host, slow to S-BLADEs)

4) Multiple service-node hosts (parallel access to back-end S-BLADEs)

5) Really wacky! Hosts and S-BLADEs on fast network (fully integrated)

Compute (n)
Service

Users

File I/O (m)

/home © Netezza Corporation

NZ HostS-Blades

How Can System Software Help?How Can System Software Help?

• Issues that could be addressed by system software for HPC
– Where/how to run services

• Special partition of nodes (e.g., node pool). How many, how big, …

• Dynamic allocation for on-demand services

• Static allocation (have this now, we can coordinate service with application)

• Placement is important (need to expose topology and control over placement)

– Communication with services
• Currently using low-level APIs (Portals, IB, …)

• Need a standard API for “efficient” intra-process comm (MPI?)
– Current solns: Portals, InfiniBand

• Avoiding network/storage contention (scheduling, placement support)

– Programming models for data services
• ADIOS, MPI (w/extensions), RPC

8

