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Highlights
1. Laser annealing can reduce dark current in damaged Si 

sensors by 10x
 100x in some cases with low reverse bias voltage

2. Laser annealing and phase tuning of Si waveguides
 Longitudinal phase control of ≈15 mrad/pulse
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Outline

 Targeted application 

 Background and prior work

 How it works

 Results
 Modeling

 Experimental

 Future direction

“Dark” counts for a MWIR MCT 
focal plane array



Motivation for Laser Annealing in Si
 Optical sensors sustain damage from

 Manufacturing 

 Adversarial threats

 Radiation

 On orbit

 Space travel

 Nuclear power supplies

Mars rover Chem-Cam data taken on 
earth and on Mars after 254 days of space 
travel and 75 days on the Martian surface.

Spike is from sensor damage acquired 
during space travel, surface exposure or 
radiation from on board radioisotope 
thermoelectric generator (RTG).

Laser annealing offers an option to 
reduce effects from these sources of 

damage
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Previous work in annealing

this project

What others have done with laser annealing

• Lasers used to tune spectral response
• Dopant activation
• Lattice repair from machine damage

Thermal annealing work in semiconductors

other work

Method Pixel 
specific

Low thermal 
diffusion

ROIC
insensitive

Furnace
Flashlamp
CW laser
Pulsed laser
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single crystal
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removal
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dislocations
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Incoming 
radiation
Incoming 
radiation

HeatingHeating

Thermal 
stress

Thermal 
stress

Lattice defectsLattice defects

Additional current 
from generation-
recombination

Additional current 
from generation-
recombination

Si
atoms

Vacancy

Impurity on substitutional site

Frenkel defect

Si interstitial

Impurity at interstitial site

Trapping 
centers

Trapping 
centers

The physical origin of defects
for lasers with ns – CW pulse durations (different mechanism for fs pulses)



What is the thermal profile in Si after 
impulse excitation?
-COMSOL Simulation Physics

 Thermal physics using classical Heat Equation:

 Optical absorption:

 Carrier dynamics:  

 Dopant diffusion:

 Temperature dependent parameters: 
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In addition we take into account…

-50 0 50 100 150 200 250 300

0.0

0.5

1.0

1.5

2.0

2.5

 Microlaser Q-switch pulse
at 1064nm, 200 J, 20 m dia.

In
te

n
s

it
y

 (
G

W
/c

m
2
)

Time (ns)

Pulse duration [1/e
2
] = 30.2 ns

Pulse duration [FWHM] = 10.6 ns

Microlaser Temporal Profile

p-layer
(boron) n-layer

depletion layer
positive 
electrode
(anode)

insulator

negative
electrode
(cathode)

-- -

+

+

incident light test diode
cross-section

Device cross-section

Device
top view

Model of heat generation with
1. Free-carrier absorption

2. e-h recombination
3. Carrier relaxation

model input

1. Laser pulse parameters

2. Device structure

100 ns duration



Additional modeling results

10

Model of boron diffusion in Si shows no unwanted 
diffusion of B away from the junction.

Photo-carriers are created throughout sample depth 
due to weak absorption in Si @ 1064 nm.

200 ns duration

10 μs duration

200 ns duration



Experimental setup
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Observed typical laser damage 
threshold in Si
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At higher fluence electrical damage 
can be partially reversed
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Laser annealing reduces 
damage by 10X
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What’s going on beneath the surface?



Failure analysis reveals junction at damage

a) Junction cross-section
b) Dark current from damage
c) Morphology of damage
d) Damage crater depth profile

Official Use Only

Official Use Only



Si reflow from laser anneal
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FIB cut and SEM cross-
section



Cross-sectional SEM analysis of 
annealing
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Damaged Damaged + Annealed

Observation of subsurface void defect Uniform cross-section



TEM images show subsurface defects
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Spatially offset annealing can give 
greater reduction in dark current
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Longitudinal phase tuning of optical 
waveguides in Si

Silicon waveguides

Waveguides have random 
phase error due to 

inhomogeneity of Si

Local laser anneal 
tunes waveguide 

propagation phase 
by melting and re-

growing Si 

Waveguides must be 
tuned to have the same 

phase
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Longitudinal phase tuning of optical 
waveguides in Si

Fringe pattern shifting indicates 
change in propagation phase
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Summary & future work

 Laser annealing in Si
 Reduced dark current in damaged Si photodiodes by 10-100x

 Tune longitudinal phase propagation in Si waveguides

 Future work: transition to HgCdTe (MCT)
 Build tunable system suitable for MCT bandgap

 Adapt thermal electro optic model to MCT

 Initial testing with photodiodes

 Anneal IR focal plane arrays.
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