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Highlights

1. Laser annealing can reduce dark current in damaged Si
sensors by 10x

= 100x in some cases with low reverse bias voltage

2. Laser annealing and phase tuning of Si waveguides

» Longitudinal phase control of =15 mrad/pulse
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= Results
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= Future direction

“Dark” counts fora MWIR MCT
focal plane array




Motivation for Laser Annealing in Si

= QOptical sensors sustain damage from

= Manufacturing Mars rover Chem-Cam data taken on
= Adversarial threats earth and on Mars after 254 days of space
. travel and 75 days on the Martian surface.
= Radiation Chem-Cam UV spectrometer, dark collect*
" On orbit 10 — Earth

M damaged pixel |
= Space travel — | qee P

* Nuclear power supplies ::
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Laser annealing offers an option to

reduce effects from these sources of | | | |
damage Wavelength (a.u.)

*Private communication with Chem-Cam team member

Spike is from sensor damage acquired

during space travel, surface exposure or
- radiation from on board radIOIsotope
thermoelectric generator (RTG).




Previous work in annealing

What others have done with laser annealing

» Lasers used to tune spectral response
« Dopant activation
« Lattice repair from machine damage

Thermal annealing work in semiconductors

Method Pixel Low thermal ROIC
specific diffusion insensitive
Furnace
other work{ Flashlamp / /
CW laser v/ /
this project ~—> | Pulsed laser v V4 V4




“hot” pixels/clusters

targeted laser
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The physical origin of defects

for lasers with ns — CW pulse durations (different mechanism for fs pulses)

Incoming Thermal Trapping
radiation stress centers

Additional current
from generation-
Heating Lattice defects recombination

Impurity at interstitial site
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What is the thermal profile in Si after
impulse excitation?
-COMSOL Simulation Physics

= Thermal physics using classical Heat Equation: oT _ M oyrry G
ot pcp pCy
. . ol
= Optical absorption: 9y —(a+oU)I
= Carrier dynamics: 6_u — D V2y— 2 4+
y : 6t T a T, Q

. . ~ Vng vT
= Dopant diffusion: J& =nkvk = —nk (ch— + 937)

Ny

= Temperature dependent parameters:
Dy (Np + Ny, T'), 74 (4y Npy Ny, T), Eq (1), 6 (T), p(T) and ¢, (T')




In addition we take into account...

S-4800 10.0kV 18.4mm x50 SE(M)
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Additional modeling results
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Experimental setup

« Complete computer control
* 0.5 ym resolving power
5 um laser spot size

passively Q-switched Nd:YAG

Laser is used to both create and
anneal damage

translation stage

- DUT
dichroic BS

microscope
objective
20x

beam
expander
(optional)

iris 1 broadband

LED source

photodiode 1

oscilloscope

- h e BE s , @ -___:(. == .
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/ readout
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function
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Observed typical laser damage
threshold in Si

Si Photodiode Multi-shot Damage Probability
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At higher fluence electrical damage
can be partially reversed

Dark Current Reduction, Si Photodiode Laser Annealing of Optical Damage in Si
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Laser anneali ng reduces BULEIEECLITAEEEEGRGEET Ry
damage by 10X Damaged
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Official Use Only

Failure analysis reveals junction at damage

u 532 nm Damage, Single location exposure

1691

a) Junction cross-section

b) Dark current from damage
c) Morphology of damage

d) Damage crater depth profile
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Si reflow from laser anneal

FIB cut and SEM cross-
section
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Cross-sectional SEM analysis of
annealing

Damaged | Damaged + Annealed

Observation of subsurface void defect Uniform cross-section




TEM images show subsurface defects
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Spatially offset annealing can give
greater reduction in dark current

Dark Current (A)

Photodiode 29 - Spatially Offset Anneal
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Longitudinal phase tuning of optical
waveguides in Si

Antenna
Input Silicon waveguides Spectrum
RF Signal Lens "g(f)
cw _ %
Light <:->-— 1:N
IOM

_ Local laser anneal
Waveguides have random

Waveguides must be tunes waveguide
‘phase error due to tuned to have the same propagation phase
inhomogeneity of Si phase by melting and re-
\ ' J growing Si
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Longitudinal phase tuning of optical
waveguides in Si

Annealing results: 220 laser pulses
O waw: : —— .

optical image of Si waveguide
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Summary & future work

= Laser annealing in Si

= Reduced dark current in damaged Si photodiodes by 10-100x

= Tune longitudinal phase propagation in Si waveguides

= Future work: transition to HgCdTe (MCT)

= Build tunable system suitable for MCT bandgap .. cnergy ;
= Adapt thermal electro optic model to MCT T monitor._ E E N
"y L . i T R
= |nitial testing with photodiodes T e BN
= Anneal IR focal plane arrays. O § § E
i i N
: , N
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