
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed 
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. 

Application Memory Analysis
E. Cooper-Balis

Micron
S.D. Hammond, B.J. Moore, A.F. Rodrigues and D.R. Resnick

Scalable Computer Architectures
Sandia National Laboratories, NM

D. Joseph
IBM, Austin

SAND2014-0622P



Outline

 Overview of the Research Problem
 Describing why are we trying to generate traces of memory?

 Toolkit and Simulation Discussion

 Application Work

 Results and Analysis – Doug Joseph will discuss

 Wrap Up and Questions?



Problem Context

 Want to understand the performance of memory
 Note – this is not the full memory hierarchy or memory subsystem

 New memory technologies – think HMC, AMC, HBM etc

 Opportunities for optimization (buffering, queuing, coalescing etc)

 Means we need to extract addresses arriving at the actual 
memory components
 Filtered for cache efficiencies

 Potentially augmented with memory subsystem prefetching

 Aligned with the coherency protocol used in the system

 Trace the addresses and save for replaying in optimization study

 Need a fair amount of addresses to make this exercise worth it



Typical Methods

 “Roofline” estimates – approximate guesses from counters

 Trace all of an application’s memory requests (e.g. PIN, SunShade, 
Valgrind etc)
 But… this means you don’t get cache filtering, problem for busy-wait loops, 

highly cache friendly codes, blocking, prefetching etc

 Hard to work out cost of coherency/coherency effects

 Means your results can lose accuracy, especially for “optimized” codes

 Apply a simple cache filter to a memory trace
 Better accuracy but still can yield poor results for timing, coherency etc

 Ideal: a fast cycle accurate simulator
 Requirement for long duration of simulation makes full cycle accurate 

simulation very expensive – we need something cheaper



APPLICATION MEMORY ANALYSIS



Lightweight Processor Core

 Ideal: a fast cycle accurate simulator
 Requirement for long duration of simulation makes full cycle accurate 

simulation very expensive – we need something cheaper

 This implies a lightweight processor core emulator
 Gives reasonable approximation to an out-of-order core behavior

 Requires limited instruction decode (sufficient to extract information)

 Works will existing binaries – want (well) optimized applications

 Supports multi-threaded OpenMP execution

 Supports approximated virtual to physical address translation

 Events from processor core drive a more accurate model of the 
memory subsystem



Lightweight Processor Core

 We utilize a set of custom tools based on Intel’s PIN library and 
XED2 X86 decoder (“Ariel” front-end)
 Enables extraction of memory requests and virtual addresses

 Enables blocking of requests into instructions so we can control issue rate

 Ariel then offloads output of application analysis into the SST 
simulation toolkit

 The Ariel back-end then:
 Maps virtual addresses to physical locations

 Issues memory requests into the L1 caches

 Causes back-pressure into the front-end when core resources are all busy

 Control issues rates, queues etc to approximate performance



Cache Models

 The SST Toolkit includes a variety of cache models:
 Simple caches with limited to no coherency (for emulation)

 Traditional Cache models which implement MESI protocol

 Advanced research caches – different caching schemes, eviction policies, 
flexible coherency, cache filtering mechanisms etc

 For these experiments we are using the traditional cache models

 Caches can be connected using:
 Traditional buses

 Point-to-point on-chip networking (“NoC”)



Memory Models

 SST implements several memory models:
 Simple memories which have a fixed latency before returning requests, 

bandwidth dictated by frequency of processing

 Cycle-accurate models of DRAM (using DRAMSim)

 Models for advanced memory technologies including NVRAM, GDDR and 
others

 For these experiments we utilize a cycle-accurate DRAM model 
set to perform at DDR3-1600
 Easy to change and we can do coarser analysis using simple memory 

models when required



Tracing Configuration

OpenMP Application
(OMP_NUM_THREADS)

…

ArielCore
(One per virtual core)

ArielCPU

Address, Command, Instruction Stream
(One per thread)

… …
Memory

(DDR3-1600)
Memory

ControllerL3
L2

(Per Core)
L1

(Per Core)

Runs on real
hardware

A
ri
e
l P

IN
/X

E
D

2
 T

o
o
ls

Cycle Clocked
Simulation



Tracing Configuration

OpenMP Application
(OMP_NUM_THREADS)

…

ArielCore
(One per virtual core)

ArielCPU

Address, Command, Instruction Stream
(One per thread)

… …
Memory

(DDR3-1600)
Memory

ControllerL3
L2

(Per Core)
L1

(Per Core)

Runs on real
hardware

A
ri
e
l P

IN
/X

E
D

2
 T

o
o
ls

Cycle Clocked
Simulation

Using SST cache and memory listening interfaces we can trap traces at any point
during execution (to file, screen, UNIX pipes, etc)

Trace File
Physical address, R/W, 
size and timing



Ariel Cores

 Provide an approximate page allocation mechanism so we can 
investigate virtual-to-physical layout challenges
 “Basic mode” – trap virtual addresses you have not seen before, allocate 

and page and then map

 “Intermediate mode” – use a special memory allocation on a per-data 
structure basis to run “special” page allocations (application can include 
hints in request)

 “Full mode” – intercept malloc, calloc, realloc, posix_memalign etc, and 
then use these to produce a mapping in memory

 Generally basic mode is sufficient for this kind of study
 More advanced work in our research labs investigating “smarter” 

strategies using the above



Ariel CPU

 Receives stream of instructions, hints etc from the running 
program via a UNIX pipe (which causes back pressure)

 Aggregates and schedules to improve performance

 Allocates instructions and requests to the various CPU cores 
ensuring core resources remain respect (e.g. queues, pending 
requests etc)

 Handles special function communication (e.g. “malloc”)



Application Work

 Using NNSA and Office of Science mini-applications and 
benchmarks as a first cut
 AMG 2013

 UMT 2013

 MiniFE

 LULESH

 CoMD

 SNAP

 Traces are for 8-core OpenMP runs (approximately one Sandy 
Bridge)

 Replicate those trace instances with address shifts to 
approximate many MPI ranks on same memory system



Analysis Results

 Doug Joseph (IBM) and Elliott Cooper-Balis (Micron) are working 
with the traces and will give an overview of initial analysis

 Plans are to increase scale of simulation and complexity of 
processor design
 Considering approximation of a POWER8 node

 Possible heavily multi-core chip

 Increase application complexity

 http://www.sst-simulator.org

http://www.sst-simulator.org
http://www.sst-simulator.org
http://www.sst-simulator.org



