SAND2014- 0622P

Sandia

Exceptional service in the national interest National
Lahoratories

-i-l ‘- I1 “]“..ru!""'"'

Application Memory Analysis

D. Joseph E. Cooper-Balis S.D. Hammond, B.J. Moore, A.F. Rodrigues and D.R. Resnick
IBM, Austin Micron Scalable Computer Architectures
Sandia National Laboratories, NM

1 TEPRATMENT OF ) v

£ 0
HERG? ‘TR .: Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
e S g Wary—rra i Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.




Outline h) .

= Qverview of the Research Problem

= Describing why are we trying to generate traces of memory?

= Toolkit and Simulation Discussion

= Application Work

= Results and Analysis — Doug Joseph will discuss

= Wrap Up and Questions?




Sandia
| Katioral
Laboratones

Problem Context

= Want to understand the performance of memory
= Note —this is not the full memory hierarchy or memory subsystem
= New memory technologies — think HMC, AMC, HBM etc
= QOpportunities for optimization (buffering, queuing, coalescing etc)

= Means we need to extract addresses arriving at the actual

memory components
= Filtered for cache efficiencies
= Potentially augmented with memory subsystem prefetching

= Aligned with the coherency protocol used in the system
= Trace the addresses and save for replaying in optimization study

= Need a fair amount of addresses to make this exercise worth it



Typical Methods ) .

= “Roofline” estimates — approximate guesses from counters
= Trace all of an application’s memory requests (e.g. PIN, SunShade,
Valgrind etc)

= But... this means you don’t get cache filtering, problem for busy-wait loops,
highly cache friendly codes, blocking, prefetching etc

= Hard to work out cost of coherency/coherency effects
= Means your results can lose accuracy, especially for “optimized” codes
= Apply a simple cache filter to a memory trace

= Better accuracy but still can yield poor results for timing, coherency etc

= |deal: a fast cycle accurate simulator

= Requirement for long duration of simulation makes full cycle accurate
simulation very expensive — we need something cheaper



Sandia
| Katioral
Laboratones

APPLICATION MEMORY ANALYSIS




Lightweight Processor Core ) .

= |deal: a fast cycle accurate simulator

Requirement for long duration of simulation makes full cycle accurate
simulation very expensive — we need something cheaper

= This implies a lightweight processor core emulator

Gives reasonable approximation to an out-of-order core behavior
Requires limited instruction decode (sufficient to extract information)
Works will existing binaries — want (well) optimized applications
Supports multi-threaded OpenMP execution

Supports approximated virtual to physical address translation

= Events from processor core drive a more accurate model of the
memory subsystem




Lightweight Processor Core ) .

= We utilize a set of custom tools based on Intel’s PIN library and
XED2 X86 decoder (“Ariel” front-end)
= Enables extraction of memory requests and virtual addresses
= Enables blocking of requests into instructions so we can control issue rate

= Ariel then offloads output of application analysis into the SST
simulation toolkit

= The Ariel back-end then:
= Maps virtual addresses to physical locations
= |ssues memory requests into the L1 caches
= Causes back-pressure into the front-end when core resources are all busy
= Control issues rates, queues etc to approximate performance




Sandia

Cache Models ) i,

= The SST Toolkit includes a variety of cache models:
= Simple caches with limited to no coherency (for emulation)
= Traditional Cache models which implement MESI protocol

= Advanced research caches — different caching schemes, eviction policies,
flexible coherency, cache filtering mechanisms etc

= For these experiments we are using the traditional cache models

= Caches can be connected using:
= Traditional buses
= Point-to-point on-chip networking (“NoC”)



Memory Models h) i,

= SST implements several memory models:

= Simple memories which have a fixed latency before returning requests,
bandwidth dictated by frequency of processing

= Cycle-accurate models of DRAM (using DRAMSim)

= Models for advanced memory technologies including NVRAM, GDDR and
others

= For these experiments we utilize a cycle-accurate DRAM model
set to perform at DDR3-1600

= Easy to change and we can do coarser analysis using simple memory
models when required




Tracing Configuration ) 5.

ArielCore
(One per virtual core)

Address, Command, Instruction Stream
g (One per thread) /
2 N )
N
0
L
X
=z
o ..
©
2 y,

OpenMP Application
(OMP_NUM_THREADS)
L1 L2 Memory Memory

, (Per Core) (Per Core) L3 Controller (DDR3-1600)
ArielCPU

_ ﬁ

Cycle Clocked

Runs on real / )
Simulation

hardware




Tracing Configuration ) 5.

Trace File

Physical address, R/W,

size and timing
ArielCore

(One per virtual core)

Address, Command, Instruction Stream

2 (One per thread)
R A

AN

a)

i

X

P

o ..

o

2 J

OpenMP Application
(OMP_NUM_THREADS)
L1 L2 Memory Memory

, (Per Core) (Per Core) L3 Controller (DDR3-1600)
ArielCPU

_ ﬁ

Cycle Clocked

Runs on real . .
Simulation

hardware

Using SST cache and memory listening interfaces we can trap traces at any point
during execution (to file, screen, UNIX pipes, etc)




Ariel Cores h) .

= Provide an approximate page allocation mechanism so we can
investigate virtual-to-physical layout challenges

= “Basic mode” — trap virtual addresses you have not seen before, allocate
and page and then map

= “Intermediate mode” — use a special memory allocation on a per-data
structure basis to run “special” page allocations (application can include
hints in request)

= “Full mode” —intercept malloc, calloc, realloc, posix_memalign etc, and
then use these to produce a mapping in memory

= Generally basic mode is sufficient for this kind of study

= More advanced work in our research labs investigating “smarter”
strategies using the above




Ariel CPU h) .

= Receives stream of instructions, hints etc from the running
program via a UNIX pipe (which causes back pressure)

= Aggregates and schedules to improve performance

= Allocates instructions and requests to the various CPU cores
ensuring core resources remain respect (e.g. queues, pending
requests etc)

= Handles special function communication (e.g. “malloc”)




Sandia

Application Work ) e,

= Using NNSA and Office of Science mini-applications and
benchmarks as a first cut

= AMG 2013

= UMT 2013

= MiniFE

= LULESH

= CoMD

= SNAP

= Traces are for 8-core OpenMP runs (approximately one Sandy
Bridge)

= Replicate those trace instances with address shifts to
approximate many MPI ranks on same memory system




Analysis Results ) i,

= DougJoseph (IBM) and Elliott Cooper-Balis (Micron) are working
with the traces and will give an overview of initial analysis

= Plans are to increase scale of simulation and complexity of
processor design
= Considering approximation of a POWERS8 node
= Possible heavily multi-core chip
= |ncrease application complexity

= http://www.sst-simulator.org



http://www.sst-simulator.org
http://www.sst-simulator.org
http://www.sst-simulator.org

Sandia
National
Laboratories

Exceptional service in the national interest




