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ABSTRACT

This report documents a new approach to designing disease control policies that allocate scarce testing,
contact tracing, and vaccination resources to better control community transmission of COVID19 or similar
diseases. The Adaptive Recovery Model (ARM) combines a deterministic compartmental disease model
with a stochastic network disease propagation model to enable us to simulate COVID-19 community
spread through the lens of two complementary modeling motifs. ARM contact networks are derived from
cell-phone location data that have been anonymized and interpreted as individual arrivals to specific public
locations. Modeling disease spread over these networks allows us to identify locations within communities
conducive to rapid disease spread. ARM applies this model- and data-derived abstractions of community
transmission to evaluate the effectiveness of disease control measures including targeted social distancing,
contact tracing, testing and vaccination. The architecture of ARM provides a unique capacity to help
decision makers understand how best to deploy scarce testing, tracing and vaccination resources to
minimize disease-spread potential in a community.

This document details the novel mathematical formulations underlying ARM, presents a dynamical
stability analysis of the deterministic model components, a sensitivity analysis of control parameters and
network structure, and summarizes a process for deriving contact networks from cell-phone location
data.

An example use case steps through applying ARM to evaluate three targeted social distancing policies
using Bernalillo County, New Mexico as an exemplar test locale. This step-by-step analysis demonstrates
how ARM can be used to measure the relative performance of competing public health policies. Initial
scenario tests of ARM shows that ARM’s design focus on resource utilization rather than simple incidence
prediction can provide decision makers with additional quantitative guidance for managing ongoing public
health emergencies and planning future responses.
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1. OVERVIEW

This report documents research on a new analytical method, called the Adaptive Recovery Model (ARM),
to better control outbreaks of COVID-19 in the United States. Social-distancing policies have been
successful at lowering the number of new cases in many states, indicating that general reduction in the
number of contacts among all members of the population is effective in lowering the number of individuals
contracting the disease and those who die from it. This general reduction in contacts entails suspension of
many kinds of social and economic activity. As those social distancing policies were relaxed to enable
economic recovery, new outbreaks of COVID-19 spread through the population, precipitating additional
closures and restrictions, and requirements to wear masks in many places. Containing COVID-19 spread
involves finding an acceptable combination of non-medical countermeasures pending availability of a
vaccine. Once a vaccine becomes available, distributing the initially limited supplies will raise additional
questions about control strategy design.

Methods that allow analysts and decision-makers to understand the interplay of the control measures
available to them with the disease dynamics can be a great aid in discovering effective and robust designs.
The goal of this project is to create a sound technical basis for deriving practical requirements for tracing
and surveillance systems, and distribution of vaccines when they become available, which would allow
social distancing measures and business constraints to be narrowly targeted. While important modeling
components are available for examining disease spread and containment via tracing and surveillance,
available models are predicated on unrealistic idealizations of contact patterns among individuals or are
anchored in highly specialized networks that can’t be generalized. Fine-grained foot-traffic mobility data
allow for representative contact networks to be synthesized, and the potential effects of policy changes
focused on specific kinds of locations or activities to be estimated.

The work summarized here has completed the technical foundation for pursuing the urgent goal of
containment design. Containment system components consist of testing, contact tracing, closures and
restrictions on business and other public activities, measures to foster use of personal protective equipment
like masks (PPE),and vaccination. We have analyzed the dynamics of the coupled disease transmission
with the control system. The coupled disease/control dynamics have been implemented both as a
deterministic compartment model and as a stochastic network model. The deterministic model has been
analyzed to provide insights into the relationship between model parameters and controllability. Contact
networks for the stochastic model can be specified by analysis of mobility data, adjusted to reflect potential
effects of policies on behavior and transmission, and evolving community behaviors over the course of a
pandemic.

Current work on designing tracing and testing systems in the context of the COVID-19 pandemic is
reviewed in Section 2. A modeling framework that focuses on the critical system processes, that
incorporates both aggregated and explicit models for inter-personal contacts, is motivated and described in
Section 3. Section 4 provides a discussion on equilibria assessments under alternative model formulations
along with the determinant of endpoints for the given mechanistic structure. The stochastic network model
is used to explore the effects of contact network structure in Section 5. Section 6 describes methods to
estimating network structure from near-real-time cell phone tracking data analyzed to estimate density and
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mobility. Section 7 discusses applications and future directions.

This work has created key components of a method for designing contact tracing and surveillance
strategies, as well as deployment priorities for anticipated vaccines, having the capacity to control the
increased outbreak risk created by relaxed social distancing, and to inform the design and operation of
these systems using cell phone data on mobility and density. The method can be applied using
location-specific information to develop sampling system designs tailored to a region’s activity patterns and
initial disease prevalence.
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2. STATUS OF RESOURCE ESTIMATES FOR CONTACT TRACING AND
TESTING

Rapid and widely available testing is a recognized component to any disease control strategy for
COVID-19. Transmission speed, the global scale of the pandemic, and difficulties and delays in expanding
testing capacity in the United States have combined to create constraints on the number of tests for
COVID-19 infection that can currently be processed. As a result, the infectious status of much of the
population is unknown. This ignorance leaves wholesale reductions in contacts among individuals, such as
stay-at-home directives, as the only available public health response for controlling the outbreak. In
contrast, case control strategies based on contact tracing and surveillance create visibility into disease
prevalence in the population. When effective, they justify the default assumption that general members of
the population are not infected, and so enable less constrained social and economic interactions.

Recent estimates on the amount of testing and contact tracing that would be required to achieve this
transition from blanket social distancing to decreased/targeted social distancing vary widely, and are based
on different assumptions and techniques. On March 28th, Gottlieb et al. [4] published an early estimate for
the testing needs to support contact-based control. Based on the 2017-2018 flu season in the US and by
translating Korea’s COVID-19 experience to the US on a per-capita basis, they estimate a rate of 750,000
tests per week to be required. Siddarth and Wyle [18] discuss the fundamental challenge involved in
moving to contact-based control: cases need to be found and effectively isolated more quickly than new
uncontrolled cases are generated. They use a simple dynamical analysis to derive estimated testing
requirements at the national level as large as millions per week, depending on efficiency of targeting and
test accuracy. Their analysis illustrates the critical performance differences between appropriately sized
and undersized systems, and how pragmatic factors such as accuracy and targeting efficiency can strongly
influence sufficiency criteria.

Sanche et al. [17] estimate parameters of an epidemiological model based on case data from Wuhan
province, and use that model to study the implications for control. Their formulation critically includes the
possibility of asymptomatic transmissions. Parametric tradeoffs suggest that both accurate detection and
effective quarantine of the infected population would be required to force the effective reproduction
number below 1. Ngonghala et al. [14] developed a model involving both disease states and the control
status of individuals in various disease states. Their formulation includes asymptomatic transmission,
quarantining of exposed and infected individuals, contact tracing, and personal protective equipment (PPE)
used in public and hospital settings. They use this model to evaluate the power of various non-medical
interventions (NMIs) to suppress outbreak. They find that masks and social distancing continue to be
needed; and that quarantines and contact tracing are marginally effective in reducing peaks in case
counts.

McGee [11] released an open source software package that models epidemic dynamics with
network-structured populations. The model includes testing, contact tracing, and social distancing using
both deterministic ordinary differential equations (ODEs) and stochastic network-based representation of
the system. As in the Ngonghala model, some disease states are factored into controlled and uncontrolled
parts of the population, analyzing the processes used to identify and quarantine potentially infected people.
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The model uses parameters for the general SEIR formulation derived for COVID-19, however it does not
distinguish asymptomatic from symptomatic infected states, does not explicitly update contacts from the
infected population, and does not facilitate prioritization of contact tracing. Given the use of common
disease states in the ODE and network representations, they converge in the case of large populations.
However the network creates a mechanism for exploring the effects of heterogeneous contact patterns, and
for examining control strategies that exploit them (e.g. Glass et al, [3]).

Hellewell et al. [5] employ a stochastic branching model to assess tracing requirements for containment. In
contrast to aggregate state models of population disease considered (e.g. [17, 14]) this formulation captures
the effects of individual variability in contact network complexity. They define the population using a
single set of distributions for relevant parameters; however, the approach is amenable to defining distinct
population groups. They assume that asymptomatic cases are never isolated, and that traced individuals are
isolated only when they become symptomatic.

Peak et al. [15] investigate the power of non-pharmaceutical controls including contact tracing, quarantine,
and encouragement to self-report based on symptom monitoring. They study the effectiveness of different
degrees of control in suppressing outbreak based on epidemiological parameters including the basic
reproduction number R0, potential for non-symptomatic transmission, and the relative timing of symptom
onset and infectiousness. Although their work predates COVID-19, they consider parameter ranges that
characterize a number of infectious diseases (SARS, Influenza A, Pertussis, Ebola, Hepatitis A, Smallpox,
MERS). Diseases characterized by pre-symptomatic and asymptomatic transmission were found to be
difficult to control using measures short of quarantine.

Aleta et al. [1] study requirements for contact tracing systems to suppress a second-wave outbreak
following relaxation of social distancing controls. They configure an agent-based model using anonymized
data collected from mobile devices in Boston from October 2016 to March 2017, combined with
demographic data used to define household composition. They use the model to study resurgence under
different scenarios for timing of relaxation of social distancing measures and performance of the contact
tracing program. They find that locating 50% of symptomatic cases, and quarantining 40% of the contacts
of those cases along with their households, protects against overwhelming loads on hospitals.

Firth et al. [2] also use mobile device data to generate possible contact networks in order to study the
performance of different contact tracing strategies. Like Aleta et al. [1] they find that some control of
contacts-of-contacts can be much more effective than only controlling first-order contacts. Their
assessment uses a detailed data set from Haslemere UK collected in 2017/2018 specifically to study disease
transmission through social networks. They find network structure to be an important influence on the
estimated number of quarantined cases, however the fraction of the model population ultimately infected
was similar for the data-derived network and a set of null networks preserving only certain statistics of the
data-derived network. The authors consider the effect of physical distancing (modeled by consolidation of
contacts around more-frequently contacted individuals while preserving total contact rate) and find little
reduction in the total number of cases either along or in conjunction with contact tracing.

Kwok et al. [8] review seven epidemiological models of SARS and MERS transmission used to assess
contact tracing and follow-up control measures. The reviewed models included both population
compartment models and individual-based models. One model distinguishes student groups from the
general population, the remainder assume homogeneous mixing. The review summarizes whether, and in
what way, various aspects of tracing and control (testing, quarantine, contact tracing) are represented;
including whether or not implementing delays and errors are considered. The authors call for consideration
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of capacity limits and other logistical factors in modeling containment mechanisms.

Engineering systems that can identify and contain individual cases and case clusters with high reliability
requires consideration of several factors and their interactions. The fundamental requirement is to detect
and contain new cases faster than they can be produced through new transmissions. Designing control
solutions entails considering diverse kinds of processes: diseases spread, social interactions, information
acquisition, and administration of control measures. Existing studies have examined important parts of the
problem (significance of transmission speed, asymptomatic transmission, the importance of outstanding
case counts in determining the viability of contract tracing regimes, error rates of tests) but we have found
none that integrates all of the relevant factors in a way that couples disease dynamics with operations of the
control systems so that decision-makers can understand the interplay on the scale of their system. By
including logistical constraints that may limit system performance (e.g. latency in getting test results, time
to reach contacts and their compliance with requests to quarantine), along with resolution on occupational
locations and events, we will provide the ability to assess the value of focused testing or contact control
mechanisms (e.g., targeted closure orders).
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3. ADAPTIVE RECOVERY MODEL FORMULATION

Available estimates of the prospects of containing COVID-19 through contact tracing and surveillance
demonstrate the need to consider the interplay of several factors when designing the transition to
contact-based containment (See Chapter 2). Inspired by the formulation provided by Ngonghala et al. [14]
and the software framework from McGee [11], we developed the Adaptive Recovery Model (ARM) which
combines current understanding of the disease states and control processes essential to the problem. We are
aware of no existing formalism that combines them to address the general system design problem at a scale
that is relevant to municipal authorities that need to equip and manage public health responses.

Adapting McGee [11], we define dual formulations of a component model that includes the
epidemiological consequences of contact tracing and testing as well as a single course of vaccination. The
model is represented as both a set of deterministic ODEs, described in Section 3.1, and as a stochastic
network model that explicitly includes heterogeneity in contact transmission, described in Section 3.2. The
component states are defined in Table 3-1 and compartment state transitions are illustrated in Figure 3-1.
States associated with vaccination using a single vaccine type are explicitly included in the deterministic
model. The stochastic model does not currently include these states. In that formulation, vaccination is
modeled as a transition into the Recovered state with a probability given by the vaccine efficacy.

Non-Infectious States 1

Su Susceptible and Un-quarantined
Sv Susceptible, Vaccinated, and Un-quarantined
Sq Susceptible and Quarantined
Eu Exposed and Un-quarantined
Ev Exposed, Vaccinated, and Un-quarantined
Eq Exposed and Quarantined
R Recovered

Infectious States
Au Infectious, Asymptomatic, and Un-quarantined
Av Infectious, Vaccinated, Asymptomatic, and Quarantined
Aq Infectious, Asymptomatic, and Quarantined
Iu Infectious, Symptomatic, and Un-quarantined
Iq Infectious, Symptomatic, and Quarantined
H Infectious and Hospitalized

Tracking States
D Cumulative Disease-related Deaths
C Pending Contacts to Trace

Table 3-1. Compartment Model Population State Definitions

1Note: Non-infectious is used to describe states in which viral transmission is not typically assumed to occur. However we can
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Figure 3-1. Compartment Model States and Transitions

3.1. Deterministic Model

The fundamental dynamics for the deterministic model are defined using a system of ODEs based on basic
epidemiological modeling constructs to simulate the spread of infection as population transition rates
among a set of exclusive states. States represent a conjunction of disease status, vaccination status, and
treatment or control conditions. The model formulation is based on Ngonghala et al. [14] and has been
adapted in the following ways:

• Included the possibility of loss of immunity

• Included transition terms that explicitly reflect operational constraints on contact tracing and case
identification through community sampling (e.g. resource limits, testing errors).

• Included the potential spread of infections through the exposed population to reflect the two days
before symptom onset that a COVID-19 infected individual is infectious.

• Included vaccination of some part of the un-quarantined population with a single course of a vaccine
with a given efficacy.

The governing equations, state variables, and parameters are summarized below. For ease in referencing,
we provide a description of the model parameters in Table 3-2 and 3-3.

allow for Eu and Eq to generate transmissions because exposed individual is considered contagious in period before symptom
onset.
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dSu

dt
=−βλ (t)Su−qtS(t)+ τSqSq + τRR+ fv(t)ν(t)

Su

Su +Eu +Au
(3.1a)

dSv

dt
= fv(t)ν(t)

Su

Su +Eu +Au
−β (1−ξ )λ (t)Sv (3.1b)

dSq

dt
= qtS(t)− [1−θSq]βλ (t)Sq− τSqSq (3.1c)

dEu

dt
= βλ (t)Su−qrE(t)−qtE(t)− τEuEu + fv(t)ν(t)

Eu

Su +Eu +Au
(3.1d)

dEv

dt
= fv(t)ν(t)

Eu

Su +Eu +Au
+β (1−ξ )λv(t)Sv− τEvEv (3.1e)

dEq

dt
= qtE(t)+qrE(t)+ [1−θSq]βλ (t)Sq− τEqEq (3.1f)

dAu

dt
= faτEu−qrA(t)−qtA(t)− τAuAu + fv(t)ν(t)

Au

Su +Eu +Au
(3.1g)

dAv

dt
= fv(t)ν(t)

Au

Su +Eu +Au
+ faτEvEv− τAvAv (3.1h)

dAq

dt
= faτEqEq +qrA(t)+qtA(t)− τAqAq (3.1i)

dIu

dt
= [1− fa](τEuEu + τEvEv)−qrI(t)−qtI(t)− [τIuR + τIuH + τIuD]Iu (3.1j)

dIq

dt
= [1− fa]τEqEq +qrI(t)+qtI(t)− [τIqR + τIqH + τIqD]Iq (3.1k)

dH
dt

= τIuHIu + τIqHIq− [τHR + τHD]H (3.1l)

dR
dt

= τAuAu + τAqAq + τIuRIu + τIqRIq + τHRH− τRR (3.1m)

dC
dt

=−qt(t)+
[

dφκκTI

[
1− C

N

]]
[τEqEq +qrA(t)+qrI(t)+qtA(t)+qtI(t)+ τIuHIu] (3.1n)

With the force of infection function,

λ (t) =
κ(1− ε p)(ηE(Eu +Ev)+ηA(Au +Av)+ Iu +(1−θSq)(ηEEq +ηAAq + Iu +ηHH))

N
(3.1o)

the total population, N = Su +Sq +Sv +Eu +Eq +Ev +Au +Aq +Av + Iu + Iq +H +R. Noting that we do
not assume reduced infectivity of our accidentally vaccinated populations that are already exposed and
infected, or eventually become infected due to imperfect efficacy of the vaccine. We let
X = {Su,Sq,Sv,Eu,Eq,Ev,Au,Aq,Av, Iu, Iq,H,R,C} denote the vector of disease-related compartments along
with the quarantine tracing queue state C, since these are the states that govern the propagation of the
dynamics. The cumulative disease related death compartment D is used to track the number of total disease
related deaths.

dD
dt

= τIuDIu + τIqDIq + τHDH (3.1p)

We distinguish this state from the others, since D does not contribute to the governing dynamics.

2Note: infected individuals are considered infectious 2 days prior to symptom onset. This can be captured by a marginal influence
from the exposure stock.
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Disease Transmission Parameters
κ Effective contact rate

(i.e. contacts capable of leading to COVID-19
transmission).

Count/Day

β Probability of infection per contact. Probability
TE Incubation time for exposed individuals. Time(Day)
τEu Rate of transition out of the exposed and un-quarantined

compartment.
Frequency(Day−1)

τEq Rate of transition out of the exposed and quarantined
compartment.

Frequency(Day−1)

ηE Relative infectivity of exposed individuals.2 Proportion
fa Fraction of infectious population that is asymptomatic. Proportion

τAu Rate of transition out of the asymptomatic and
un-quarantined compartment.

Frequency(Day−1)

τAq Rate of transition out of the asymptomatic and quarantined
compartment.

Frequency(Day−1)

ηA Relative infectivity of asymptomatic individuals. Proportion
τIuR Rate of transition from the symptomatic and un-quarantined

compartment to recovery.
Frequency(Day−1)

τIqR Rate of transition from the symptomatic and quarantined
compartment to recovery.

Frequency(Day−1)

τIuH Rate of transition from the symptomatic and un-quarantined
compartment to hospitalization.

Frequency(Day−1)

τIqH Rate of transition from the symptomatic and quarantined
compartment to hospitalization.

Frequency(Day−1)

τIuD Rate of transition from the symptomatic and un-quarantined
compartment to deceased.

Frequency(Day−1)

τIqD Rate of transition from the symptomatic and quarantined
compartment to deceased.

Frequency(Day−1)

τHR Rate of transition from the hospitalized compartment
to recovered.

Frequency(Day−1)

τHD Rate of transition from the hospitalized compartment
to deceased.

Frequency(Day−1)

ηH Relative infectivity of a hospitalized infectious individual. Proportion
τR Rate at which immunity wanes. Frequency(Day−1)
TI Average time an infected individual (asymptomatic and

symptomatic) is infectious before they go into quarantine.
Time(Day)

Table 3-2. Compartmental Model Disease Related Parameter Definitions
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Mitigation Parameters
p Probability that a contact is protected by PPE. Probability
ε Effectiveness of general PPE use in blocking transmission. Probability

ΘSq Effectiveness of quarantine in preventing new infections. Probability
qr Rate of random surveillance sampling. Frequency(Day−1)

Ntrace Maximum number of concurrent contact tracings. Count/Day
qw Maximum work rate of a contact tracer. Work/Day
wc Average work required to engage a new contact. Work/Case
wq Average work required to check in with a quarantining contact. Work/Case
wv Average work required to administer a vaccine. Work/Case
αq Responsiveness of contact tracers to workload. Dimensionless
φk Fraction of actual contacts recalled and reported. Probability
φc Fraction of recalled contacts effectively quarantined. Probability
d Dispersion of the contact network

(i.e. number of distinct individuals per contact event)
Probability

εr Efficiency of random surveillance sampling in selecting
exposed/infected

Probability

fqe Fraction of infected contacts that will be found in the
exposed state.

Proportion

en False negative rate of testing. Probability
ene False negative rate fro testing of exposed individuals. Probability
ξ Efficacy of vaccine. Probability
αν Scaling factor for bounded exponential application to

vaccine distribution.
Dimensionless

Table 3-3. Compartmental Model Mitigation Related Parameter Definitions

Because they are less-common elements of epidemiological models, a more in-depth description is
provided for the quarantine functions and the contact tracing queue state C to clarify the mechanistic
formulation for the random testing and contact tracing interventions. Since the formulation for the rate at
which we simulate contact tracers connecting with cases is dependent on the work related to efforts for
vaccinating, we begin this in-depth description with the vaccine distribution mechanistic form.

3.1.1. Vaccine Distribution

Once a vaccine becomes available, distributing the initially limited supplies will raise additional questions
about control strategy design. Modeling the distribution of vaccines within our ODE compartment
simulations, one consideration will be to assume a fixed nominal rate for which the vaccine would be
distributed. By assuming some notional rate of 2% of the susceptible population will be vaccinated,
overtime the available population to vaccinate will continuously decrease. The effects of the population
decreasing results in a decrease in the number of vaccines distributed over time in the simulated model.
This does not reflect the expected nature of initially limited vaccine supplies that will incrementally
increase overtime. In place of the nominal fixed rate of vaccine distribution we instead propose to define a
function, ν(t), that is monotonically increasing and reflective of the practical implications for the
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incremental increase of vaccine availability.

With this consideration we run the opposite resource constraint issue. In this case, it is not the limited
availability of resources that we would need to constrain. Instead, we will eventually have too many
resources to distribute to the depleting available population to distribute these resources.

Using a monotonically increasing vaccine distribution function, ν(t), (e.g. ν(t) = mt +b for m,b > 0) we
can again consider the bounded exponential function to reflect the fraction of the vaccines distributed at
time, t, that reflects the current total population available to vaccinate. Assume that the susceptible and
un-quarantined population is not the only population to recieve the vaccine. Alternatively, the consideration
for unnecessarily vaccinating the un-quarantined exposed and asymptomatic populations is possible if we
do not test for infection before administering a vaccine. This implies that the total available population to
vaccinate is defined by Nv(t) = Su(t)+Eu(t)+A+u(t). In this case, when Nv(t)< ν(t), we would want to
reduce the distribution of vaccines to reflect the fraction of the available population to vaccinate with
respect to the total amount of vaccines available, Nv(t))/ν(t) . This implies that the bounded exponential
with an upper bound of 1 can be used to define this fraction of the vaccine distribution.

fν(t) = 1− exp
((
−αν

(
Su(t)+Eu(t)+Au(t)

ν(t)

)))
(3.2)

For an appropriate selection of αν > 0, we will simulate the following behavior.

• When the population is greater than the amount of vaccines available, we will simulate distribution
of all of the available vaccines.

• When the amount of vaccines exceeds the total population to distribute to, we can take the product,
fv(t)ν(t), to simulation distribution of only a fraction of the available vaccines.

3.1.2. Contact Tracing

The contact tracing queue state C is the number of contacts provided by newly-identified cases that have
yet to be contacted. The rate at which contacts are added to the queue is:

Cnew =

[
dφκκTI

[
1− C

N

]]
[τEqEq +qrA(t)+qrI(t)+qtA(t)+qtI(t)+ τIuHIu] . (3.3)

This expression for Cnew gives us the flow of expected new contacts to trace. The expression,

[τEqEq +qrA(t)+qrI(t)+qtA(t)+qtI(t)+ τIuHIu] ,

includes a term for each of the six unique paths by which an infected person is identified as such (see
Figure 3-1), making their contacts new contacts to trace. The sum is the overall rate of recognition of new
cases. To estimate the average number of contacts each of these newly-identified infected individuals
generate, we included the following factors.

• Potentially infectious contacts will be made at the rate of κ per day.

• There will be a period of time, TI , for which an infected individual is infectious and unaware, before
they become quarantined.
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• The average number of contacts is therefore κTI , of which they will be able to recall and report a
fraction φk

• Some of these contacts may be with the same individual. The dispersion parameter d is the ratio of
the number of distinct individuals contacted per total number of contact events.

• C contacts are already known from previously-detected infections. Therefore [1−C/N] is the
probability that a newly-identified contact is not already known and should be added to C.

This results in Equation 3.3 as the rate of arrival of new contacts to trace, based on the number of newly
identified infected individuals.

We distill the effects of constraints on the resource required for contact tracing by assuming that contact
tracers can each do work at a rate qw. This potential work rate is applied to the distinct tasks of making
initial contacts with the individuals in the queue C, making follow-up contacts to those who have agreed to
be quarantined, and supporting vaccine administration. Each task requires a certain amount of work on
average, so that the total work demand is:

Wdemand(t) = wcC(t)+wq(Aq(t)+ Iq(t))+wv(Su(t)+Eu(t)+Au(t)) (3.4)

As the total work demand approaches the capacity of available workers, the latter will become limiting.
This effect is modeled using an exponential relationship, g : R→ R, between work demanded and work
applied to all tasks:

g(Wdemand(t)) = qwNtrace(1− exp(−αqWdemand(t))) (3.5)

Work is applied to tasks in proportion to demand. Specifically the work applied to tracing new contacts
is:

wcC(t)
Wdemand(t)

(g(Wdemand(t))) (3.6)

so that the rate of engagement with new contacts (and the rate of depletion of the queue C) is:

qt(t) =
C(t)

Wdemand(t)
(g(Wdemand(t))) (3.7)

Of these, a fraction β will have resulted in transmission (and 1−β will not). The rate of quarantined
susceptible is therefore approximately

qtS = (1−β )φcqt (3.8)

where φc is the fraction of individuals successfully contacted and quarantined during tracing.

As we consider the infected contacts, we ask the question: where will these individuals be with respect to
disease progression? If tracing is rapid and the initiating infected case arrived early in their progression,
many secondary cases might still be in the exposed state. Conversely, if the precipitating case has been
infected for many days then their induced cases may already be infectious themselves or possibly even
recovered. An optimistic limiting assumption would be that all are still in the exposed state. Alternatively,
we can use the residence time in the exposed and infected states to apportion quarantines among states:

feq =
TE

TE +TI
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The potential rates of quarantine from the exposed, unquarantined symptomatic, and asymptomatic
populations are approximately,

qtE = βφcqt(1− en) feq (3.9a)

qtA = βφcqt(1− en) fa(1− feq) (3.9b)

qtI = βφcqt(1− en)(1− fa)(1− feq). (3.9c)

These equations treat the false negative rate of testing as a leakage or inefficiency applied to the inflows to
the quarantine states. In the case of exposed individuals, we assume that by the time a test is administered
to determine whether the person should remain quarantined, that enough time will have passed for the
likelihood of receiving a false negative result to be approximately equal to that of a symptomatic and
infected individual.

3.1.3. Random Testing

Surveillance testing is conducted at a rate of qr. If the surveillance is random (uninformed), all individuals
in the un-quarantined populations will be equally likely to be selected. We use an efficiency parameter εr,
in the spirit of Siddarth and Wyle [18], to examine the value of some unspecified mechanism that might
improve targeting, with εr = 0 corresponding to random selection and εr = 1 corresponding to perfect
targeting of only exposed and infectious people. Rates of identification and quarantine due to random
testing are then:

qrE = qr(1− ene)
Eu

Peff(t)
(3.10a)

qrA = qr(1− en)
Au

Peff(t)
(3.10b)

qrI = qr(1− en)
Iu

Peff(t)
(3.10c)

where Peff is the effective sample population, given by the efficiency

Peff(t) = (1− εr)(Su +R)+Eu +Au + Iu.

This time we consider the false negative rate for exposed asymptomatic may be larger than for the
infectious. In contrast to the test administered to release an exposed individual from quarantine, random
tests can be administered at any time during the incubation period and so can miss identification of an
infected individual with greater likelihood than if that individual was in an infectious state.

The behavior of the deterministic model has been explored both through analysis of the defining ODEs and
through simulation. Section 4 summarizes some findings from that work.

3.2. Stochastic Network Model

A stochastic network-based representation of the deterministic model was developed to include stochastic
effects and heterogeneity. This work builds on the stochastic network model developed by McGee [11].
The network represents possible contacts between people and can therefore be used couple the models of
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transmission and contact tracing processes, as well as to associate contacts with particular locations and
activities. These features can only be roughly approximated in compartment models, for example in
estimating the proportion of contacts that will be found in particular disease states in 3.9. This section
describes how network structure influences key process rates in the model.

Contact networks can be generated in various ways, for example by sampling an assumed stochastic form
or by construction from mobility data. Methods to a estimating network structure from near-real-time cell
phone tracking data are described in Section 6. Explicit representation of the contact network offers several
advantages over the assumption of uniform mixing embedded in compartment models. First, the network
integrates variability in the size and complexity of individuals’ contact structures that can be used to define
contact tracing. By defining location-mediated contact networks, the model can be used to examine
sampling strategies focused on specific kinds of locations or activities. Second, the same network allows
for the evaluation of protective measures designed to decrease transmission in specific location types. For
example, specific social distancing measures and business constraints can be tested by modifying the
network or modifying edge weights on the network.

It is important to note that the network is not intended to represent individuals and track their exact
interaction through time, as might be done with an agent-based model. The network is intended to
represent interactions that are representative of a population at a scale that is relevant to decision makers.
This includes, for example, the interactions people have at schools, businesses, and places of work. These
interactions can be defined based on demographics, types of businesses, and other spatial considerations
(e.g., rural vs urban settings) within the model domain.

Unlike the Deterministic Model, the Stochastic Network Model tracks the state of each node, i, in the
network through time, Xi(t). With the exception of the vaccination states, it uses the same state definitions
and transition times as the deterministic model, along with an explicit structure of a contact network. The
contact network can include edge weights that describe the level of interaction between two nodes. The
number of social interactions is defined by the node degree, which can be weighted using edge weights.
For example, people in strict quarantine have a small node degree while super-spreaders have a large node
degree.

The explicit contact network underlying the Stochastic Network Model enables a finer-grained
representation of the contact tracing process than the Deterministic Model permits. The Stochastic
Network Model includes a dynamic contact list that indicates nodes that should be considered for contact
tracing. When a node transitions into a controlled state (Aq, Iq, or H) the neighboring nodes, defined by the
network structure, are added to a contact list. The fraction of contacts that can be recalled, φk, and the
proportion of contacts that will comply, φc, are used to down-select the contacts that are actually added to
the list. The probability of a connected node being nominated is proportional to the weight connecting that
node to the newly-transitioned node. Furthermore, a threshold can be used to determine "close contacts"
based on the values in edge weights.

The Deterministic Model’s state variable C can only record the number of contacts to be traced, which are
allocated among the various populations based on assumptions about contact structure (Equations (3.8) &
(3.9)). The network structure, by contrast, allows specific individuals involved with potential transmission
pathways to be identified. The contact list can also store attributes about each contact, including the time
the contact was added to the list, the edge weight associated with the transition (defining the interaction
strength between those two nodes), and the node degree of the neighboring node. These attributes can be
used to evaluate prioritization or targeting strategies in contact tracing. The time at which the nodes are
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added to the contact list can also be used to remove contacts if they are not engaged within a certain
amount of time. Nodes that transition into a controlled state, for any reason, are also removed from the
contact list.

The rates of quarantine due to contact tracing are based on the same equations used in the deterministic
model but also include the contact list Ci(t), as shown below. In general, Ci(t) = 1 if node i is in the contact
list and 0 otherwise. As noted above, additional node attributes can also be used to define the contact list,
for example the edge weight or the node degree. If these attributes are used to include contact tracing
prioritization, Ci(t) should be scaled between 0 and 1. Nc is the number of people on the contact list, and
δXi(t)=Z = 1 if the state of Xi(t) is Z and 0 otherwise. The Stochastic Network Model uses the same work
demand, g, and exponential relationship between work demand and work applied to contact tracing, f ,
described in Equation 3.4 and 3.5 to compute qt .

Nc(t) = |Ci(t)| ∀Ci(t)> 0 (3.11a)

qt(t) = f
Nc(t)

g
(3.11b)

qtS,i(t) = φcqt(t)Ci(t)δXi(t)=Su (3.11c)

qtE,i(t) = φcqt(t)(1− en)Ci(t)δXi(t)=Eu (3.11d)

qtI,i(t) = φcqt(t)(1− en)Ci(t)δXi(t)=Iu (3.11e)

qtA,i(t) = φcqt(t)(1− en)Ci(t)δXi(t)=Au (3.11f)

The rates of quarantine due to random testing are also based on the corresponding equations used in the
Deterministic Model, as shown below.

qrE,i(t) = qr(1− ene)
δXi(t)=Eu

Pe f f (t)
(3.12a)

qrI,i(t) = qr(1− en)
δXi(t)=Iu

Pe f f (t)
(3.12b)

qrA,i(t) = qr(1− en)
δXi(t)=Au

Pe f f (t)
(3.12c)

In addition to transmission along network connections, infection can also be transmitted between
individuals chosen at random regardless of network structure. The force of infection, λi(t), therefore has a
global and a local network component. The global component is defined by the same equation used in the
Deterministic Model. For the global component, the effective contact rate κ can be defined using the
average node degree of the contact network. The local network component, λN,i uses the contact network to
define the probability of transmission based on the state of neighboring nodes. The parameter Θp defines
the interaction between global and local transmission. When Θp = 0, transmission is governed only by
local direct contacts, while Θp = 1 disregards network structure when modeling disease transmission and
so represents a uniformly mixed population.

λN,i(t) = (1− εp)[(ηEδXi(t)=Eu +ηAδXi(t)=Au +δXi(t)=Iu)

+(1−ΘSq)(ηEδXi(t)=Eq +ηAδXi(t)=Aq +δXi(t)=Iq +ηHδXi(t)=H)] (3.13a)

λi(t) = Θpλ (t)+(1−Θp)λN,i(t) (3.13b)

The Stochastic Network Model defines a transition probability between states, for example, the probability
that node i transitions from state Su to Eu. The underlying transition probabilities are consistent with the
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rate terms used in the Deterministic Model. The contact network is used to define qtS,i(t), qtE,i(t), qtI,i(t),
qtA,i(t), and the local network component of λi(t). While β is generally a constant, it can also be defined
per node or per edge. When using a weighted contact network that includes edge weights to define the
interaction between two nodes, the edge weight can be used to modify beta. This provides a mechanism for
modeling the effect of NMIs, for example by reducing transmission probability to represent use of PPE
during specific kinds of interactions.

Pr(Xi(t) = Su→ Eu) = βλi(t)δXi(t)=Su (3.14a)

Pr(Xi(t) = Su→ R) = fv ∗ξvδXi(t)=Su (3.14b)

Pr(Xi(t) = Sq→ Eq) = (1−ΘSq)βλi(t)δXi(t)=Sq (3.14c)

Pr(Xi(t) = Eu→ Au) = faτEuδXi(t)=Eu (3.14d)

Pr(Xi(t) = Eu→ Iu) = (1− fa)τEuδXi(t)=Eu (3.14e)

Pr(Xi(t) = Eq→ Aq) = faτEqδXi(t)=Eq (3.14f)

Pr(Xi(t) = Eq→ Iq) = (1− fa)τEqδXi(t)=Eq (3.14g)

Pr(Xi(t) = Iu→ R) = τIuRδXi(t)=Iu (3.14h)

Pr(Xi(t) = Iu→ H) = τIuHδXi(t)=Iu (3.14i)

Pr(Xi(t) = Iu→ D) = τIuDδXi(t)=Iu (3.14j)

Pr(Xi(t) = Au→ R) = τAuδXi(t)=Au (3.14k)

Pr(Xi(t) = H→ R) = τHRδXi(t)=H (3.14l)

Pr(Xi(t) = H→ D) = τHDδXi(t)=H (3.14m)

Pr(Xi(t) = Su→ Sq) = qtS,i(t) (3.14n)

Pr(Xi(t) = Eu→ Eq) = qrE,i(t)+qtE,i(t) (3.14o)

Pr(Xi(t) = Iu→ Iq) = qrI,i(t)+qtI,i(t) (3.14p)

Pr(Xi(t) = Au→ Aq) = qrA,i(t)+qtA,i(t) (3.14q)

Pr(Xi(t) = Iq→ R) = τIqRδXi(t)=Iq (3.14r)

Pr(Xi(t) = Iq→ H) = τIqHδXi(t)=Iq (3.14s)

Pr(Xi(t) = Iq→ D) = τIqDδXi(t)=Iq (3.14t)

Pr(Xi(t) = Aq→ R) = τAqδXi(t)=Aq (3.14u)

Pr(Xi(t) = Sq→ Su) = τSqδXi(t)=Sq (3.14v)

Pr(Xi(t) = R→ Su) = τRδXi(t)=R (3.14w)

Pr(Xi(t) = any→ Su) = νδXi(t)6=D (3.14x)

Equation 3.14b models the effect of vaccination as a direct transition from the susceptible to recovered
state. The vaccination rate fv is a function of the number of vaccines administered per unit time nv and the
total population targeted for vaccination, which might include exposed and asymptomatic individuals as
well as susceptible individuals.

fv =
nv

Su +Eu + Ia
(3.15)

The model also includes the ability to change the contact network (and other parameters) at specific points
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in time. This capability allows the model to include distinct changes in behavior that can occur due to
policy decisions regarding social distancing or business closures.

Figure 3-2 illustrates a comparison between the Deterministic and Stochastic Network Model under
equivalent conditions, i.e. with a random network designed to produce bulk interaction rates equivalent to
those in the Deterministic model. The example uses κ = 6 and a contact network with the same value for
average node degree. In the Stochastic Network Model using Θp=0.5, such that 50% of transmission is
governed by the network and 50% is governed by global uniform mixing. This results verifies that the
Stochastic Network Model can be configured to act as a discrete version of the Deterministic model.
However its real value is in exploring the effects of network structures that the Deterministic model cannot
represent, whether those are abstract networks based on theoretical considerations (??) or on behavioral
data (6).

Figure 3-2. Deterministic and Stochastic Network Model Comparison: under equivalent conditions.
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4. DYNAMICAL SYSTEM ANALYSIS

The mathematical formulations for the governing system of differential equations defined by Equations
(3.1) is the basis for the stochastic model’s individual transitions between identified disease related state
compartments and their corresponding quarantine states. To ground our understanding of the layered
network analysis that allows us to provide higher fidelity and more localized contact rates, we have
analyzed dynamical properties related to the mechanistic formulation we have structured for the governing
dynamics. We look to understand the number of physically-relevant equilibria that exist, their stability, and
any corresponding bifurcations. This type of analysis has been explored for decades and a more in-depth
description can be found in Hethcote’s article, The Mathematics of Infectious Disease [6], or Martcheva’s
book, An Introduction to Mathematical Epidemiology [9]. For the purposes of our discussion, we are
simply providing a summary of the analysis and different model formulations.

From the perspective of SEIR (Susceptible-Exposed-Infected-Recovery) dynamics (i.e. modeling the
epidemiology independent of mitigation strategies) there are two fundamental formulations that determine
whether the system will have one or two physically-relevant equilibria. Epidemic models have one
equilibrium. Due to the somewhat closed nature of the dynamics, we will see that a long run analysis will
result with the disease eventually eradicated through herd immunity. We refer to this equilibrium as the
’disease-free’ equilibrium. In contrast to the epidemic models, which tend to be used more for short term
forecasting, endemic models include rates into and out of the system that represent birth and non-disease
related deaths. Endemic models are assumed to be more relevant for long term analysis (on the order of
years). Under the endemic model formulation, we expect two equilibria. We will still have a
characterization for a disease-free equilibrium, but with the addition of a new stock of susceptible
individuals flowing in there is the possibility of stabilizing at a second endemic equilibrium. Only one of
these equilibria will be stable. The determination for which equilibrium is stable, is an indicator for
whether to expect an epidemic or eradication. This relates to the assessment of the secondary infection rate,
R0. Applying mathematical theory for dynamical systems analysis, bifurcation analysis can be used to
determine the transfer of stability from the disease-free equilibrium to the endemic equilibrium. This
results in a symbolic formulation of R0, in terms of the parameters of the SEIR model, as defined by the
governing dynamics.

We want to emphasize that the goal of our analysis is to determine the conditions under which we will be
able to implement controls to mitigate the number of new infections. This can tie directly into a bifurcation
analysis that would provide an analytical formulation for guiding a system to cross the bifurcation
boundary to a more desirable outcome, assuming our system is tending towards an undesirable endemic
equilibrium. Because we have now coupled the control mechanisms with the disease transmission states,
we may identify an increased number of equilibria. Determining where the additional equilibria surface as
a function of the coupled control mechanisms is essential to the analysis of controlling a dynamical
system.

A simplified version of Equations (3.1) defined the original epidemiological model we considered in the
following analysis. Specifically, the original system of equations had the following simplifications in
comparison to the current model:
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• We had not yet introduced vaccination compartments at the time of this analysis.

• The rate at which the contact tracing queue state, C, depleted, was defined by the following.

qt(t) =
min(C(t),Ntrace)

Ttrace
(4.1)

Where Ttrace defined the nominal time it would take a contact tracer to reach each contact.

With this formulation and under conditions of no mitigations, the model will behave as documented by
Hethcote, with convergence to the one disease-free equilibrium. Adding the mitigation strategies, we
intuitively expect that early identification and isolation of infected individuals with quarantine of the
potentially infected population would simply expedite convergence to the disease-free equilibrium. To
determine what parameters most influence time to convergence, we explored sampling methods that allow
us to better characterize the anticipated outcomes for various parameter selections (a full inspection of this
analysis is provide in Section 5).

Can we say mathematically what the minimum requirements are for the number of contact tracers and
randomized testing rate, based on the current stage of a pandemic to mitigate secondary infections? To
answer this question, we began by exploring long run simulations of the state dynamics, but with a
particular focus on the total cumulative deaths and the contact tracing queuing population. An example
result shows that, even under the epidemic model formulations, we can identify a threshold for initial
prevalence at which the addition of one more infected individual will tax the contact tracers to the point
that they are no longer able to keep up with the contact tracing queue. Table 4-1 indicates the fixed
parameter values used to run the simulations on either side of the threshold. Figures 4-1 and 4-2 illustrate
the vastly different outcomes in those simulations when initial prevalence goes from 296 to 297. The total
population was set to one million, implying that the difference between controllable and uncontrollable
prevalence represents a marginal fraction of one percent of the population.

This split in behavior that we have identified is not an example of an equilibrium bifurcation, although it
does indicate that there is a boundary in the phase portraits for the cumulative death state. Further
investigation is required to analytically characterize a relationship between initial prevalence (along with
additional parameters) and the number of contact tracers and random tests needed to maintain control of
secondary infections.

Initial Population 1M Ntrace 1000 qr 10000
κ 10 β 0.03 fa 0.6
φk 1 φc 1 ε p 0
ηE 0 ηA 0.5 ηH 0.1
Θq 0.7 εr 0 Ttrace 1
en 0.05 ene 0.05 d 0.3

1/τSq 14 1/τEu = 1/τEq 14 1/τAu = 1/τAq 14
1/τIuR = 1/τIqR 11.3 1/τIuH = 1/τIqH 28 1/τIuD = 1/τIqD 256

1/τHR 11.3 1/τHD 34 1/τR 1600

Table 4-1. Numerical Values for Deterministic Simulation Parameters: these are the fixed parameters used to
simulate the 1000 day forecasts provided in Figures 4-1 and 4-2

We note that Figure 4-2 appears to show a steady state of approximately 14000 individuals in quarantine
after the disease has been eradicated in the population. This is a consequence of the rapid build up of the
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Figure 4-1. State simulations for a controlled outbreak with initial prevalence of 296 out of 1,000,000 : time
horizon of 1000 days with parameters defined in Table 4-1.
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Figure 4-2. State simulations for an un-controlled outbreak with initial prevalence of 297 out of 1,000,000 : time
horizon of 1000 days with parameters defined in Table 4-1.
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contact queue, absence of expiration of queued contacts, and lack of higher-order controls on the
quarantine process. and The model dynamics could be elaborated to remove this artifact, but those changes
would not change the underlying dynamics that overwhelm the system’s capacity.
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5. NETWORK STRUCTURE SENSITIVITY

The Deterministic and Stochastic Network Model formulations are based on a common state transition
model (Figure 3-1) which describes the possible conditions of individuals with respect to both disease state
and administrative controls on individuals (quarantine and hospitalization). The ODE model approximates
the state of a population through continuous variables describing the number of individuals in each state.
Disease transmission involves interactions among susceptible and infectious individuals. The ODE model
does not differentiate individuals, and interactions rates can only depend on the numbers of individuals in
the relevant states.

The network model resolves the state of each node, which represents an individual. Contingencies of
disease spread, arising from small numbers of individuals in infectious states for example, can arise in this
formulation. This allows designs for disease control to be tested for robustness against stochastic
variability. Likely more significant for our purpose, the network explicitly represents relationships among
individuals in the form of edges. These relationships can be used to define the workload of contact tracers,
as well as the power of using properties of the relationship (such as the location in which it occurs) to guide
control actions.

As an aid to designing containment systems, the network representation has advantages over the
population-level ODE formulation. It allows heterogeneity in the distribution of contacts across individuals
in the population. This heterogeneity can be important for understanding both disease transmission, contact
tracing, and surveillance sampling. It also imposes causal relationships among the states of connected
individuals that can only be roughly approximated through biasing sampling under the population-level
ODE formulation. These relationships are important when modeling the effect of contact tracing.

The Stochastic Network Model was used to understand the influence of network structure on control system
requirements through a set of sensitivity studies. Each used a range of values for some key epidemiological
parameters, listed in Table 5-1 below. Control parameters corresponding to alternative levels of social
distancing (via κ) and different levels of resource commitments to contact tracing (Ntrace), and random
surveillance sampling (qr) were systematically varied by combining the discrete values shown in Table 5-2.
The specified doubling times reflect potential spread in a naive population under nominal contact rates
(defined as κ = 10). (Note: These studies were conducted with a version of the model that did not include
vaccination and that did not account for contact tracers’ time in maintaining contacts with existing
quarantined people. These recent extensions should not change the sensitivities identified below.)

Figure 5-1 shows a set of results generated with the Deterministic Model. These serve as a reference for
measuring the effect of explicit representation of contact structure using the Stochastic Network Model, as
well as providing general insights about the interaction of control measures and epidemiological
parameters to determine consequences. A population of 10,0000 is initialized with a random number of
infected individuals (Uniform from 1 to 100) and simulated for 300 days. Among the epidemiological
parameters we varied, the doubling time under unmitigated conditions has the largest influence on the key
output measures, among which is the number of deaths from the disease. Each of the panel plots therefore
shows the calculated number of deaths on the y-axis versus unmitigated doubling time on the x-axis.
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Sampled Epidemiological Parameters
Parameter Units Distribution Description

Doubling Time Days Triangular from 1.75 to 5, triangular with mode of 2.5
fa [.] Uniform from 0.4 to 0.6
Te Days Uniform from 5.5 to 10.5

Initial Infected [.] Uniform from 1 to 100

Table 5-1. Epidemiological Parameter Variance for Sensitivity Study

Sampled Epidemiological Parameters
Parameter Units Values

Ntrace/Ttrace contacts traced per day 1, 10, 100, 1000
qr samples per day 100, 1000, 3000
κ contacts per day 2, 4, 6, 8, 10

Table 5-2. Control Parameter Variance for Sensitivity Study

Doubling time was varied from 1.75 to 5 days in the simulations; larger values typically have small
consequences so plots focus on the interval from 1.75 to 3 . Other output metrics are the number
hospitalized, the number of samples analyzed, and the number of outstanding contacts to trace.

Three primary control mechanisms were considered: some degree of social distancing reflected as
suppression of the contact rate κ below its nominal value of 10 per day; Ntrace, the capacity for tracing
contacts of newly-discovered cases ranging in powers of 10 from 1 to 1000 per day; and qr, the rate of
testing randomly-selected members of the population at rates of 100, 1000, and 3000 per day. The results
for each combination of contact tracing resources and random sampling are shown on a separate panel in
Figure 5-1, with alternative values for κ distinguished by color and symbol in each panel.

Low levels of control, such as the conditions plotted in the upper-left panel with κ=10, lead to effectively
unmitigated spread and the death of approximately 5% of the population. Various combinations of contact
reduction, contact tracing, and surveillance sampling can effectively limit spread and suppress deaths over
the 300-day simulation period to a much smaller portion of the population. The analysis is intended to let
decision-makers understand the interplay among the control mechanisms so that they can select a mixture
of controls that fits within their constraints and risk tolerance. For example, a pure social-distancing policy
leading to a nominal contact rate of 40% leads to fewer than 100 deaths in all simulations. To accommodate
a smaller suppression of contacts, for example reduction to 80% of nominal, a mix of contact tracing and
random surveillance sampling is required. Model results indicate that contract tracing alone (top row) is
unable to reduce deaths below 100 with high confidence. (We assume that approximately 50% of contacts
are identified and controlled ). In contrast, surveillance sampling alone (right column) can reduce deaths to
this extent, however that strategy requires 30% of the population to be tested every day. Some combination,
which exploits all of the contact information provided by new cases quickly, but also monitors for cases
that can’t be reached through tracing, is evidently needed. As the analysis in Section 4 shows, system
design can rapidly become overwhelmed if it is undersized for the number of outstanding cases.

The Stochastic Network Model provides more insight for designing control strategies because it explicitly
represents the contact networks mediating much disease transmission, and whose partially-observed
linkages are navigated by contact tracers. The model is more computationally demanding than the
Deterministic Model, and so simulations were confined to regions of the control space bracketing
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Figure 5-1. Deterministic Model-derived deaths as a function of several control parameters with uncertainty in
epidemiological parameters.

transitions in calculated deaths as indicated by results from the Deterministic Model. In all simulations, the
same set of 100 sampled parameter values were used to provide clearer cross-mode comparisons.

Three types of idealized networks were used to give insight into the role of structured contacts on shaping
disease progression and control. First, disease transmission was entirely governed by random selection of
node pairs, independent of network structure. This configuration corresponds to a discretized stochastic
version of the Deterministic Model. The two formulations differ only in the use of the network structure to
guide contact tracing, which under the assumptions of this configuration will be uninformative. The second
network structure assigns a uniform degree to each node, and randomly connects pairs given that
constraint. The third network type uses an algorithm that generates a Barabasi-Albert (BA) style network
via preferential connection, then adjusts node degrees using an exponential distribution filter [11]. For each
network type, a series of networks was generated having an average degree equal to κ . The interaction
frequencies are the same for each connection, so that contact heterogeneity is determined just by the
network structure. Simulations using the uniform and BA network structures disabled global transmission,
so that transmissions only occurred through network edges.

To facilitate comparison of results from the Deterministic and Stochastic Network Models, Figure 5-2
shows results from the Deterministic Model over the central values for contract tracing, the lowest values
for surveillance sampling, and the largest values for contact rate. Figure 5-3 shows the corresponding
Network Model results in which all contacts occur through random transmissions. The models produce
similar results, and would suggest the same conclusions regarding the kinds of controls needed to limit
deaths. Deaths in the Deterministic Model appear systematically larger than in the Network Model,
especially for parameter values leading to slow transmission (larger doubling time, smaller κ). This may be
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due to the possibility of disease extinction in the discrete Network Model, however this has not been
confirmed.

Figure 5-2. Deterministic Model-derived deaths as a function of several control parameters with uncertainty in
epidemiological parameters (subset of results shown in Figure 5-1).

Figure 5-4 shows results using networks in which each node has the same number of connections (equal to
κ ). This structure leads to a substantially lower number of deaths for all parameter values and control
conditions. The tendency for heterogeneity in network connection degree to foster disease spread (using a
uniform degree) has been reported previously (e.g. [10]).

Results from networks generated through the modified BA algorithm are shown in Figure 5-5. In
comparison to the case of global transmission, there are generally fewer deaths when tracing and
surveillance efforts are low (upper left panel), however both tracing and surveillance appear to be less
effective in controlling outbreak based on the downward shifts achieved by increasing tracing (right
column) and surveillance (lower row). One motivation for developing the Stochastic Network Model is to
allow evaluation of the effectiveness of different strategies for deploying testing and tracing resources. The
concept of targeting surveillance on individuals more likely to have many contacts can be explored by
making probability of selection for testing proportional to node degree. Figure 5-6 shows the result of that
modification. Increasing surveillance sampling (from the top to bottom row) is clearly more effective when
that sampling can be targeted. To better test the potential for this kind of targeting, and to make it
potentially operational, prioritization might be based on a person’s employment or on their connection to
specific locations or events. The mobility-derived networks developed as part of our research enable this
important next step. Section 6 discusses that work.
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Figure 5-3. Stochastic Network Model-derived deaths using global disease transmission.

Figure 5-4. Stochastic Network Model-derived deaths using uniform degree distributions.
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Figure 5-5. Stochastic Network Model-derived deaths using filtered BA networks.

Figure 5-6. Stochastic Network Model-derived deaths using filtered BA networks with κ targeting.
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6. CONTACT NETWORKS USING FOOT TRAFFIC DATA

As social distancing policy and recommendations went into effect across the nation, people made rapid
changes to the places they visit and the way they interact. These changes are clearly seen in foot traffic
data, which tracks mobility using location trackers in cell phones. Numerous news articles have
documented trends in mobility as social distancing was put in place and then relaxed across different states
(e.g. [12]). As part of this project, we acquired access to foot traffic data published by SafeGraph [16]
which includes data on activity at over 5 million places across the US based on cell phone records.

In this analysis, SafeGraph data was analyzed to identify trends in behavior and to construct metrics
designed to identify locations that may have an especially strong potential to foster disease transmission,
either because of activity level or because visitors tend to come from many different locations. In addition,
data on arrival rates, times, and durations have been used to construct contact networks for the Stochastic
Network Model. This section provides a brief summary of the SafeGraph data and its analysis. Klise et al.
[7] provides detailed methods and outcomes.

SafeGraph provides weekly data updates of the data in aggregate mobility patterns. SafeGraph anonymizes
the data by applying noise, omitting data associated with a single mobile device, and grouping traffic
according to the home census block group (CBG) of the mobile devices. Using this data, we build contact
networks which store the interaction strength and transmission paths that can be used to study contact
tracing and testing as well as disease transmission. This information is then used to study the impact that
targeted business closures, restrictions, and use of PPE can have on person-to-person transmission.

A combination of SafeGraph weekly aggregate patterns data and open census data was used to create
contact networks. This includes information on the number of devices that enter the POI on an hourly
basis, a distribution of dwell times, and the device’s home CBG. While the full dataset includes CBGs and
POIs across the US, in practice, a region of interest or specific NAICS codes are used to downselect the
data used in analysis. The current analysis focuses on individual counties. Bernalillo County in New
Mexico is used to demonstrate the methods.

Mobility data can be analyzed to gain insights into many of the processes influencing disease spread.
Geographic transmission can be fostered when the vistors to a location come from a wide range of home
CBGs. The geographic diversity of a location’s visitors can be measured using a bipartite graph, as
described below. While the SafeGraph data is discretized using CBGs and POIs, these methods can be used
at other scales. For example, if finer resolution data is available, the contact network could define nodes at
the household level.

Contact networks store edge weights related to the interaction strength between individuals. The
interaction strength is a function of concurrent visits to the same place and time spent at home. To use the
Safegraph data, device counts are first scaled to number of people using the number of devices in the
dataset and census information at the CBG scale. Sampling methods were also developed to extract
representative patterns in this data. This ensures that the contact network remains a reasonable size while
preserving the foot traffic patterns in the region of interest. Arrival time and dwell times were then sampled
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from distributions established for each POI and visitors were assigned to their home CBG. This analysis
results in a contact network where the edge weight is the interaction strength between nodes. This network
that can be used in the Stochastic Network Model to determine the probability of local transmission
between neighboring nodes and to model contact tracing. In this application, a node represents a typical
individual from the CBG associated with the node.

The contact networks are analyzed using structural metrics such as the weighted node degree, shortest path
length, and clustering. The weighted node degree, shown in Figure 6-1, results in an interaction strength
for each node, or κ . The average weighted node degree, κ∗, is the average value across the network. The
network metrics indicate that interactions clearly changed starting the week of March 9th. The decrease in
weighted node degree indicates that people are in contact with less people as social distancing went into
effect. An example network is shown in Figure 6-2. The node attribute is the weighted node degree and the
link attribute is interaction strength. The small example illustrates strong links between a small number of
nodes, and more frequent weaker links. More information is included in [7].

Figure 6-1. Weighted node degree between February and June for Bernalillo County.

Figure 6-2. Subset of a contact network generated using mobility data for Bernalillo County showing interaction
strength between nodes (link attribute) and weighted node degree (node attribute).
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7. APPLICATIONS AND FUTURE DIRECTIONS

This project has developed a capability to help decision-makers navigate the trade-offs among available
control strategies for COVID-19. The capability is designed to estimate the relative power of alternative
controls to suppress outbreak. A summary and an example application is described below.

7.1. Overview and Approach

We use contact networks to study the effects of different levels of contact tracing, surveillance sampling,
business closure (or modification to business practices sufficient to preclude transmission), and vaccine
administration. These networks are designed to capture the role of specific kinds of locations as loci of
disease spread, and to evaluate the power of control measures focused on location type. Simulations are not
meant to track the specific history of the outbreak in each region because observed case counts depend on
many contingent factors not included in this model and less relevant for designing disease suppression
regimes. The example application described in this section focuses on Bernalillo County, New Mexico,
however the capability has been applied to several other regions of the US.

We use SafeGraph mobility data from specific locations to learn how people gather and interact in different
kinds of places. This data reflects local preferences and customs, along with general characteristics that
might be similar in small towns and large cities. We apply this data to understand the effects of individuals’
local travel, leisure activities, and interactions with business to quantify potential opportunities for disease
spread that occur during individuals’ daily interactions. Our analysis of this data enables us to anticipate
possible transmissions at particular kinds of places, and thus derive risk metrics for various classes of
locations and/or for particular identified locations of concern. From this understanding of individuals’
patterns of movement we further investigate how targeted policies to change contact patterns could limit
opportunities for transmission This perspective would eventually enable us to define optimal control
strategies and determine if these strategies vary from region to region, or are the same everywhere.

The purpose of the epidemiological simulations is not to attempt to account for past case histories, nor to
attempt specific predictions about the course of the outbreak in a region based on mobility data. Actual
transmission patterns are subject to too many contingencies and influenced by too many uncertainties to
permit credible forecasting. The goal is rather to use interaction patterns consistent with the mobility data
to test control strategies, and to identify strategies that appear to perform well despite the contingencies that
characterize the real system and our uncertainties about its properties.

A control strategy’s success entails changing transmission networks in a way that dampens spread with high
probability. Testing whether a particular strategy is useful goes beyond doing a single model run and seeing
if a simulated outbreak is contained. Instead, many repeated runs looking at different initiating events and
contingencies must be explored to see whether we get suppression with high probability across a wide
range of potential scenarios. A single model run that exhibits outbreak suppression provides no support for
the potential reliability of the control strategy it represents, even if it matches every historical data point
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exactly. Instead, only large scale testing of a candidate control strategy across a wide range of possible
contingencies can inform planners and decision makers of the potential reliability of that strategy.

In this study, we test for outbreak control potential by assuming the network and contact tracing and testing
system is static and in place for a year. We seed the network with infected cases and measure key
performance metrics (e.g. deaths from disease, peak hospitalization) as the disease spread and control
dynamics interact. These metrics are the basis for discriminating successful from unsuccessful designs.
Though replication of historical conditions to date may seem appealing to discriminate potential
performance of policies, exercising the candidate policy across all relevant exigencies enables us to
confidently judge the utility of model outputs as a basis for recommending future actions. Historical
outbreak examples are important for calibrating the model and for defining the analytical strategy
necessary to adequately explore the multidimensional space of possible inputs. Historical case count data
enable us to understand and bound the number of active cases anticipated for a given population, which has
strong implications for the performance of control systems (as discussed above in Section 4). This
influence can be captured by examining a range of initial conditions for the simulation.

Quantitative analysis outputs pertain to performance targets for control systems (e.g. limiting the maximum
number of people in any location to 10; reaching 80% of listed contacts within 24 hours and securing the
cooperation of half with quarantine protocols). Outputs will show tradeoffs among control measures of this
kind so that decision-makers can select appropriate combinations. The recommendations will come from
finding systems that have a high probability of suppressing the disease.

We illustrate the capability using an analysis of data from Bernalillo County, New Mexico.

7.2. Process Steps

The process for assessing control system performance in a particular region begins with constructing
contact networks for that region based on analysis of SafeGraph data. A sequence of weekly visit records,
beginning with weeks prior to adoption of movement control policies and extending through subsequent
weeks, generally including weeks of shut-down, were used to construct a corresponding series of contact
networks. Each network comprised 10,000 individuals whose interconnections were determined by
simulating arrival and departure events at specific locations based on the registered mobility data (see [7]
for details). Network connections were constructed to be representative of those in a subset of the region’s
population, which is generally much larger than the modeled population.

For data collected over a given week, several alternative contact networks were constructed in order to
capture uncertainties in the interpretation of the data in the context of the model. First, the full set of
locations measured for the region of interest were sampled and scaled in order to produce a subset
appropriate for the modeled population. This process was repeated to explore sample variability. Second,
the differential propensity for contacts at different kinds of locations to transmit disease is not well known.
Three alternatives having different degrees of variability among locations (denoted "constant", "linear", and
"quadratic" below) were considered to assess the role of this uncertainty on policy performance.

The contact networks derived from weeks prior to mobility controls were then used to estimate the value of
a single transmission probability parameter β , based on the assumption that COVID-19 would have an
initial doubling time of Td days under those conditions. The population average contact density in a
pre-lockdown network (κ∗) is assumed to be associated with an unmitigated doubling time of Td . The beta
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value corresponding to this doubling time is then:

β
∗ =

ln(2)
Tdκ∗

(7.1a)

This single calibration parameter enables disease spread to be simulated using the contact networks derived
from each analyzed week. Each network might be used in turn to simulate disease spread for one week,
with the aim of simulating a possible history for the real outbreak. This might be a useful verification
exercise. In this kind of simulation, the effect of contact patterns in a given week would be integrated with
the effects of prior weeks via the spread of cases passed on to the following week’s network. The specific
effect of each weeks’ contact structure on disease spread is therefore impossible to discern. To measure the
propensity for each week’s pattern to amplify or suppress disease spread, we instead used each pattern
separately as the basis for a one-year simulation in which the contact pattern persisted unchanged. This
analysis lets us understand whether the patterns observed in each week would tend to contain the outbreak,
or instead permit it to grow, if they were followed persistently.

This kind of analysis does not try to match a historical trajectory, but it can be tested against observations.
Networks derived from weeks subject to mobility controls, during which a region’s case counts were
observed to decline, should show a small probability of outbreak spread. Figure 7-1 for example shows
results derived for Bernalillo County. A stay-at-home order was issued for New Mexico on March 11. Visit
data from the weeks of February 10 through March 9 were used to estimate κ∗ for each of three
assumptions about contact intensity variation. The corresponding β ∗s were then used to simulate disease
spread in each of those weeks as well as the following 13 weeks to June 8.

Figure 7-1. Average weighted contact-hours per hour based on location data in Bernalillo County, NM between
February 24 and June 8, 2020, including three assumptions about variability in contact intensity over location
types, and random samples.

Figure 7-2 summarizes the results from one-year simulations based on the contact networks derived from
activity levels in different weeks. The Y axis shows total disease-induced fatalities at the end of the
simulated year. Over this time the disease will generally either spread until a substantial fraction of the
population has been infected, resulting in a total mortality of approximately 5% of the population, or will
be confined to a subset of the population due to contact reduction. Total fatalities are therefore a good
indicator of the tendency for the observed activity patterns, if they were followed habitually, to either foster
or suppress disease spread. As discussed above, there are multiple simulations for each week
corresponding to different random samples and to alternative assumptions about the kinds of contacts
occurring at different types of location. The results are consistent with experience: the social distancing
measures adopted in New Mexico from mid-March forward were generally effective in suppressing growth
of the outbreak.
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Figure 7-2. Number of disease-induced fatalities assuming the contact patterns derived for each week persisted
until herd immunity or disease extinction.

Figure 7-2 does not show estimated weekly fatalities over the historical period: it shows whether the
behavior observed in each week leads to contact networks that support outbreaks - and therefore high
numbers of deaths - or containment. In general, networks conducive to disease spread and suppression
should correspond to historical periods of increasing and decreasing case counts respectively. When they
do, that confirms our assumption that the contact networks derived from activity data capture features of
the real system that govern disease spread. This confirmation supports the use of such contact networks as
a test-bed for other control measures.

7.3. Evaluation of Controls

Some control actions (such as frequent surveillance sampling and encouragement to wear masks) can be
modeled as changes to epidemiological parameters that leave the pattern of contacts unchanged. Others
(such as complete or partial contact reduction at specific kinds of establishments) lead to changes in the
network structure. Parameter changes and structure changes are treated differently in the simulation
workflow.

To understand the potential value of reducing contacts at specific kinds of locations, either by closing them
or altering operational parameters that effectively eliminate the prospect of transmission, we defined three
contact reduction scenarios based on the NAICS ids of affected facilities:

1 No closure or control representing the pre-pandemic status quo

2 Closing businesses in 20 of the 1058 digit NAICs classifications that tend to be associated with high
contact density based on analysis of mobility data.

3 Closing a more limited subset of eight business types having the highest contact densities.

Our process for comparing outcomes from these three example policy alternatives recognizes that
epidemiological effects of taking a particular control action are affected by many uncertainties, such as
model parameters describing disease transmission processes, and compliance with imposed controls (e.g.
willingness to wear masks as mandated). To rigorously assess potential control effectiveness we represent
these uncertainties in terms of a range of action consequences.
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We illustrate this process carrying forward the analysis of data from Bernalillo County. Key parameters
describing the disease and control processes are summarized in Table 7-1.

Epidemiological/Uncontrollable Parameters
Parameter Description Dimensions Value Range Explanation/Sources

Contact Matrix Matrix describing fraction
each individual spends in
a (standardized) contact
situation with another

Contact time
per unit time

Analysis of SafeGraph
visit data

β Probability of infection
per unit time of contact

1/time 0.03 - 0.14 Inferred from analysis of
contact network and as-
sumption of rate of unmit-
igated spread (see text)

εp Effectiveness of general
PPE use in blocking trans-
mission

1 0.2 - 0.8 UF study adopts 0.5, cites
20% - 80% for cloth
masks

ηia Relative infectivity of
contacts with asymp-
tomatic infectious

1 0.25 - 0.75 Assumption

Policy/Control Parameters
Parameter Description Dimensions Value Range Explanation/Sources

Contact Matrix Matrix describing fraction
each individual spends in
a (standardized) contact
situation with another

Contact time
per unit time

Analysis of SafeGraph
visit data with location-
dependent elimination of
contacts for the contact
reduction scenarios

qr Rate of random surveil-
lance sampling

1/time (sam-
ples/day)

1,10,100,1000 Design parameter

Ntrace Number of contact tracers
available

1 1,10,100 Design parameter

fvac Fraction of the popula-
tion vaccinated in the first
week

1 0, 0.007 Design parameter

rvac Rate of increase in vac-
cine availability

fraction/week 0,0.481 Design parameter

ve f f Vaccine effectiveness in
conferring immunity

fraction 0.5 Design parameter

vtarget Vaccine prioritization op-
tion - vaccination prob-
ability is proportional to
connection strength

boolean no, yes Design parameter

xmask Mask wearing option -
mask use us advocated in
all public interactions

boolean no, yes Design parameter

Table 7-1. Epidemiological Parameter Variance for Sensitivity Study
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Hundreds of thousands of combinations of parameter values were simulated, using contact networks
derived from February 10 visit data as a baseline for unmitigated activity, with contracts at some locations
suppressed for the contact reduction scenarios. The effects of modeled controls and their interactions can
be understood by looking at the distribution of consequence measures for different settings of the relevant
parameters. Figure 7-3 shows the distribution of the calculated number of fatalities for different values of
the parameters governing surveillance sampling (qr), contact tracing (Ntrace), and mask-wearing (rmask) for
the network with no contact reduction. Ineffective control results in infection of a substantial fraction of the
population with an attendant mortality of approximately 500. A successful strategy can reduce this
significantly and with high probability. To achieve this outcome with no contact reduction, some
combination of contact tracing (large Ntrace), surveillance sampling (large qr) and mask-wearing is
evidently required. This conclusion holds for each of the assumptions regarding variation in contact density
with location (columns on Figure 7-3).

Figure 7-3. Distributions of modeled fatalities after one year for various combinations of control parameter
values: No business closures

Figure 7-4 shows distributions of fatalities under the low contact reduction scenario, involving controls on
8 high-contact location types. This scenario suggests that consistently low fatalities might be reliably
achieved with intensive contact tracing and surveillance sampling without general mask use, or
alternatively that general use of masks would allow less intensive use of contact tracing and surveillance.

Imposing additional closures further relaxes requirements on the remaining control measures as shown in
7-5. In the absence of general mask-wearing (upper row) a high rate of surveillance sampling remains
important for insuring containment.

These results illustrate the way in which newly-available information on mobility can inform designs for
strategies to contain COVID-19 outbreaks with high reliability. Analysis of the model can provide insights
into the parameters (such as disease prevalence in the population) and features (such as clustering in the
contact network) that can have a strong influence on the performance of containment strategies.
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Figure 7-4. Distributions of modeled fatalities after one year for various combinations of control parameter
values: Closure of businesses in 8 high-contact sectors

7.4. Summary and Future Directions

This work has created an analytical resource for informing urgent decisions regarding the design of NMI
systems which are tailored to the specific conditions and constraints confronting public health officials. The
integrated analysis tool enables key questions to be answered in a way that reflects current uncertainties,
and that can be quickly updated as our understanding of the disease and public responses improves.
Questions that can currently be addressed because of the work described in this report include:

• What factors determine whether outbreaks can be controlled via contact tracing and surveillance
sampling vs. contact reduction?

• What resources, in terms of numbers of surveillance samples and rate of contact tracing, are needed
to reduce outbreak risk to some acceptable level?

• Can targeting surveillance, PPE policies, social distance guidelines, or other NMI based on location,
type of commercial activity, or other factors significantly improve containment?

• Which locations or kinds of locations are the biggest contributors to contact formation?

• What kind of information (e.g. regarding behavioral responses, PPE effectiveness, disease
characteristics) would be most useful for designing more effective policies?

This work has led to a process for bringing information on disease characteristics and population behavior
to bear on urgent outbreak management decisions while conveying outstanding uncertainties. Reducing
those uncertainties through additional research can lead to better decisions. The analyses produced through
this process can help identify where better information about system processes would be most valuable in

45



Figure 7-5. Distributions of modeled fatalities after one year for various combinations of control parameter
values: Closure of businesses in 20 high-contact sectors

clarifying decisions. However, the process itself can benefit from improvements in methodology and data.
Specific areas that might be pursued include:

• Analyses to-date have focused on a small number of study areas. Application to other regions and at
different scales is straightforward given the national scope of the mobility data.

• Models for the effect of vaccines have been implemented but not analyzed in detail. Evaluation of
the interaction of vaccine distribution with other mechanisms can help insure a low-risk relaxation of
NMI measures as the proportion of immunized increases.

• Vaccination state model may need to be elaborated to represent multi-stage protocols or multiple
vaccine types.

• Additionally, future directions for this model should include close collaboration with individuals and
organizations actively engaged in disease control and mitigation. This close collaboration going
forward will enable model developers and analysts to focus attention on the time critical questions
most relevant during for ongoing disease control operations for which this model is uniquely poised
to answer.

Additional research could provide information that would improve the utility and performance of this
model:

• Relationship of contact frequency and duration on COVID-19 transmission is not well known in
business and congregant settings. Better definition for the variability of contact intensity among
location types would help improve accuracy.

• Behavioral changes are not represented. Closure of some businesses may cause increased traffic at
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locations providing similar goods or services. A data-based model might be developed from
responses seen in mobility data.
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8. CONCLUSIONS

This report documents a compelling new approach to designing disease control policies that allocate scarce
testing, contact tracing, and vaccination resources to better control community transmission of COVID19
or similar diseases. The Adaptive Recovery Model (ARM) combines a deterministic compartmental
disease model with a stochastic network disease propagation model to enable us to simulate COVID-19
community spread through the lens of two complementary modeling motifs. ARM generates synthetic
contact networks, leveraging cell-phone location data to identify locations within communities where the
frequency and duration of interpersonal contacts create opportunities for rapid disease spread. ARM
applies this model- and data-derived abstractions of community transmission to model the effectiveness of
disease control measures including targeted social distancing, contact tracing, testing and vaccination. The
architecture of ARM provides a unique capacity to support decision makers in understanding how best to
deploy scarce testing, tracing and vaccination resources to minimize disease-spread potential in a
community.

ARM was designed and developed over a very short time during the COVID-19 Pandemic. Fielding the
model during the pandemic required that Sandia mathematicians and scientists design and implement
major extensions to the state of the art for compartmental and network disease models, and create other
capabilities such as data-driven contact network generation from scratch. The product provides a unique set
of capabilities that address the needs of local, state/tribal, and national public health agencies to maximize
the public health benefit achievable with limited availability of testing, tracing, and vaccination. This
document details the novel mathematical formulations underlying the unique capabilities of ARM,
dynamical stability analysis of the deterministic model components, sensitivity analysis of derived contact
networks, and detailed derivation of contact networks from cell-phone location data. In addition, this report
documents extensive High Performance Computing (HPC) based parameter studies that were run on the
ARM model to analyze model and parameter uncertainty and develop defensible confidence intervals for
model performance.

While the design and implementation of ARM is unique, its true value is in providing rigorous comparative
analyses of disease control policies that maximize public health benefit from limited resources. This
document also steps through applying ARM to evaluate three targeted social distancing policies using
Bernalillo County, New Mexico as an exemplar test locale. This step-by-step analysis demonstrates the
experimental design and analytical processes to be followed to confirm the relative performance of
competing public health policies. Lastly this document explores a range of follow on activities to further
exploit the power of ARM, along with additional research and development activities which could further
expand capabilities and/or improve the generality of analytical results.

The documented design considerations, implementation details, and performance characteristics of the
ARM model clearly demonstrate the potential utility of disease control models that provide decision
makers with insights on effective allocation of chronically limited resources during an outbreak. Initial
scenario tests of ARM shows that ARM’s design focus on resource utilization rather than simple incidence
prediction can provide decision makers with additional quantitative guidance for planning for and
managing ongoing public health emergencies
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