CONF—=D6HR P~

A Fast Look-up Algorithm for Detecting Repetitive
DNA Sequences

. RECK
X. Guan and E. C. Uberbacher Dlm C = zfg)
Informatics Group
Computer Science and Mathematics Division O Sa.Tﬂ

Oak Ridge National Laboratory
Oak Ridge, TN 37831-6364

*The submitted manuscript has been
authorized by a coatractor of the U.S.
Government under contract No. DE-
AC05-840R21400. Accordingly, the U.S.
Government retains a nonexclusive,
royalty-free license to publish or reproduce
the published form of this contribution, or
allow others to do so, for U.S. Government
purposes.”

To be submitted as full article to The First Pacific Symposium on Biocomputing Ritz Carlton Hotel,
pwa—BigIsland;-Hawaii, January 3-6, 1996.

*Research was supported by the Office of Health and Environmental Research, U.S.
Department of Energy under contract No. DE-AC05-840R21400 with Martin Marietta Energy

Systems, Inc.
ARRQTELD
MASTER

DISTRIBUTION OF THIS DOE)UMENT IS UNLIMITED N(

A Fast Look-Up Algorithm for
Detecting Repetitive DNA Sequences

X. Guan and E. C. Uberbacher

Computer Science and Mathematics Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831-6364

Abstract

This paper presents a fast linear time algorithm for rapid identification of tandem
repeats. It utilizes indices calculated from non-continuous and overlapping k-tuples
so that tandem repeats with insertions and deletions can be recognized. It has been
made available through the GRAIL (GRAIL@ornl.gov) and GENQUEST (Q@ornl.gov)
Internet servers. Its performance is compared with that of another Internet server

Pythia.
Introduction

Repetitive sequences are abundant in human DNA sequences. By one estimate, from
30% to 50% human genome consists of repeats of one form or another (Benson and
Waterman, 1994). In this paper, we focus on repetitive sequences in which short
words are repeated many times, referred to as tandem repeats or microsatellites in the
literature. Tandem repeats are highly polymorphic and have been used as polymorphic
markers in DNA. A number of genetic diseases are caused by an amplified number of
tandem repeats within or adjacent to a gene (Verkerk et al., 1991). Repetitive sequences
also present a problem for sequence comparison because they tend to produce non-
biologically significant alignments. It is therefore important to have efficient methods

to recognize tandem repeats.

Benson and Waterman (1994) developed a method that scans a sequence from left
to right looking for a potential repeat pattern (a basic unit that constitutes a repetitive
sequence), and then uses a specialized dynamic programming algorithm (wraparound
dynamic programming developed by Landau and Schmidt (1993)) to find the bound-
aries and the alignment of the repetitive sequence. The algorithm requires several
input parameters such as the period size (the length of the basic repeat unit or pat-
tern) and the pattern detection parameter (used for initial scanning of a sequence for
potential repeat pattern). It is not a linear time algorithm because it uses a dynamic
programming algorithm.

Another method proposed by Milosavljevic and Jurka (1993) utilizes a data com-
pression technique to locate tandem repeats. If a pattern is duplicated many times,
copies of the pattern can be replaced by pointers to the pattern, thereby reducing the
number of bits required to represent the sequence segment covered by the patterns.
This may signal a tandem repeat. This algorithm is a linear time algorithm.

In this paper, we describe a fast look-up method that can scan DNA sequences
rapidly for tandem repeats. The algorithm uses a new look-up technique and is linear
in time.

We use the definition of tandem repeats given by Benson and Waterman (1994). A
pattern is any particular segment of sequence. A fandem repeat is the concatenation of
two or more copies of a pattern. These copies may vary from each other in the form

of substitutions, insertions, or deletions.
Methods

Look-up table techniques have been used to identify matching words or segments in
sequence comparison methods (e.g., FastA, Pearson and Lipman, 1988). Given two

sequences,

ACTTGACT
TTGACATA

A look-up table can be calculated from the first sequence that records the position

of different nucleotides, i.e., A appears at positions 1 and 6, C appears at positions 2

2

and 7, etc.

All]6
Ci2|7
G|5
T]1314]8

Then the second sequence is scanned from left to right. For each ﬁucleotide, the po-
sitions of the nucleotide in the first sequence are fetched from the table and offsets
(the differences of the nucleotide’s positions in the two sequences) are calculated. For
example, the first nucleotide of the second sequence is T which also occurs at positions
3 and 4 in the first sequence. So we get two offsets 3 - 1 = 2 and 4 - 1 = 3. Each
nucleotide in the second sequence, if it is also present in the first sequence, produces
one or more offsets. For each offset, we maintain a counter which counts how many
nucleotides produce this offset. The contents of these offset counters are called offset

scores. The offset scores for the second sequence are

offset |-7|-6|-5]|-4|-3]-2]-1{0]1}2]|3!4|5]|6]7
score [1]0]1]1]3j1}10]112|5]110]0}11}1

If these two sequences share a common word w at a certain offset, that offset will get
a score > the length of w. Clearly the word TTGAC shared by the two sequences
produces the highest offset score 5 at offset 2.

Similarly, a k-mer with £ > 2 can also be used to build the table, though it takes
more time and space. The technique can be used to compare a sequence with itself
to detect tandem repeats. However, the patterns in tandem repeats typically are
not duplicated exactly. Substitutions, insertions, or deletions make it difficult to use
the lookup technique described above where an insertion or a deletion can interrupt

otherwise matching segments.

Recently, a new look-up technique, which uses indices calculated from non-continuous,
overlapping tuples, was employed in the FLASH program (Califano and Rigoutsos) for
sequence homology search and is described below.

Given a sequence, @;ds...a, where g;, 1 <7 < n, can have s different values (for
DNA, s = 4), let A be a function that maps ¢; to an integer in [0,5 — 1]. A fixed
number of indices are calculated for each position in the sequence as follows: given a
window size w, and a tuple length of ¥ < w, for each position 7, a k-tuple is formed by
selecting k ordered elements from the window starting at ¢, say b1bs...b%, where b; =
a;. Tt is important that b; = a; because we are calculating indices for position 7. An

index can be calculated from this k-tuple as follows:

k
I=Y Mb)#*s?

t=1

Because we require that the first element is always a;, there are d = (f_‘ll) different
such k tuples ((*) is a binomial coefficient, i.e., the number of ways to choose m ordered
positions from n positions), therefore d indices for each position in a sequence. One
way of selecting the k positions from a window is by masking. A vector of length w
has k positions set to 1 and other positions set to 0. For w = 5 and k = 3, there are

d= (g:}) = 6 such vectors. They are

11100
11010
11001
10110
10101
10011

For a sequence segment TGTAT, applying the first vector to the segment results
in the 3-tuple TGT. Totally we have six 3-tuples, TGT, TGA, TGT, TTA, TTT, and
TAT, that are used for calculating indices.

Indices calculated from non-continuous k-tuples allow insertions and deletions be-
tween matching segments, and overlapping k-tuples provide rich indices for each posi-
tion in a sequence.

The new indexing technique is used here to recognize tandem repeat as follows. We
build a lookup table by scanning a sequence from left to right. For each position 7 in
the sequence, we calculate the d indices Iy, I3, ..., I as before. For each I, 1 <t < d,
we first store a pair (2,1) at the lookup table entry I;, which means an index I; has
been generated from the #-th vector for the current position 7, and then we search the
same table entry I; for positions that share the same index I; calculated from the same
vector. Suppose a pair (2,7) is stored in the same table entry I, that is, the index
I, has also been generated from the t-th vector for position j. We say that position
i has one vote for position j. After all the indices Ij, I3, ..., I3 have been processed,
the position (the window that beginning at that position) that receives the most votes
from position ¢ is the one that most resembles the window starting at 1.

Note that for each position ¢, we only need to look for position 7 < ¢ that most
resemble position %, so we can build the lookup table as we scan the sequence. If
position ¢ votes for position j < ¢ and position j votes for position £ < j, then we say
that position ¢ votes for k. Therefore, only the most recent position for each index
needs to be stored, and for each table entry, we need only to store at most d positions.
Now instead of storing a pair (¢, %) at a table entry I, we store ¢ at the #-th column at

entry I. The lookup table is depicted in Table 1.

112 d
111 |2)
2 1|2 7

Epi)i]]t

Table 1. Lookup table. Given window size w, tuple length &, and the number of

values s that a position can have, d = (}c"_'ll)

If there is a tandem repeat in the sequence, the first pattern of the tandem repeat
will get the most votes, and the last position that votes for the first pattern marks the
end of the tandem repeat.

Space is not as much a problem here as it is in FLASH. Since we are looking for
tandem repeat of short pattern, for each position, we only need to look forward (to
the left of the position) limited distance (let’s called it look-forward-distance), and the
table size is aé most dk*®. For the parameters that we are using in our present system,
w=>5,k=3,s =4, and d = 6, the table size is 486.

Let f be the look-forward-distance. Our algorithm identify tandem repeats with
pattern sizes from 1 to f in one pass. In a comparison, a fixed pattern size is a required
input parameter to the method by Benson and Waterman (1994).

Our algorithm is a linear time algorithm. We scan the sequence only once, and
for each position, only constant number of indices are calculated and looked up in the

table.

Implementation and Results

The algorithm was implemented in C language, and has been incorporated into the
GENQUEST and GRAIL Internet email servers. To access GENQUEST, send an
email message to Q@QORNL.GOV.

To illustrate the use of the algorithm, we have applied it to the Human Tissue
Plasminogen Activator Gene (GenBank Release 89, accession number K03021). The
parameters we used were w = 5,k = 3, and d = 6. Two annotated tandem repeats, a
(RY)™ (RY repeated n times) run (7170-7225) and a TGAT AG A tandem repeat region
(23888-24458), were identified. Two other un-annotated tandem repeats, a (AC)" run
followed by a (TC)" run (16910-16961) and a poly(A) segment (17107-17132), were
also identified by our algorithm. These four tandem repeats were reported by the
Pythia server (Milosavljevic and Jurka, 1993). Regions identified by our algorithm
but not reported by Pythia include several poly(A) segments (1015-1047, 26467-26486,
29083-29104, 19160-19178) and an interesting tandem repeat region (21562-21597)

AAATAATAATAATAAATAAATAATAAATAAATAAAT.

6

This can be considered as a tandem repeat of pattern AAAT with deletions (underscore

means deletion):
AAAT _AAT AAT _AAT AAAT AAAT .AAT AAAT AAAT AAAT

Pythia also uses a linear time algorithm, but in practice, our algorithm is 5-6 times
faster (note, we compare our algorithm with only that portion of the Pythia server

which identifies simple repeat regions).
Conclusions

We have presented a fast linear time algorithm for recognizing tandem repeats. Qur
algorithm is a one pass algorithm. No information about the periodicity of tandem re-
peats is needed. The use of the indices calculated from non-continuous and overlapping

k-tuples allow tandem repeats with insertions and deletions to be recognized.

References

[1] Altshcul,S.F., Gish,W., Miller,W., Myers,E.W., and Lipman, D.J. (1990) “Basic
Local Alignment Search Tool,” Journal of Molecular Biology, vol. 215, 403-410.

[2] Califano,A. and Rigoutsos, I. “FLASH: A Fast Look-up Algorithm for String Ho-
mology,” CABIOS. To appear.

[3] Claverie,J.-M. and States, D.J. (1993) “Information Enhancement Methods for
Large Scale Sequence Analysis,” Computers & Chemistry, vol. 17, 191-201.

[4] Benson, G. and Waterman, M.S. (1994) “A Method for Fast Database Search for
all k-nucleotide Repeats,” Proc., Proc., The 2nd International Conference on In-

telligent Systems for Molecular Biology, AAAI Press.

[5) Guan,X. Mural,R. Petrov,S. and Uberbacher,E.C. (1993) “A Sensitive Sequence
Comparison Server for DNA and PROTEINS,” Proc., Genome Sequencing and
Analysis Conference V, Hilton Head Island, South Carolina.

[6] Landau,G. and Schmidt,J. (1993) “An Algorithm for Approximate Tandem Re-
peats,” Fourth Annual Symposium on Combinatorial Pattern Matching, 120-133.

7

[7] Milosavljevic,A. and Jurka,J. (1993) “Discovering Simple DNA Sequences by the
Algorithmic Significance Method,” CABIOS, vol. 9, 407-411.

[8] Pearson,W.R. and Lipman,D.J. (1988) “Improved Tools for Biological Sequence
3 hiaiadd I
comparison,” Proc. National Academy of Sciences, USA, vol. 85, 2444-2448.

[9] Verkerk, A. J. M. H. et al, (1991) “Identification of a Gene (FMR-1) Containing
, A. J. M. H.
a CGG Repeat Coincident with a Breakpoint Cluster Region Exhibiting Length

Variation in Fragile X Syndrome,” Cell, 65,905-914.

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

