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The purpose of this memorandum is to reproduce the uni-axial strain and bending bar
problems from [3] in sufficient detail that they are readily implementable. In particular,
some fundamental typographical errors are addressed.

The purpose and intent of this unorthodox document warrants further a more detailed de-
scription. The document was written on personal time by a code developer. From a well
written and remarkably easy to understand article two examples are reproduced in as much
detail as possible. The goal is to produce a more precise description of two verification ex-
amples, sufficiently accurate and clear to share with other code developers. Section 5 and
Appendix 2 of [3] are confirmed, with revisions. But 18 step algorithm in section 7 of [3] has
not been confirmed, and in my opinion is not the most useful part of [3], as it is presented.

Another purpose of this document is to serve as a starting point for conversations with my
colleagues. The next step is to discuss with a Subject Matter Expert the constitutive laws
available in Adagio

1 Introduction

1. There’s an important typographical error in the definition of the deformation. I fixed
the typo so that both a power series expansion of the deformation about t = 0 looks
right, and also the deformation gradient is consistent.

2. Another typo is writing λ when what is meant is Λ. Basically some of the λ’s are really
Λ, and resolving that ambiguity correctly is required. I cannot rule out that there is
some way, e.g. dimensional analysis, to tell whether or not λ is actually Λ. Other
typos, e.g. equation (67) of [3] a should be changed to n, are not important.
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3. For the bending bar problem to be uniquely defined, the domain must be specified,
e.g. [0, 1]× [0, 8]. All domains are rotated about the origin. For instance the domains
[0, 1]× [0, 8] and [1, 2]× [0, 8] are different problems.

4. In the presentation of the bending bar problem, it is assumed that T = 1. The code
developer needs access to T , to create fast automatic tests.

Some modifications would make the verification tests less expensive to use.

• Attempting to using the bending bar example as it is presented would be risky. It is
preferable to decompose the bending bar test to simple testable components.

• Ideally an implementation in a programming language would be presented. If applica-
ble, adding a Mathematica Notebook in an appendix would be an improvement.

• The bending bar example is presented as a black box which limits its value.

And I have a comment and a hunch. In Appendix 2 it’s a little confusing to call the
rotated coordinate system polar coordinates, with basis (er, eθ). Also the parameterized
(parametrized) family of bending bar problems includes the bar bent into a circular disk
from [4]; neither article gives a references on the problem.

variable description
X material point
x spatial point, x = χ(X, t)
u displacement x−X

div divx
t time or traction

a ∂2x
∂t2

ρ(x, t) spatial density
ρ0 initial material density, ρ(X, 0)
F deformation gradient Fij = ∂xi

∂Xj

J detF
P first Piola-Kirchhoff stress P = JσF−T

(E1, E2, E3) Cartesian basis
I 3× 3 identity matrix

DIV DIVXP = ∂Pij
∂Xj

Ei
T simulation stop time,
n unit outward normal
λ Eν

(1+ν)(1−2ν)

µ E
2(1+ν)

Lamé modulii

Table 1. The nomenclature is standard, except P , which is not standardized.
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variable value
ρ(x, t) arbitrary
T 1 second

Youngs modulus 106 Pa
Poissons ratio 0.25

stretch Λ > 0
domain brick aligned with axes

Table 2. Uni-axial Strain Problem

First sections 5,7 and Appendix 2 of [3] are nearly reproduced in order, as a kind of code
review. Word processing software eliminates the cumbersome aspects of such a task. The
Uni-axial Strain problem is reproduced verbatim. The next section attempts to repeat the
complex algorithm for the bending bar body forces. I have not taken the time to verified
the algorithm presented in [3] for the body forces. The next section revisits the derivation in
Appendix 2. Several critical typographical errors are identified and fixed. Section 5 sketches
how a less risky to implement user subroutine. And section 6 reviews the constitutive law,
and identifies the most closely related constitutive law available in Adagio.

2 Uni-axial strain and displacement for traction boundary condi-
tions

A verification problem satisfies the balance of momentum equation,

div(σ) + ρb = ρa, spatial coordinates, (1)

DIV(P ) + ρob = ρoa, material coordinates. (2)

Recall that divergence on matrices acts along the columns, or for tensors, on the last index.

The recipe is to specify a displacement field that determines the stress field. Then the body
force is determined by equation (2). There are hidden constraints. Mechanics codes are
designed to handle u ∈ H1(Ω) (c.f. u defined by it’s value at mesh nodes). Another hidden
constraint is that b ∈ L2(Ω), i.e. b is defined by its values on element interiors in some
coordinate system. Knowledge of the interface for source terms b(. . .) is a luxury shared by
few code developers.

We consider homogeneous uni-axial strain of a hyper-elastic solid. That is in the absence
of translation, the mapping for a homogeneous deformation of a point X in the initial
configuration to x in the deformed configuration is x = FX and of course

u = (F − I)X.

Furthermore the deformation gradient F varies with time, but not position. Accordingly,
the acceleration is a = F̈X. Here the reference frame is the material frame, F (0) = I. The
choices for F are further restricted by homogeneity and uni-axiality.
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The simplest non-trivial example is a deformation gradient that varies linearly through time
from the initial value I to an arbitrary F (T ) = G, F = I(1− t)+Gt. Thus, for this example,
F̈ = 0, and hence, the material acceleration is zero. For uni-axial strain corresponding
to a final stretch Λ in the 1-direction, G = diag(Λ, 1, 1). And therefore the time-varying
deformation gradient is

F = diag(φ(t), 1, 1), φ(t) = 1 + (Λ− 1)t, φ > 0 (3)

For a homogeneous material, the constitutive model and its associated parameters are the
same at all points in space. Accordingly, for a homogeneous deformation, the stress predicted
by the constitutive model is the same at all points in space, making the divergence of stress
zero. Thus, with both the acceleration and stress divergence zero, equation (2) implies
that the body force must be zero. Though the body force is zero, the initial velocity field,
v = ḞX, is nonzero (so this problem offers a simple test for initializing velocity fields in
a code). This problem could be solved using velocity boundary conditions. The boundary
tractions, t = σn, depend on the constitutive model. Here the Neo-Hookean constitutive
model,

σ =
λ log J

J
I +

µ

J
(FF T − I) (4)

is adopted, for positive elastic Lamé material constants λ and µ. Substituting F from
equation (3) into equation (4) gives stress as a function of stretch Λ and time t. The traction
on the positive x-face, t1, and the traction on negative x-face, t2 are given by

t1 = −t2 =
λ lnφ+ µ(φ2 − 1)

φ
.

The traction on the positive y-face, t3, and the traction on the negative y-face, t4, are

t3 = −t4 =
λ lnφ

φ
,

A 3D brick has traction t5 on its positive z face and t6 on its negative z-face. Here t5 =
−t6 = t3. For a mechanics codes not solving pure traction problems, displacements may be
specified on the z faces.

3 Bending bar verification test

This problem domain is a rectangular bar with height H and base B. In this problem all
material points undergo an identical deformation mode: uni-axial strain with superimposed
rotation. This problem also includes a time and space-varying traction on the boundary, thus
giving this problem the advantage of assessing the codes algorithms for geometrically non-
linear traction boundary conditions under non-homogeneous deformations. The constitutive
model is the Neo-Hookean model given by equation (4).

As explained in section 4, the following sequence of calculations evaluate the body force.
Boundary conditions and initial conditions may be determined from the section 4. An
algorithm for evaluating the tractions is given at the end of this section.
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variable value

initial density ρ0 = 103 kg
m3

stop time T = 1s
Youngs modulus 103 Pa

Poissons ratio 0.3
height H = 8m
base B = 1m

domain [Xl, Xr]× [0, 8], Xr = Xl + 1
v0 = 0 initial velocity vanishes
σ0 = 0 initial stress vanishes

Table 3. Bending Bar Problem

1. t = 0, v = 0, u = 0.

2. Evaluate an amplitude function β = A
2
(1− cos(2πt

T
))

3. Evaluate the element rotation angle α = βX2

H

4. Evaluate a temporary variable

p1 = (128H3 − 8A2HX2
2 − 5A3X1X

2
2 )

+4(16H3 + A2HX2
2 + A3X1X

2
2 ) cos(2πt)

5. Evaluate a temporary variable

p2 = 4A2(2H + AX1)X2
2 cos(4πt)

−4A3X1X
2
2 cos(6πt) + A3X1X

2
2 cos(8πt)

6. Evaluate a temporary variable

p3 = −128H3 cos(
AX2 sin(πt)2

H
)

−32H3 cos(2πt− AX2 sin(πt)2

H
)

7. Evaluate a temporary variable

p4 = −32H3 cos(2πt+
AX2 sin(πt)2

H
)

8. p5 =
A(1+

AX1−AX1 cos(2πt)

2H
)

2Hρ0(2H+AX1−AX1 cos(2πt))2
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9. Evaluate a temporary variable

p6 = −8H2λ+ 8AHµX1 + 3A2µX2
1

−4AµX1(2H + AX1) cos(2πt)

10.

p7 = A2µX2
1 cos(4πt) + 8H2λ log(1 +

AX1 sin(πt)2

H
)

11. p8 = −12AHX2 − 4A2X1X2 +A(8H + 7AX1)X2 cos(2πt) + 4A(H −AX1)X2 cos(4πt)

12. p9 = A2X1X2 cos(6πt) + 32H2 sin(AX2 sin(πt)2

H
)

13.

p10 = −8H2 sin(2πt− AX2 sin(πt)2

H
)

+8H2 sin(2πt+
AX2 sin(πt)2

H
)

14. Evaluate the radial component of the body force

br =
π2 csc(πt)4(p1 + p2 + p3 + p4)

32AH2
+ p5(p6 + p7)

15. Evaluate the circumferential component of the body force

bθ =
π2 csc(πt)4(p8 + p9 + p10)

8AH

16. Evaluate the the body force in Cartesian coordinates

b = Q(α)

[
br
bθ

]

17. bz := 0

These the algebraic expressions are not presented in a way that is easy to understand. For
instance, the expressions have not been simplified. The identity cos(a + b) + cos(a − b) =
2 cos(a) cos(b) simplifies the expression p3 + p4. The numerator and denominator cancel in
the expression for p5. The identity sin(a + b) − sin(a − b) = 2 cos(a) sin(b) simplifies the
expression p10.

Tractions depend on t, peak amplitude A, T , bar height H, and element coordinate X, The
reference element face unit outward normal N . The rotation of the bar is done using

Q(α) =

[
cos(α) − sin(α)
sin(α) cos(α)

]

for 0 ≤ β ≤ A and 0 ≤ α ≤ β. The peak amplitude was chosen to be A = π
2
.
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1. β = A
2
(1− cos(2πt

T
))

2. Λ = 1 + βX1

H

3. U = diag(1,Λ)

4. J = detU

5. σ = σ(λ, µ, J, U)

6. α = βX2

H

7. Q(α)

8. t = QσN

The choice of β(t) so that β(0) = 0 and βt(0) = 0 corresponds to trivial initial conditions.

4 Bending bar forcing functions

This is my attempt to understand the Appendix 2 from [3]. The deformation will be decom-
posed into a sequence of calculations. The mapping from an initial position X to a deformed
position x is shown in Fig. 28 of [3]. More explanation is needed here. I think that I have
corrected the algebra (in red).

x =

[
−H

β
+ (X1+H

β
) cos(α)

(X1 + H
β

) sin(α)

]
(5)

This produces a consistent deformation gradient,

F =

[
cos(α) −(X1+H

β
) sin(α) β

H

sin(α) (X1 + H
β

) cos(α) β
H

]
= QU

Note that

λ 6= Λ = 1 + β
X1

H

A helpful check is to express χ(X, t) in a way that does not have singularities at t = 0.

Noting that α = βX2

H
, and sinc(α) = sin(α)

α
, there holds X2sinc(α) = H

β
sin(α). A related

function is represented here by its series expansion, −1+cos(α)
α

= −α
2

+O(α3). The expression
for the deformation without singularities is

x =

[
cos(α) −α

2

sin(α) sinc(α)

]
X +O(α2).

This is the expression to use for extremely small values of α.
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F has a unique polar decomposition F = RU as the product of a rotation R = diag(Q, 1)
and a stretch U = diag(1,Λ, 1).

The Jacobian is Λ. It’s necessary to specify the domain, specifically both Xl and Xr, as is
evident from the critical points,

{X : detF = 0} = {X : X1 = −H/β} (6)

Here, α is the angle of rotation at the material point of interest, Λ is the amount of stretch
in the 2-direction.

Then the Cauchy stress σ is computed using σ = RσRT where R is the rotation tensor.
Turning now to the momentum equation, the indicial form of the divergence is given by

fi =
∂σij
∂xj

=
∂

∂xj
(RipσpqRjq).

By the product rule,

fi =
∂Rip

∂xj
σpqRjq +Rip

∂σpq
∂xj

Rjq +Ripσpq
∂Rjq

∂xj

Note that the polar rotation R depends only on the rotation angle α,

∂Rip

∂xj
=
dRip

dα

∂α

∂xj

Substituting
∂α

∂xj
=

∂α

∂Xn

F−1
nj ,

introducing Ω = Q(π
2
), and substituting dR

dα
= RΩ, produces

∂Rip

∂xj
= RikΩkp

∂α

∂Xn

U−1
nmR

−1
mj

The expansion of the right-hand term follows by changing the index (i, p, j) to (j, q, j).

Ripσpq
∂Rjq

∂xj
= RipσpqRjkΩkq

∂α

∂Xn

U−1
nmR

−1
mj

I like to order terms to emphasize their connection to matrix products. The left-hand term
simplifies.

∂Rip

∂xj
σpqRjq =

∂α

∂Xn

U−1
nmR

−1
mjRjqσpqΩkpRik =

∂α

∂Xn

U−1
nq σpqΩkpRik
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The right-hand term is similar.

Ripσpq
∂Rjq

∂xj
=

∂α

∂Xn

U−1
nmR

−1
mjRjkΩkqσpqRip =

∂α

∂Xn

U−1
nk ΩkqσpqRip

We’re two thirds of the way to deriving an expression for the internal force density.

Rip
∂σpq
∂xj

Rjq.

Recall that σ depends only on Λ,

∂σpq
∂xj

=
∂σpq
∂Λ

∂Λ

∂xj
=
∂σpq
∂Λ

∂Λ

∂Xk

F−1
kj

F = RU , F−1R = U−1

Rip
∂σpq
∂xj

Rjq =
∂Λ

∂Xk

F−1
kj Rjq

∂σpq
∂Λ

Rip =

∂Λ

∂Xk

U−1
kq

∂σpq
∂Λ

Rip

The divergence operator, ∇·, is a row vector. Let’s say that f is a column vector, and write
fT = ∇ · σ to avoid any ambiguity.

fT = ∇XαU
−1σTΩTRT +∇XΛU−1∂σ

T

∂Λ
RT+

∇XαU
−1ΩσTRT

Here the [, ] notation denotes the commutator [A,B] = AB−BA, of a pair of square matrices.
The expression for the body force in rotated coordinates is

f
T

= fTR = ∇XαU
−1σTΩT +∇XΛU−1∂σ

T

∂Λ
+∇XαU

−1ΩσT =

= ∇XαU
−1[Ω, σT ] +∇XΛU−1∂σ

T

∂Λ
(7)

The purpose of the remainder of this section is to compare equations with [3]. Before the
constitutive law the Lamé parameters can not yet have appeared. We know for instance

∇Xα =
β

H
[0, 1, 0], ∇XΛ =

β

H
[1, 0, 0]
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I’ve been keeping the transpose on the stress, but of course σ is assumed to be symmetric.

[Ω, σ] =

 −2σ21 σ11 − σ22 −σ23

σ11 − σ22 2σ21 σ13

−σ32 σ31 0


This means that

HΛ

β
f
T

= [σ11 − σ22, 2σ21, σ13] + Λσ(1, :),Λ

The corresponding formula in [3] is complicated. Next the equation for f is written out, and
that result matches the expression here.

4.1 The Neo-Hookean Case

The purpose of this section is to evaluate the body force using equation (7). Ideally this
section is perfectly redundant with section 3. In verification, redundancy is wonderful. The
algebra is left in here. A sanity test of the body force equation is done.

To begin, bearing in mind that F = RU ,

[Ω, σT ] =
µ

J
[Ω, FF T ].

Y = [Ω, FF T ] is symmetric, traceless. In particular

y21 = 2(cos(α)2 − Λ2 sin(α)2), y22 = (Λ2 − 1) cos(2α)

In equation (7), we have evaluated the term

(∇Xα)U−1µY =
µβ

HΛ2
[y21, y22].

It remains to evaluate

(∇XΛ)U−1∂σ
T

∂Λ
=

β

H
[1, 0]

∂σT

∂Λ

Differentiating equation (4),

σ =
λ log J

J
I +

µ

J
(FF T − I),

involves
d

dJ

log J

J
=

1− log J

J2
,

and also
F,JF

T = (RU,J)F T = Rdiag(0, 1)UTRT = Rdiag(0,Λ)RT .

The last step is
d

dJ

FF T − I
J

=
(F,JF

T + FF T
,J)J − FF T + I

J2
=
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= R(diag(0, 2JΛ)− (1,Λ2) + (1, 1))RTJ−2

= R(diag(0,Λ2 + 1))RTΛ−2

= Re2e
T
2R

T (1 + Λ−2).

This gives the term that we needed:

β

H
[1, 0]

∂σT

∂Λ
=

β

H

λ(1− log J)

J2
[1, 0]− β

H
(1 + Λ−2)µ sin(α)eT2R

T

This expression for f , using intermediate variables,

f
T

=
λβ(1− log Λ)

HΛ2
[1, 0]+

µβ

HΛ2
([y21, y22]− (1 + Λ2) sin(α)eT2R

T ) (8)

instead of the primitive variables, looks utterly different from section 3. As a sanity test,
there should be a log Λ term in either p6 or p7 of section 3. Bearing in mind that

β =
A

2
(1− cos(2

πt

T
)) = A sin(

πt

T
)2,

the log Λ is there in p7.

4.2 Acceleration and Polar Coordinates

The force density contribution from the material acceleration follows from the relation x =
χ(X, t). The initial velocity x,t = x,ββ,t vanishes with β,t. Acceleration is just

∂2x

∂t2
=

∂

∂t
(x,ββ,t) = (

∂

∂t
x,β)β,t + x,ββ,tt =

x,βββ
2
,t + x,ββ,tt (9)

where the derivatives with respect to β are found by differentiating equation (5). Density
is ρ = ρ0/Λ. Substituting f , ρ and ẍ in the momentum equation in spatial coordinates,
equation (1), after choosing the material model and material constants, the total body force
required for this deformation is b = ẍ− f/ρ.

5 Interfaces

A minimal interface requires, first, the problem parameters described in Table 3. A good
interface will check, using equation (6), that the deformation is well defined.
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A suite of functions will be needed to determine the initial conditions, boundary conditions
and body force.

One function could return x, ẋ, ẍ using equation (9), which in turn would be using an inner
interface that requires X,H, β and uses equation (5). An then an outer interface would
require X,H, t, T, A, compute β, using the inner interface.

A function that returns the stress σ, using equation (4), and the internal force density
f = divσ using equation (8) is called for.

6 Hyperelastic Materials

Civilization advances by extending the number of important operations which
we can perform without thinking about them. A. N. Whitehead, Introduction to
Mathematics (1911)

Table 4. Nomenclature for three dimensional solid mechanics

variable description
λ first Lamé parameter
µ shear modulus, second Lamé parameter
κ bulk modulus κ = λ+ 2

3
µ

F deformation gradient
J determinant F
B left Cauchy-Green FF T

C right Cauchy-Green F TF
S seconds Piola-Kirchoff stress
B isochoric BJ−2/3

I1 trace B
dev() dev(L) = L− tr(L)/3

To use the verification problems from [3], one must thoroughly consider the constitutive law
for a compressible Neo-Hookean solids. There are many Neo-Hookean materials. For Adagio,
the Neo-Hookean constitutive laws do not include this one, to the best of my knowledge.
This work could proceed in one of two directions: either figure out how to use the non-
default hyperelastic model in Adagio, or use the default Neo-Hookean model and redo some
calculations from [3] for the new material.

In this section, the material used in [3] is characterized further. The goal is to identify the
closest relative in the Adagio constitutive laws, but this task cannot be done without help
from a Subject Matter Expert.
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6.1 The Neo-Hookean model used in the verification problems

The constitutive law in [3] is generic: it is also used in [2] and [1] without reference. In [2],

W =
µ

2
(trace(C)− 3)− µ ln J +

λ

2
(ln J)2, S = µ(I − C−1) + λ(ln J)C−1.

In [1], the same strain energy density function is used and the Kirchoff stress τ = λ ln JI +
µ(B − I).

For purposes of comparison, it is standard to give the strain energy density function, which
in this case is

W =
µ

2
(I1 − ln I3) +

λ

8
(ln I3)2,

which matches and is derived in the remainder of this paragraph. The true (or Cauchy) stress
σ corresponding to the hyperelastic material with strain energy density W = W (I1, I2, I3)
[5], where in I1 = trace(B), I3 = det(B) = J2 is

σ =
2

J

[
∂W

∂I1

B +
∂W

∂I2

(
BI1 −B2

)]
+ 2J

∂W

∂I3

1.

By comparison with the constitutive law,

σJ = λ log J + µ(B − I)

reveals that ∂W
∂I2

= 0, ∂W
∂I1

= µ
2

and

2J
∂W

∂I3

=
λ ln J − µ

J
.

The latter is equivalent to
∂W

∂I3

=
λ

8

2 ln I3

I3

− µ

2
I−1

3 ,

and a strain energy density function follows.

6.2 A related Neo-Hookean model in Adagio

The Adagio Neo-Hookean model uses the strain energy density given in [6], chapter 9, equa-
tion 9.2.3. The stored energy function W has volumetric and deviatoric parts U(J) and
W (B),

W = U(J) +W (B),

U(J) =
κ

2

(
1

2
(J2 − 1)− ln J

)
, W (B) =

µ

2
trace(B).

The corresponding Kirchoff stress is

τ = JpI + s, p =
κ

2
(J2 − 1)/J, s = µ dev(B).

Initials: D.D.
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