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ABSTRACT

The molecular dipole moment (g) is a central quantity in chemistry. It is essential in predicting infrared and sum-frequency generation spec-
tra as well as induction and long-range electrostatic interactions. Furthermore, it can be extracted directly—via the ground state electron
density—from high-level quantum mechanical calculations, making it an ideal target for machine learning (ML). In this work, we choose to
represent this quantity with a physically inspired ML model that captures two distinct physical effects: local atomic polarization is captured
within the symmetry-adapted Gaussian process regression framework which assigns a (vector) dipole moment to each atom, while the move-
ment of charge across the entire molecule is captured by assigning a partial (scalar) charge to each atom. The resulting “MuML” models are
fitted together to reproduce molecular u computed using high-level coupled-cluster theory and density functional theory (DFT) on the QM7b
dataset, achieving more accurate results due to the physics-based combination of these complementary terms. The combined model shows
excellent transferability when applied to a showcase dataset of larger and more complex molecules, approaching the accuracy of DFT at a
small fraction of the computational cost. We also demonstrate that the uncertainty in the predictions can be estimated reliably using a cali-
brated committee model. The ultimate performance of the models—and the optimal weighting of their combination—depends, however, on
the details of the system at hand, with the scalar model being clearly superior when describing large molecules whose dipole is almost entirely
generated by charge separation. These observations point to the importance of simultaneously accounting for the local and non-local effects
that contribute to p; furthermore, they define a challenging task to benchmark future models, particularly those aimed at the description of
condensed phases.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0009106

. INTRODUCTION

The dipole moment g of a molecule quantifies the molecule’s
first-order response to an applied electric field. It is a key ingredi-
ent in the calculation of infrared (IR)' and sum-frequency genera-
tion (SFG)™ spectra as well as the understanding of intermolecular
interactions.” Despite its importance, the dipole moment presents a
challenge for calculation, often depending significantly on the level

of theory and the basis set used.”’ Furthermore, while the molecular
dipole moment gives information about the distribution of charge
in the molecule, it is determined by the interplay of several physi-
cal effects, such as long-range charge transfer and local polarization,
which cannot be disentangled based on the knowledge of u alone.
A number of methods for unraveling these different contributions
exist and are generally based on partitioning the electron density
into localized atomic charges and dipoles (accounting for charge
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transfer and polarization). While these methods are attractive for
understanding the underlying physics responsible for g, they are
usually poorly transferable between different molecules or classes of
molecules (see Sec. I1).

In this work, we design a new framework for the predic-
tion of gas-phase molecular dipole moments, which unifies the
atomic charge-atomic dipole description rooted in physics with
the conformational and chemical sensitivity afforded by kernel-
based machine learning (ML). We begin in Sec. IT with an overview
of existing methods to describe and predict molecular dipoles. In
Sec. I1I, we formulate the different models we propose to learn
and predict polarization, and we use a general symmetry-adapted
framework to give environment-centered dipole predictions,” along
with a partial-charge model in the vein of existing neural-network
models,”" to combine good chemical transferability with general
conformational dependence. In Sec. IV, we discuss the training of
three models—partial charges, environment-centered dipoles, and
a combination of the two—which we collectively refer to as MuML.
The models are fitted to reference calculations from high-end linear-
response coupled-cluster calculations with single and double exci-
tations (LR-CCSD) and yield g with an accuracy that is compa-
rable to that of hybrid density functional theory (DFT). Next, a
showcase set of larger and more complex molecules is used to test
these models rigorously. Finally, we make a critical comparison
of the performance of the different MuML models, which reveals
the interplay of the different terms that contribute to molecular
polarization.

Il. THEORY

The molecular dipole moment is defined as the first moment of
the total electric charge density,

y:—frpe(r)d3r+Zr,-Z,-, (1)

where p.(r) is the electronic charge density, r; is the position of the
ith nucleus, and Z; is its charge. Usually, we are concerned with the
permanent dipole moment—that is, the first moment of the total
charge density in the molecule’s ground-state. However, this expres-
sion remains valid for non-equilibrium geometries as well as excited
states.

This expression can be simplified by making the approxima-
tion that p.(r) is concentrated at individual atomic sites, that is, each
atom i has an associated partial charge g; resulting from the differ-
ence between Z; and the partitioned electron density. The approxi-
mated total charge density is thus p(r) = ¥.ig;0(r — r;), and we can
write

U= Z 1igis ()

which is uniquely defined with respect to the origin of the molecu-
lar coordinate system if the total molecular charge is zero. Charged
molecules can be accommodated by setting the origin of the
molecule to its centroid such that Y ;r; = 0; this makes the dipole
moment invariant to a collective shift of the g;.

The problem then becomes the determination of the {g;} that
best reproduces p—often in addition to other physicochemical
metrics, such as reproducing the molecular electrostatic potential
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(ESP) or characterizing chemical bonding. There are many exist-
ing methods to determine these charges, varying with the objectives
of the model. Many methods are based directly on the ground-
state charge density (or even the wavefunction), such as Mulliken"'
and Lowdin'* population analyses, Hirshfeld decomposition'’ (and
its iterative extension’ '), atoms-in-molecules [AIM, also known as
quantum chemical topology (QCT)],”” and iterative stockholder
atoms (ISA).'°

Another major class of atomic charge assignment methods,
known collectively as ESP fitting methods, focuses directly on repro-
ducing the molecular ESP rather than simply decomposing its charge
density. One can immediately see the relevance of such methods
to Eq. (2), as the far-field limit of the electrostatic potential is
dominated by the dipolar term. ESP fitting methods were devel-
oped by Momany,'” Cox and Williams,'® Singh and Kollman,’ and
Breneman and Wiberg;”’ each of these methods finds the charges
through a least-squares fit in order to reproduce the ESP at a
grid of sites fairly close to the molecule but well outside the van
der Waals radius. Notably, Momany'’ also fitted the total molec-
ular dipole moment in order to satisfy Eq. (2). Many subsequent
methods incorporate similar information into a fit that makes a
compromise between chemical information (the charge density)
and far-field electrostatics, such as the DDEC”' and Hirshfeld-E**
methods. However, such a compromise becomes a disadvantage
when one is only interested in reproducing the molecular dipole
moment.

Although the methods above are all motivated by physical
and chemical principles, different methods can yield quite dif-
ferent results for the partial charges;"”’ even worse, the results
of certain methods may be very sensitive to the details of the
underlying electronic structure calculation, such as the basis set
used.'™'***** Furthermore, collapsing the total charge density to
a set of points is often too severe an approximation to obtain an
accurate description of the ESP."”" One can therefore augment the
expression in Eq. (2) to include information based on the atom-
localized anisotropy or, informally, local polarization of the charge
distribution by adding dipoles (or higher multipole moments) onto
the atomic sites. This is the central idea behind the distributed
multipole analysis (DMA) approach,”® which gives for the total
dipole

=Y (va+m). (3)
jeC

where C is a list of centers (or points in real space) that include both
atoms and interatomic positions, g;j is the partial charge associated
with the jth center, and y; is the associated partial dipole. We note in
passing that higher multipole moments do not contribute to g and
are therefore excluded from Eq. (3).

Several other methods use this idea of representing the molec-
ular ESP with both charges and higher multipole moments assigned
to atomic sites, such as the FOHI-D model”” and the fullerene polar-
ization model of Mayer,” the latter recently modified and incor-
porated into a QM/MM context (where the accurate reproduction
of the far-field ESP is essential) as the FqFy model.”” The authors
of FOHI-D, in particular, separated intrinsic atomic polarization,
which can be calculated directly for the isolated atoms in the same
iterative spirit as the classic iterative Hirshfeld method, from atomic
charge transfer, which is described using the point-charge model.
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However, they noted that the agreement of their model with the
ESP is generally worse when dipoles are included, although this
could have been due to their choice of grid points much closer to
the molecule than is usually used for ESP-fitting methods. Mayer,”*
on the other hand, discussed the physical idea from the opposite
perspective, that of adding atomic charges, derived from a proce-
dure similar to the electronegativity equalization (EEQ) known in
chemistry, to an atomic-dipole model in order to describe non-
local polarization. The polarization of carbon nanostructures (nan-
otubes and fullerenes) is much better described by adding atomic
charges to the description, as they can describe the large-scale
flow of charge across the conjugated m-systems typical of these
nanostructures.”’

A key limitation of most of these methods is their inabil-
ity to describe the dependence of electrostatic quantities across
conformational and chemical space without performing additional
ab initio calculations or fitting empirical parameters, which severely
limits their ability to model experimental spectra and make trans-
ferable predictions for new molecules. A natural way to incorporate
the required conformational and chemical sensitivity is to draw on
the large body of work over the last two decades that uses ML to
predict molecular properties'””"~” or molecular and intermolecular
potential energy surfaces.”* "'

Many existing methods are explicitly targeted to reproduce p or
produce it as a side effect. The earliest of these is the neural network
method of Darley, Handley, and Popelier‘m (see also Ref. 31), where
a neural network is fitted to reproduce the multipole moments of
a molecule or fragment computed via QCT (also known as atoms-
in-molecules theory)."” The two main drawbacks of this strategy,
which are common to many of the other methods discussed here,
are the following: (1) the need to define a local reference frame,
which limits the method’s transferability to other chemical com-
pounds, and (2) the need to fit to a precomputed set of atomic
charges and multipoles, the choice of which is ultimately arbitrary.
The QCT charges and multipole moments, in particular, are known
to be poorly convergent due to the irregular shapes of the partitioned
atomic volumes.”

Techniques for fitting local electrostatic properties have
evolved considerably since then, but most of the proposed meth-
ods retain these two key drawbacks. For example, the IPML model
of Bereau et al.”* predicts intermolecular interaction energies accu-
rately by systematically treating several different physical energy
contributions. The dipole moments themselves, on the other hand,
are not as well predicted, given that their accurate reproduction
is not the primary goal of the model. Part of the error may have
come from using environment-local axis systems to predict the
higher-order multipole moments, which is a less general and robust
approach than the symmetry-adapted regression introduced by
Grisafi et al.” Furthermore, the model retains the same drawback
of being fitted to a specific partitioning scheme—in this case, the
minimal-basis iterative stockholder method,”” which was chosen
for its accuracy in modeling electrostatic interactions and not for
reproducing .

The neural network model of Gastegger, Behler, and Marque-
tand,” on the other hand, does explicitly target p. It predicts the
set of environment-dependent partial charges that best reproduces
the total dipole moment, thereby bypassing the need to choose an
arbitrary charge partitioning scheme, and uses the conformational
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sensitivity gained through the neural network to accurately predict
infrared spectra. The PhysNet model of Unke and Meuwly'’ uses the
same idea and additionally introduces a new representation to span a
large swath of chemical space, as does the HIP-NN model of Sifain et
al.,”® which also incorporates enough conformational dependence to
be able to predict infrared spectra. All three of these models only pre-
dict scalar atomic properties, neglecting contributions from atomic
polarization, which we will see are important to achieving the best
accuracy and transferability.

There are several approaches to fitting properties, such as g,
that transform as tensors—in particular, approaches that are covari-
ant (rather than invariant) to rotations. The local-axis approach used
by Bereau et al.’* has already been mentioned; another approach is
the covariant kernel approach introduced by Glielmo, Sollich, and
De Vita'” and developed into a general symmetry-adapted regres-
sion method for any tensor order by Grisafi et al.” This method was
successfully tested on dipole moments of small molecules and clus-
ters, as well as on accurately predicting higher-order tensors such as
the polarizability.”

Finally, Christensen, Faber, and von Lilienfeld*® developed a
formalism (OQML) for incorporating electric field gradients into a
ML fit. They used a modified version of the “FCHL” descriptor
augmented with a system of arbitrary, though usually realistic, par-
tial charges in order to define an implicit local reference frame
for each atomic environment, which can then be used to fit
local dipole moments. The modified descriptor is called “FCHL".”
While their formulation is quite different from the method devel-
oped below, we believe it is fundamentally similar to assigning an
environment-dependent partial dipole to each atom, as described in
Sec. I11 B.

. METHODS

A. Partial-charge model

We begin by building a ML model that incorporates local envi-
ronment sensitivity into the simple partial-charge model of Eq. (2)
using Gaussian process regression (GPR).” To do this, we exploit
the fact that GPR uses a linear fit in the kernel space and can there-
fore be used to fit the result of any linear operator applied to atomic
quantities.”’ The vector of weights aw is required, which minimizes
the regularized loss function,

£ = [LKpyw — [ + 1w )

where A is a diagonal matrix whose entries aﬁ—a quantity known as
the “dipole regularization,” usually kept the same for all molecules—
are chosen to optimize the error of the fit along with its transferabil-
ity to new molecular databases, L is a linear operator, and

w = (Kuy + (LKpag ) "A™ LKpy ) 'LKpyA ™. (5)

The fit uses an “active set” of M basis functions (which, in practice,
is a small fraction of the total number P of atoms in the database).
Following the notation introduced in Ref. 50, we use M and P to
indicate both the sets and the number of entries. The kernel matrices
Kum and Kpy contain the kernel evaluated between all sparse points
(M) and themselves, as well as with all atoms in the training database
(P). In principle, any sufficiently representative set of configurations
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could be used to form the active set of basis functions, but, in prac-
tice, they are almost always chosen from the environments present
in the molecules in the training set using an algorithm such as far-
thest point sampling (FPS) or a CUR decomposition.”’ The entries
of the kernel matrix are (Ky); = k(X(i),X(j)), where the SOAP
kernel®! is used as the similarity function k(:, -) between two atomic
environments X ) and X0,
To build up a model for p, we predict partial charges g(.A;) for
atom i in molecule A,
(A = Y wik(x D, x0) (©)
jeM
(where the sum runs over all basis points, i.e., environments in the
active set) such that
u(A) = > riq(A). )
icA
We can then define the transformed kernel matrix between dipoles
and basis points as

(LuKpu) 4y = k(X D, x D), (8)
ieA

allowing us to use Eq. (5) to determine the weights. The expres-
sion in Eq. (8) represents a block of three rows from the 3N x M
matrix L,Kpy, where N is the number of molecules in the training
set, one row for each Cartesian component of the dipole moment of
molecule A. The columns index j runs over the M environments in
the active set. The r; are defined with respect to the coordinate sys-
tem in which the dipole is given, with the origin set to the centroid
of the respective molecule so that the prediction is insensitive to a
shift in the total charge. The target data y are then defined as a con-
catenation of the Cartesian components of the training-set dipole
moments.

The insensitivity of the model to the total molecular charge
is advantageous because the model’s total charges, Q4 = Y ;c4 gi>
need not be constrained to reproduce exactly the total molecular
charge. As noted by Unke and Meuwly,'’ applying this constraint
to the training set would not guarantee that the model gives the
correct charges for prediction on a new molecule. Furthermore, we
found that including the exact total-charge constraints into the fit
via Lagrange multipliers severely reduced the quality of the fit—in
most cases simply giving all partial charges as zero—because the
procedure used to select the sparse active set of M environments
also discarded the basis functions necessary to satisfy this constraint
while also satisfactorily reproducing u.

However, it is usually beneficial to include some sort of restraint
(even if not an exact constraint) on the total charge, as a model insen-
sitive to this quantity can predict unreasonably large total charges,
ultimately compromising its transferability to other datasets. We
therefore include the total charge as extra information to the fit by
appending to y the list of total charges of the molecules in the train-
ing set, and appending to the transformed kernel matrix L,Kpy the
extra N rows representing the sums of the model’s partial charges,

(LoKpa).aj = S k(X @, 20, ©)
ieA
and extending the diagonal regularization matrix A with an extra N

entries o,—the charge regularizer—in order to be able to regularize
the two target quantities separately.
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B. Partial dipole model

An alternative method for predicting u is to build up the pre-
diction as a sum of atom-centered dipole moment predictions using
symmetry-adapted Gaussian process regression (SA-GPR)," a mod-
ification of standard GPR that allows tensor properties to be learned.
A SA-GPR prediction of the dipole moment u of a test molecule A
is given by

u(A) = 23k (X, 2w, (10)

jeMieA
where k" (X;, &;) is an element of an extended kernel matrix, being
the tensor (concretely a 3 x 3 matrix) whose components ko‘fﬁ (X, &)

give the coupling between the Cartesian components ‘uy) associated
with environment X; and pt(J) associated with Aj. Each environment
j in the active set now requires a set of three weights (represented
by the vector wy;) to represent the three independent components of
the vector quantity assigned to each atom.

Since the dipole moment is a vector quantity that is related by
a linear transformation to the spherical harmonics with L = 1, the
vector kernel k¥(X,X') can be obtained directly from the
A = l-order A-SOAP kernel of SA-GPR, k' (X, X"), by the

transformation,
K'(xx') = M (X x)M, (11)

where M transforms from the Cartesian basis to the basis of A = 1
spherical tensors (see, e.g., Ref. 4 for an explicit formula).

As has been shown by recent work,””"”* SA-GPR performs very
well for the response properties of different orders in a wide variety
of systems. Furthermore, one can see from the atom-centered for-
mulation of Eq. (10) that the atom-centered dipoles, analogous to
the atomic partial charges of Eq. (6), can easily be extracted,

#(A) = S KX, x00)w; (12)
jeM
Although an SA-GPR prediction of g does not require charge con-
straints, it is computationally more expensive than a partial-charge
model, requiring the inversion of a square matrix with three times
the number of rows (3M rows, where M is the number of basis
functions in the active set).

C. Combined model

We now consider the partial-charge model and partial-dipole
model as two separate models for the same system, encoding two
different physical effects. It should then be possible to get a better
prediction simply by fitting the sum of the two models to the training
data. We call the matrix of Eq. (8) the “transformed scalar kernel,”

K = LuKpr, (13)

and the analogous “transformed vector kernel” K}\;,;, whose rows are
the atom-wise summations of the kernel from Eq. (10),

(K )aj = DK (X0, 20, (14)
ieA
Because the models are of different dimensions and correspond

to different physical effects, we assign each a different weight vector:
w?® for the scalar weights and w" for the vector weights. Also note
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that this means we do not need to use the same set of basis functions
for the scalar and vector models; they can be chosen independently.
Then, in order to find the best combined sum model, we optimize

L= H(SEKIS\JMWS + 5%/K1‘\/JM"U’V - YH?\-I
2. 82 2. V2
+ 85w, +Ov|w kv, (15)

with respect to both sets of weights w® and w" simultaneously.
(The K33, and K}, are the matrices of non-transformed kernels of
all the basis functions with each other.) The result can be expressed
using the inversion of a square matrix with M + M’ rows, where
M’ is the number of vector weights (three times the number of vec-
tor basis functions). Since the number of basis functions is usually
kept the same for both scalar and vector models, the matrix to be
inverted has 4M rows, making the combined model the most expen-
sive of the three models discussed here. In practice, however, the cost
is typically manageable.

Furthermore, the charge restraint can be incorporated as dis-
cussed in Sec. IIT A, where the transformed scalar kernel is appended
with the matrix from Eq. (9), and the transformed vector kernel is
appended with the same number of rows of zeros (since the vector
model does not contribute to the total molecular charge). Also note
that we have introduced weights §s and v to modify the overall rel-
ative amount that the scalar and vector components contribute to
the combined model. The §-weights effectively allow for different
regularizations of the scalar and vector components of the model,
which is equivalent to assuming different variances for the dipole
components modeled by the scalar and vector models.™

IV. RESULTS AND DISCUSSION

We optimized and trained the scalar, vector, and combined
models on the QM7b dataset,”” which contains 7211 small organic
molecules with up to seven heavy/non-hydrogen atoms (specifi-
cally C, N, O, S, and Cl) with varying degrees of H saturation.
The dipoles were computed using the methods described by Yang
et al,” namely, DFT with the hybrid B3LYP functional’””® and
linear-response coupled-cluster theory with single and double exci-
tations (LR-CCSD,” hereafter just “CCSD”). In both cases, the
doubly augmented double-{ d-aug-cc-pVDZ basis set”’ (hereafter
referred to as “daDZ”) was employed during all calculations. We
then demonstrate the transferability of this model on the QM9"'
dataset, comparing with the state-of-the-art results from Ref. 48, and
on a “MuML showcase” dataset of larger molecules. Finally, we push
the models to their limits by studying different polymers composed
of or derived from the glycine amino acid.

A. Model optimization

We first optimize the models for space and computational
requirements by subsampling the SOAP feature matrices (which
are multiplied and raised to an integer entry-wise power to obtain
the SOAP kernel) using the FPS selection algorithm described by
Imbalzano et al.”’ Descriptors are first subsampled in the feature
space dimension, allowing for fewer SOAP components (Nf) to be
used in calculating the kernel, then in the environment space dimen-
sion, allowing for fewer representative environments (M) to be used
when performing the fit. The convergence of the final fitting error
with respect to these parameters, as well as other kernel convergence
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parameters such as the number of radial channels (#max) and the
maximum angular momentum (Imax) of the expansion, is shown in
the supplementary material; final values are given in Table I.

We chose the model’s overall distance-based cutoff as 5 A to
encompass all atom pairs in the QM7b dataset. The actual radial
dependence of the kernels, however, is optimized using the radial-
scaling function from Willatt, Musil, and Ceriotti.” Together with
the SOAP atom width and the regularization parameters, this leaves
us with several continuous hyperparameters whose optimal values
need to be determined. In a Bayesian approach, these would be
considered priors; they would ideally be integrated over using a pre-
viously known prior distribution. Here, however, we do not have
much prior knowledge about the distribution of these parameters—
in contrast to the study of potential energy surfaces, where good
values can be guessed quite accurately based on prior experience
and physical knowledge.”” Instead, we use optimization to find
the best values of these parameters for our problem, along with
cross-validation (CV) to guard against the problem of overfitting
(which is otherwise introduced by hyperparameter optimization
techniques).

First, the hyperparameters for the scalar and vector models are
each independently optimized on a randomized fourfold CV split
of 5400 randomly selected molecules of the QM7b test set.”” The
results of this optimization are given in Table I. The combined model
is then obtained as follows: since there are only three free parame-
ters between the overall scalar weight Js, the overall vector weight
v, the dipole regularization o, and the total charge regularization
0@, we set the dipole regularization to 1 and scale the rest of the
parameters accordingly: If a,f is the optimal dipole regularizer, aé the
optimal charge regularizer for the scalar model, and G,Y is the opti-
mal dipole regularizer for the vector model, then we take ds — 1/ aﬁ,
0Q 05/03, and 8v — 1/0, . Further details of the optimization
procedure are discussed in the supplementary material.

Finally, once the model’s hyperparameters are converged and
optimized, model training and testing are quite fast. For example,
computing scalar and vector training and testing kernels for the set
of N = 20000 molecules of QM9 used in Sec. IV E (with a test set of
T = 1000 molecules; M = M’ = 2000) required just over 1 h and
95 GiB of memory on a modern 24-core machine, with almost all
of the time and memory used to compute the training kernels; the
test kernels required less than 2 min and 3 GiB. Once the ker-
nels were computed, fitting the combined (most expensive) model
required only 2 min and 20 GiB of memory, and computing test-set
predictions was almost negligible in comparison, taking 2 s and
1 GiB of memory. This means that the regularizers can be optimized
quite cheaply once optimal kernels have been computed.

Table 1. Convergence parameters for the scalar and vector kernels: npay is the num-
ber of radial basis functions and Imax is the angular momentum band limit for the
SOAP kernel, Ng is the number of selected sparse features, and M is the number of
selected sparse environments for each model. Note that the scalar and tensor power
spectrum components of the vector SOAP kernel use the same parameters.

Model Mmax Imax Nr M
Scalar 8 6 200 2000
Vector 4 2 200 2000
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TABLE II. Optimal hyperparameters for the pure scalar and pure vector models,
obtained using a Nelder-Mead optimization. 6;: Gaussian width for SOAP atom
smearing; ro and m: radial scaling parameters (see Ref. 53); o, dipole regularization
(unitless since & = 1 for the pure fits) and o(: total charge regularization. Parameters
for the combined model are derived as indicated in the text. All numbers truncated to
three significant figures.

Model 6a(A) r0(A) m 0,107 o0 A"
Scalar (CCSD) 0375 232 441 438 35.5
Scalar (B3LYP) 0375 232 441 44l 78.8
Vector (CCSD)  0.256 275 3.34 147

Vector (B3LYP) 0256 2.75 334 115

B. Error measures

Throughout this work, we use two different error measures.
The “per-atom” RMSE (root-mean-squared error)

0) M |
U predicted Hctual

Nj

RMSE = !

(16)

test jetest
J 2

reports on both the magnitude and the orientation of the predicted
dipoles. The residuals are normalized by the number of atoms Nj in
the respective molecule before taking the RMSE. This scaling posits
a generally linear trend of the dipole moment norm as a function
of the number of atoms. Such a trend would be expected from an
additive model where each atom contributes a certain, locally depen-
dent amount. This is the case with the vector model, but not with the
scalar model, where the contribution additionally depends on its dis-
tance from the molecular origin, making the scaling depend on the
molecular geometry. Therefore, to provide an alternative assessment
of the error of the total dipole and to facilitate comparison with other
studies, we additionally plot the MAE (mean absolute error) of the
norm of the total dipole moment,

1 0) 0)
MAE = Z ‘”lupredicted HZ - ”luactual Hzl (17)
Ntest jetest
For the QM7b dataset these two measures provide similar informa-
tion, but for transferability testing on other datasets these measures
provide complementary information.

C. Uncertainty quantification

We can estimate the uncertainty in the model predictions using
a calibrated committee model, as described by Musil et al” We
train 71comm models @) (A) using the same active set but choosing
a different random subset of the full training set in each model. The
predictions of these models are then rescaled around their mean,

1
w(A) = —— 3 (A),
comm  j (18)

u®(A) = @A) + o0 () - 5(A)),

by a calibration factor « that is determined using the “internal
validation procedure” described in Ref. 63. The best estimate of
the committee model is given by its mean, #(A), and uncer-
tainty is then computed as the standard deviation of the rescaled
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predictions. Individual members of the calibrated committee can be
used to separately compute the derived quantities (e.g., the norm
of the dipole moment), which greatly simplifies the propagation of
uncertainty (see, e.g., Ref. 52). While the use of a committee model
for a sparse Gaussian process model entails virtually no computa-
tional overhead when making a new prediction, the training process
is somewhat more cumbersome. For this reason, we only use a com-
mittee model when making predictions for the showcase dataset in
Sec. IV G. More systematic tests performed on benchmark datasets
use a single regression model, without error estimation, which usu-
ally also achieves a higher accuracy than the ensemble average (see
the supplementary material) because it is trained on all training
points together.

D. Training on QM7b

Figure 1 shows the learning curves of the MuML models,
with the kernel parameters fixed to the values optimized on 5400
points. Errors are computed on a test set of 1811 randomly selected
molecules from the QM7b dataset.”” Note that both the pure scalar
and pure vector models achieve similar performance in the limit of a
large amount of data, while the combined model clearly outperforms
both (by a factor of about 20%) in the same regime.

This figure reports the results for models trained on
CCSD/daDZ dipoles. The results for BALYP/daDZ-trained models
are very similar (see the supplementary material). For reference,
the discrepancy between B3LYP/daDZ and CCSD/daDZ molecu-
lar dipole moments in the QM7b database amounts to an RMSE
=0.011 D per atom or MAE = 0.087 D. It should be stressed that
contrary to the case of the polarizability,””® the performance of
DFT is usually quite satisfactory when predicting molecular dipole
moments. When trained on 5400 QM7b structures, the combined
model delivers better accuracy (RMSE = 0.0086 D per atom and
MAE = 0.054 D) at a dramatically reduced computational cost.

E. Testing on QM9

In order to test the extrapolation capabilities of the MuML
models, we selected 1000 random samples from the QM9 dataset”!
and computed the dipole moments following the same protocol used
for the QM7b dataset.””° Due to the high computational cost of
CCSD, we used B3LYP/daDZ as the reference in this case and the
corresponding models trained on QM7b at the B3LYP/daDZ level.
The learning curves of these models are shown in Fig. 2. The com-
bined model outperforms the scalar and vector models in terms of
the per-atom RMSE measure but performs worse than the vector
model using the norm MAE. The errors are much larger than those
seen when testing on QM7b, and the asymptotic behavior of the
learning curves indicates saturation and even overfitting. In order
to determine whether the saturation in model performance is due
to limitations in the models or just insufficient training data, we
also computed learning curves for models trained on QM9 dipoles
using a set of 20 000 additional molecules drawn from the QM9 set
and dipoles computed at the BALYP/daDZ level. The scalar and vec-
tor regularizers were re-optimized using 15 000 training points. The
QM9-trained models, in contrast to the QM7b-trained models, do
not saturate early. The QM9-trained combined model reaches an
MAE of 0.084 D; this is more accurate than the QM9-trained scalar
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FIG. 1. Learning curves of the scalar (green squares), vector (purple triangles),
and combined (orange diamonds) models for CCSD/daDZ dipoles computed on
1811 randomly selected molecules of the QM7b dataset. The models were trained
on subsets of the remaining 5400 molecules. The top plot has per-atom RMSEs,
and the bottom plot has per-molecule dipole moment norm MAEs. The open circle
denotes the intrinsic variation of the dataset, i.e., the error of a zero model.

model (MAE 0.099 D), which is, in turn, more accurate than the
QM9-trained vector model (MAE 0.12 D). In fact, this is compara-
ble to the performance of the SchNet neural network model,”” which
reaches an accuracy of 0.033 D using 110000 training molecules.
It is likely that the QM9-trained combined model would reach the
same accuracy if the slight saturation in the MAE curve were cor-
rected, e.g., by increasing the SOAP convergence parameters (which
were set for 5400 QM7b molecules) and re-optimizing the hyper-
parameters. The comparison of the QM7b-trained models to those
trained on QM9 clearly shows that the QM7b scalar model especially
suffers in the extrapolative regime. Together with the degrading per-
formance of both RMSE and MAE as the number of training points
approaches the full training set size, this indicates that the scalar
model has a strong tendency to overfit. As for the combined model,
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FIG. 2. Learning curves on a random sample of 1000 molecules from the QM9
dataset.’" Reference dipoles were computed with B3LYP/daDZ; MuML mod-
els were re-trained on QM7b dipoles (solid symbols) and QM9 dipoles (semi-
transparent symbols) computed at the same level of theory. Top: per-atom RMSEs.
The QM7b combined fit narrowly outperforms the pure charge and pure dipole
models, with significant saturation apparent in all QM7b models. No such satura-
tion is apparent in the QM9 models. Bottom: MAE of the error of the dipole moment
norms for each molecule. The FCHL (norm-only) and FCHL* (vector response)
curves are reproduced from Christensen, Faber, and von Lilienfeld;*® both mod-
els were trained on QM9 dipoles. Using this error measure, the QM7b pure vector
fit has a clear advantage, even outperforming the FCHL* response learning. The
QMO fits again perform significantly better than the QM7b fits; the QM9 combined
fit retains the best performance, reaching an MAE of 0.084 D at 20 000 training
points.

it seems that its poor performance is a result of its inclusion of too
much of the overfitted scalar component.

We therefore investigate the dependence of the model error
on the scalar-vector mixing to see if the combined model can
be improved by including less of the scalar component. The
scalar-vector mixing is parameterized here by varying the scalar
model’s variance 83 from zero to its pure-scalar equivalent value:
83 (t) = t((fﬁ)72 while simultaneously varying the vector model’s
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variance from its pure-vector equivalent value to zero: 8%/(t)
=(1-1) (J[Y )™2. The dipole regularization is kept at one, as the reg-
ularization is encoded in the model variances; the total-charge reg-
ularization oq is likewise kept constant, at its optimal scalar-model
value, as it only applies to the scalar model. This parameterization
reproduces the pure scalar and pure vector predictions at each end-
point while smoothly transferring the total model’s variance from
the vector to the scalar model. The value of t = 0.5 corresponds to
the combined model (modulo a factor of 2 in the regularizer, which
is negligible in practice). Note that varying the scalar and vector
weights ds and dv is more than a simple post-processing adjustment;
it requires recomputing the model weights w via Eq. (15) as well.
We plot such a scalar-vector scan in Fig. 3 for the models trained
on either QM7b or QM9 and tested on either QM7b (QM7b-trained
model only) or QM9 (both models). Both models were trained on
5400 molecules using dipoles computed at the B3LYP/daDZ level.
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=) 4x1072 e .
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FIG. 3. Errors when interpolating between the pure scalar and pure vector
B3LYP/daDZ MuML models. The pure vector model is located at the left (as the
scalar fraction t — 0), the pure scalar model is located at the right (as the vec-
tor fraction 1 — t — 0), and the combined model is located in the middle at 0.5.
The models are trained on either 5400 points of QM7b or 5400 points of QM9
and tested on either the remaining 1811 molecules of QM7b or the 1000 randomly
selected molecules of QM9.
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We see that the optimum for models tested in the interpolative
regime—that is, QM7b tested on QM7b and QM9 tested on QM9—
does not in fact lie at t = 0.5, but closer to the pure-scalar model
(vector fraction of 0.1 or 0.01, depending on the model and whether
one wants to optimize MAE or RMSE). The naive QM7b combined
model at t = 0.5 is still better than either the pure scalar or pure vec-
tor models (this is also the case with the QM9 model once we add
more training points). On the other hand, for the QM7b model in its
extrapolative regime (i.e., tested on QMD9), the situation is the oppo-
site: the optimal model has a scalar fraction of around 0.1, and the
naive combined model at ¢ = 0.5 is even worse in MAE than the pure
vector model, as shown in Fig. 2.

These observations confirm our suspicions that the scalar
model is prone to overfitting, as it achieves very good performance
in the interpolative regime, but relatively poor performance in the
extrapolative regime. Models with a higher fraction of the vector
contribution, on the other hand, may not achieve the same accu-
racy in the interpolative regime, but they are better at extrapolat-
ing (i.e., they are more transferable). Following these observations,
it may be possible to derive a strategy for adjusting the combined
weights to achieve the best accuracy on a variety of testing sets.
Although we do not explore such a strategy in this work, we do
comment further on the interplay between these two contributions
in Sec. IV G.

F. Comparison with OQML

It is interesting to compare the performance of our mod-
els to that of the operator quantum machine learning (OQML)
scheme in Ref. 48. In OQML, a formal dependence on an applied
electric field is included in the definition of the (scalar) kernel
by assigning fictitious charges to each atom. This makes it possi-
ble to define derivatives of the kernels relative to an applied field,
which are naturally covariant and serve as a basis to fit molec-
ular dipoles. It should be stressed that, even though the scheme
relies on formal atomic charges, it amounts effectively to learning
local dipoles and is therefore similar to our vector model. While
OQML couples the energy and regression dipole models through a
scalar constant, our approach allows every property to be trained
independently.

As shown in Fig. 2, the QM7b vector model (the most transfer-
able of the QM7b models) outperforms the FCHL* OQML model
by approximately 20%. This is particularly remarkable because the
OQML model of Ref. 48 was trained on 5000 structures from QM9;
the QM7b models, on the other hand, are trained on smaller struc-
tures, and are therefore functioning in the much more challenging
extrapolative regime. This is in contrast to the QM9 scalar, vector,
and combined models, which are functioning in the interpolative
regime in this test. Here, we observe that the slopes of the QM9-
QM9 learning curves are approximately the same as that of the
FCHL” (response) curve, but they have a large offset. In other words,
the MuML models achieve an MAE of about 1/3 that of FCHL" with
the same amount of data.

G. MuML showcase dataset

Similar to Ref. 37, we now turn from standard, systemati-
cally generated benchmark datasets to a showcase dataset in which
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chemically relevant molecules have been specifically chosen to test
the sensitivity of the ML model to subtler variations in chemical
structure and bonding. To this end, we assembled the so-called
MuML showcase dataset, which is depicted in Fig. 4 and com-
prised of the first 29 molecules of the AlphaML showcase dataset’*"*
(and includes the nucleobases, amino acids, sugars, and common
drug molecules). The CsH, isomers from the AlphaML showcase
dataset were discarded (because they all have very small dipole
moments) and substituted with 31 C;H,NH,COOH amino acid
derivatives, with dipole moments spanning a broad range from
0.5 D to 6 D. Molecular geometries and dipole moments for these
new molecules were obtained using the same protocol described in
Refs. 37 and 56. For reference, the dipole moment norms computed
with CCSD/daDZ on the MuML showcase are shown in the top
panel of Fig. 5(b).

The learning curves of the three dipole models on the MuML
showcase dataset are shown in Fig. 5(a). All three models achieve
an accuracy comparable, in absolute terms, to that on QM9. The
(unadjusted) combined model narrowly outperforms both the scalar
and vector models. Even in this extrapolative regime, the accuracy
of MuML is competitive with that of B3LYP: for the largest train-
ing set size, MuML achieves errors (RMSE = 0.029 D per atom,
MAE = 0.24 D) that are only 30% larger in RMSE (56% larger in
MAE) than those of B3LYP relative to CCSD (RMSE = 0.019 D
per atom, MAE = 0.19 D). The dramatic increase in accuracy
observed when training on the larger QM9 molecules (see Fig. 2
suggests that it is possible to train a MuML model that will out-
perform DFT on this showcase dataset. Unfortunately, the cost
of performing LR-CCSD calculations on thousands of QM9-sized
molecules is still prohibitive at the current time.

Due to the relatively small number of molecules in the MuML
showcase set, we can examine the performance of the MuML
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models for each of the molecules individually. Furthermore, we
can also benchmark the uncertainty quantification scheme discussed
in Sec. IV C. Each of the eight models in the committee model
was trained on a sample of 2700 molecules (50% of the full train-
ing set) drawn without replacement from the QM7b training set.
The calibrated error predictions were then validated against the
QM7b test set; additional details are found in the supplementary
material. The overall errors of the ensemble averages are compara-
ble to (if slightly higher than) those of the model trained on all 5400
points.

Figure 5(b) shows the breakdown of the errors of the ensemble
average, along with the uncertainties predicted from the ensemble.
Note that the errors are shown reversed from the usual convention—
they are shown as reference minus predicted—and the error bars are
shown centered about zero. Both the predicted uncertainties and
the ensemble-average residuals show no apparent systematic pat-
terns across this set of molecules, although there are some outliers.
All three MuML models perform particularly poorly on molecule
14 (cysteine), and the uncertainty estimate is also relatively high
for this molecule. The evidence suggests that the high errors and
uncertainties are a consequence of the highly polarizable nature of
sulfur, given that the models also give large overpredictions and high
uncertainties in the case of methionine, the only other S-containing
molecule in the MuML showcase dataset. Other relatively large
errors (and large uncertainties) are seen on all models for molecule
1 (guanine), molecule 21 (caffeine), molecule 24 (metformin), and
molecule 25 (acyclovir); the vector and combined models addition-
ally give large errors and uncertainties for molecule 4 (cytosine) and
molecule 23 (aspirin).

Overall, the prediction errors are consistent with the error bars,
with 88% of the scalar predictions, 55% of the vector predictions,
and 72% of the combined predictions falling within one error bar
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FIG. 4. List of molecules included in the MuML showcase dataset. The numerical key is used to identify the various compounds in other figures.
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FIG. 5. Performance of the MuML models on the MuML showcase dataset: (a) learning curves by per-atom RMSE (top) and MAE (bottom), (b) per-molecule breakdown of the
MuML models trained on the full QM7b training set (5400 molecules): norms of the reference dipole moments computed with CCSD/daDZ on the MuML showcase dataset
(top) and errors in the norms of the dipole moment predictions across the same set (bottom three). Prediction errors are shown along with error bars from an ensemble of
models trained on subsets of the full training set.*> The molecule ID is in reference to Fig. 4.

of the reference (compare this with the 68% expected if the predic-
tion errors were to follow a Gaussian distribution with a standard
deviation equal to the error bar). Thus, the uncertainty quantifica-
tion scheme applied herein provides a reliable estimate of the model
accuracy, improving our interpretation of the model results in the
extrapolative regime where the errors can be several times larger
than those in the original testing set.

The only cases in which the predictions are farther than two
error bars from the reference are that of molecules 30, 31, and 32:
these show large errors but small uncertainties in the vector model.
Together with the similar structure of these molecules—they are all
polyenoic amino acids, effectively an amine group and a carboxylic
acid joined by a fully conjugated polyacetylene chain/linker—these
deviations suggest a systematic error in the vector model predic-
tions. The delocalized nature of the conjugated chains in these
molecules suggests that the error could derive from a non-local
effect that the vector model, with its finite cutoff and strictly
local environmental dependence of the atomic dipoles, fails to
capture.

In order to provide a more systematic, and far more stringent,
test of our models’ extrapolative capabilities, as well as to investigate
the effect of non-local effects on each of the models, we designed
four new “challenge” test sets, each of which consists of a series
of approximately linear (pseudo-1D) molecules with polar groups
and (in three of the four sets) large separations of charge, thereby
giving rise to large dipole moments. More specifically, we consid-
ered polymers of the glycine amino acid, in both the a-helix and
B-strand configurations, as well as a series of polyenoic amino acids,

with an amine group and a carboxylic acid group separated by a
polyacetylene spacer. Finally, a set of n-amino carboxylic acids (the
saturated analogs of the polyenoic amino acids) was included to
investigate the effect of saturation in the spacer on the molecular
dipole moments and the model predictions. Because of the large size
of these molecules (up to 122 atoms, of which 69 were heavy/non-H
atoms for the longest « helical configuration), we used B3LYP/daDZ
references and models. Figure 6 contrasts the growth of the dipole
with the chain length with the predictions of the scalar, vector, and
combined models. In the case of polyglycine, the three models cap-
ture at least qualitatively the trend, with the vector model usually
under-predicting the slope, and the combined model performing
substantially better than either the scalar or the vector model. In
the case of the polyenoic amino acids, however, the vector model
breaks down completely, predicting a constant dipole as a function
of chain length. The scalar model most closely approaches the cor-
rect slope, and the combined model shows the correct trend, but
with a smaller slope to the pure scalar model. The saturated n-amino
carboxylic acids showed a completely different trend, with the total
dipole leveling off to a constant small value and the model predic-
tions essentially following this trend. This contrast points to the con-
jugated, non-local nature of the polyenoic acids as an essential ingre-
dient to their large dipole moments: indeed, their saturated coun-
terparts have stronger charge locality and cannot transfer/delocalize
charge across the whole molecule, like the unsaturated chains
can.

To gain deeper insight into the performance of the different
MuML models as well as the physical effects that determine the
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FIG. 6. Dipole moment predictions for the four “challenge” cases: polyglycine in the a-helix conformation, polyglycine in the S-strand conformation, polyenoic amino acids
(trans-polyacetylene-bridged glycine), and n-amino carboxylic acids (polyethylene-bridged glycine). All three models perform fairly well on the polypeptides, where the charge
polarization is a mostly local phenomenon. On the unsaturated bridged glycine, however, the vector model completely fails, with only the scalar model maintaining accuracy
(and the combined model suffering from the inclusion of the unphysical asymptotic behavior of the vector model). The saturated bridged glycine has completely different
behavior, with the dipole saturating to a small constant value; all three models predict this trend accurately. All predictions are from the MuML models trained on 5400 QM7b

molecules (not the ensemble models).

breakdown of the vector model, we computed atomic contribu-
tions to the dipole moment—both the vector predictions and the
partial charges (for the models that use them) for each atom—and
represented them together with the molecular structure in Fig. 7.
Here, we discuss only the 8-strands and the polyenoic amino acids,
as the observations for the «a-helical structures are very similar to
those for the f3-strands. The per-atom breakdown for the a-helices
and the n-amino carboxylic acids are found in the supplementary
material. In the case of the polyglycine f-strand, each monomeric
unit is polar. Since the total dipole is almost entirely made up of
these local monomeric contributions, the vector model based on
local atomic dipoles captures the correct scaling behavior with sys-
tem size. The scalar model also captures the correct behavior, as each
molecular unit is (approximately) neutral and contributes a roughly
constant term (even though individual atomic dipoles grow larger
for atoms that are farther away from the molecular center). The n-
amino carboxylic acid also exhibits strongly localized physics, with
the molecular dipole moment being mostly generated by local polar-
ization of the end groups, and all three MuML models are able to give
accurate predictions. Clearer differences between the MuML mod-
els arise in the case of the polyenoic amino acids. The non-polar
spacer is (correctly) predicted to contribute very little to the total
dipole, while the amine and carboxylic acid functional groups each
bear a (roughly) constant dipole, which results in a prediction that
is independent of the length of the spacer. The scalar model, on the
other hand, predicts net positive and negative scalar charges on the

amine and carboxylic acid groups, and as a consequence predicts a
total dipole that scales linearly with the length of the spacer. Even if
it underpredicts the total dipole, the combined model most closely
reflects conventional chemical wisdom: it predicts negligible charges
along the polyacetylene spacer with only the polar end groups con-
tributing to the total dipole. Since the end groups carry a net positive
and negative charge, the total dipole increases with their separation.

These observations reflect the shortcomings of a local ML
model, similar to what was observed in Ref. 37 for the molecular
polarizability of conjugated hydrocarbons (e.g., alkenes and acenes).
SOAP features are computed with a cutoff of 5 A and cannot there-
fore describe structure-property correlations beyond this limit. The
scalar model circumvents this limitation by assuming that atomic
charges are local and that the non-locality of the dipole moment is
entirely captured by the spatial separation of the atomic charges. As
shown in the supplementary material, the radial scaling functions of
the two models, which reflect how quickly the influence of far-away
atoms decays, are consistent with the greater non-locality of the vec-
tor model. The radial scaling of the scalar models decays rapidly,
well before the neighbor list cutoff, while that of the vector model
indicates that correlations beyond 5 A would be needed to describe
molecular dipoles as a sum of local contributions.

Finally, while the local partial charges and dipoles pro-
vided by this analysis bear some similarities to the electron
density decomposition schemes discussed in Sec. II, they should
not be confused. The partitioning scheme shown here does not use
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FIG. 7. A representation of the per-atom contributions to the total dipole for two of the challenge systems: polyglycine in the -strand conformation (top) and polyenoic amino
acids in the all-trans conformation (bottom). Vector per-atom dipoles are defined in Eq. (12) and plotted exaggerated by a factor of 5 for visibility; atoms are colored according
to the atom type. Scalar per-atom dipoles are defined as the partial charges multiplied with the displacement vectors (referenced to the molecule’s center of geometry), as in
Eq. (7); atomic charges are also represented as atom colors according to the displayed color scale. Per-atom dipoles for the combined model are the (appropriately weighted)
sums of the respective scalar and vector per-atom dipole predictions. The total dipoles, in each case equal to the sum of the per-atom predictions, are shown below each
molecule along with (in black) the reference dipole moment computed from B3LYP/daDZ. The scale bar shows the maximum range of sensitivity (5 A) of the partial charges
and atomic dipoles to their environments. Visualizations are created with OVITO.5

the electron density; rather, it provides an interpretable description
of how the ML model arrives at its prediction of the total dipole,
allowing us to verify whether or not it includes the appropriate
physics.

V. CONCLUSIONS

In this work, we have introduced a set of models for predicting
molecular dipole moments that we collectively refer to as “MuML.”

These models rely on a local, atom-centered description of the
molecular structure that fulfills the symmetries of the target prop-
erty. We compare a vector model that predicts atom-centered dipo-
lar contributions with a scalar model that predicts atomic charges
entering into a physics-based expression for the contribution to the
total dipole moment. Training on reference CCSD calculations per-
formed on a set of small organic molecules, both models can achieve
a similar accuracy of around 0.07 D in MAE, which is comparable
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to the accuracy of DFT, with a slight improvement made possible by
combining the two models. The differences between the models are
more noticeable—up to 40% RMSE—when considering the transfer-
ability to larger molecules, namely, the QM9 dataset. Here, the vec-
tor model seems to be more robust, while the scalar model appears
to overfit, with a model trained on 5000 small molecules giving
worse performance than one trained only on 500. Even with these
limitations, the vector model outperforms a state-of-the-art model
based on the FCHL" framework," even though the FCHL* model
is trained on another subset of QM9 molecules, and is therefore
operating in the interpolative regime. When we use training struc-
tures from QM9, the performance of MuML dramatically improves
and we observe a threefold reduction in the error. The accuracy
of the combined model can be improved by adjusting the relative
weight of the scalar and vector models, with better interpolative per-
formance observed in the limit of large scalar weights and better
extrapolative performance when using large vector weights. State-
of-the-art performance for MuML is also observed for a showcase
dataset of even larger and more complex molecules, where the scalar
model shows improved performance relative to the vector model,
and the combined model approaches the accuracy of DFT. For these
molecules, we also show that a calibrated committee model can accu-
rately estimate the uncertainty in the model predictions, thereby
further improving the reliability of predictions in this challenging
extrapolative regime.

In this work, we finally pushed MuML to its breaking point by
performing predictions on a set of polymers of increasing length,
which extend far beyond the cutoff radius of the atom-centered
features used to describe the molecules. In this regime, the vector
model can predict reasonably well the molecular dipole moment
of polyglycine for which each monomeric unit contributes a dipo-
lar term. It fails dramatically, however, for the polyenoic amino
acid series, where the increase in the molecular dipole moment
arises because of charge separation by fully conjugated (but non-
polar) spacer units. The scalar model, on the other hand, recov-
ers this effect correctly because the geometric separation between
atoms is built into the form of the kernel, introducing an element of
non-locality.

The combination of these two models makes it possible to
improve the performance of MuML, even though the optimal com-
bination of weights depends rather strongly on the nature of the
test molecules. This suggests that, even when taken together, local
vector and scalar models of the dipole only partially capture the
physics of polarization, affecting the overall model’s transferability.
An explicit treatment of long-range effects using a charge equili-
bration scheme,”® or incorporating long-range correlations by long-
distance equivariant features,”” might further improve the accu-
racy of MuML, which is already competitive with that of hybrid
DFT calculations while being dramatically less computationally
expensive.

Another direction for further research involves the modeling
of condensed phases. The presence of periodic boundary condi-
tions makes the position operator ill-defined. As a consequence,
an expression like Eq. (2) cannot be used to define polarization in
the condensed phase, which makes the scalar model and, by exten-
sion, the combined model inapplicable. One way around this lim-
itation is to instead model the position of Wannier function cen-
ters so that each point in the unit cell is an integer multiple of the

ARTICLE scitation.org/journalljcp

electron charge, thereby preserving the lattice condition for polar-
ization in a periodic medium (see, e.g., Spaldin(’x or Resta“)). Cur-
rent implementations of the idea, however, predict the position of
centers attached to an atom’’ so that the framework is effectively
equivalent to learning atom-centered dipoles. Indeed, a vector model
can be readily applied to bulk systems and has already been used
successfully to predict the infrared spectrum of liquid water.”" It
is not obvious, however, that this methodology will work well in
systems where there is significant delocalization of charge. Incorpo-
rating ideas from the modern theory of polarization,”” learning the
Born effective charge tensors, or taking a more decidedly data-driven
approach by using long-range features without explicitly incorpo-
rating a physical description of electrostatics all provide possible
strategies to apply to condensed phases a model that can capture,
such as MuML, the different phenomena that give rise to permanent
or transient polarization.

SUPPLEMENTARY MATERIAL

See the supplementary material for further details about the
derivation, implementation, and benchmarks of the method, includ-
ing convergence of the scalar and vector models on QM7b; kernel
optimization procedure; radial scaling function for scalar and vec-
tor models; uncertainty quantification calibration procedure; QM7b
learning curves for B3LYP dipoles; comparison of B3LYP, CCSD,
and SCANO dipole moment data for the MuML showcase; and
per-atom breakdown of the a-helix and n-amino carboxylic acid
predictions.
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