

Large-Scale Parallel Performance of Multiphysics Applications on Multicore Architectures

Paul T. Lin and John N. Shadid
 Computational Science R&D Group, Sandia National Labs
 Albuquerque NM 87122; e-mail: ptlin@sandia.gov

Abstract: The efficient computation of multiphysics simulations is challenging for several reasons: strong coupling of the multiphysics systems, high nonlinearity and a large spectrum of interacting length and time scales. We examine the parallel performance of two multiphysics application codes for large-scale simulations. The first simulates resistive magnetohydrodynamics (MHD), which describes the dynamics of charged fluids in the presence of electromagnetic fields. Important applications include fusion energy devices such as tokamak reactors and Z-pinch devices. The second application code involves the simulation of semiconductor devices via the drift-diffusion equations. An important application is the simulation of the response of electronics in radiation environments. For the two multiphysics application codes, a stabilized finite element method is used to discretize the system of PDEs, which are then solved by Newton-Krylov methods. Two major challenges for these large-scale simulations are the scalability of the solvers and efficiency of the algorithm on multicore processors. The choice of the preconditioner is critical to the parallel scaling and to reducing the solution time for these linear systems. We have been investigating multipreconditioners as well as approximate block factorization and physics-based preconditioners. To examine parallel scalability, studies have been performed on an IBM Blue Gene/P platform for problems as large as two billion unknowns on 100k cores. We have also examined scaling on a Cray XT3/4 platform. We performed studies on various platforms with 4-16 cores per compute node and found that the application codes could use all the cores with reasonable efficiency. However, the decrease in efficiency with increasing core count makes it clear that a hybrid approach will be needed in the future.

Resistive MHD Model (With R. Pawlowski, E. Cyr, R. Tuminaro, L. Chacon, J. Banks)

Navier-Stokes + Electromagnetics

$$\rho \frac{\partial \mathbf{u}}{\partial t} + \rho(\mathbf{u} \cdot \nabla \mathbf{u}) - \nabla \cdot (\mathbf{T} + \mathbf{T}_M) - \rho g = 0 \quad \mathbf{T} = -(P + \frac{2}{3}\mu(\nabla \cdot \mathbf{u}))\mathbf{I} + \mu(\nabla \mathbf{u} + \nabla \mathbf{u}^T)$$

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 \quad \mathbf{T}_M = \frac{1}{\mu_0} \mathbf{B} \otimes \mathbf{B} - \frac{1}{2\mu_0} \|\mathbf{B}\|^2 \mathbf{I}$$

$$\rho C_p \left[\frac{\partial T}{\partial t} + \mathbf{u} \cdot \nabla T \right] + \nabla \cdot \mathbf{q} - \eta \|\mathbf{J}\|^2 = 0$$

$$\frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{u} \times \mathbf{B}) + \nabla \times \left(\frac{\eta}{\mu_0} \nabla \times \mathbf{B} \right) = 0$$

$$\mathbf{B} = \nabla \times \mathbf{A}$$

$$2D \quad R_{A_z} = \frac{\partial A_z}{\partial t} + \mathbf{u} \cdot \nabla A_z - \frac{\eta}{\mu_0} \nabla^2 A_z + E_z = 0$$

General case a strongly coupled, multiple time- and length-scale, nonlinear, nonsymmetric system with parabolic and hyperbolic character

Semiconductor Drift-Diffusion Model (With R. Hoekstra, G. Hennigan, J. Castro, D. Fixel, E. Phipps, L. Musson, T. Smith, E. Keiter)

Electric potential

$$-\nabla \cdot \epsilon \nabla \psi = q(p - n + C)$$

$$\nabla \cdot \mathbf{J}_n - qR = q \frac{\partial n}{\partial t} \quad \mathbf{J}_n = -qn\mu_n \nabla \psi + qD_n \nabla n$$

$$-\nabla \cdot \mathbf{J}_p - qR = q \frac{\partial p}{\partial t} \quad \mathbf{J}_p = -qp\mu_p \nabla \psi - qD_p \nabla p$$

Each additional species adds an additional equation (also modifies equation for electric potential)

$$-\nabla \cdot \mathbf{J}_i - q_i R_i = q_i \frac{\partial X_i}{\partial t} \quad \mathbf{J}_i = -q_i \mu_i X_i \nabla \psi - q_i D_i \nabla X_i \quad \mu_i = \frac{q_i D_i}{kT}$$

$$-\nabla \cdot \epsilon \nabla \psi = q(p - n + C) + \sum_{i=1}^n q_i X_i \quad q_i \equiv Z_i q$$

Drift-Diffusion uses stabilized FEM with Newton-Krylov solver as in MHD case; both use same Trilinos solvers

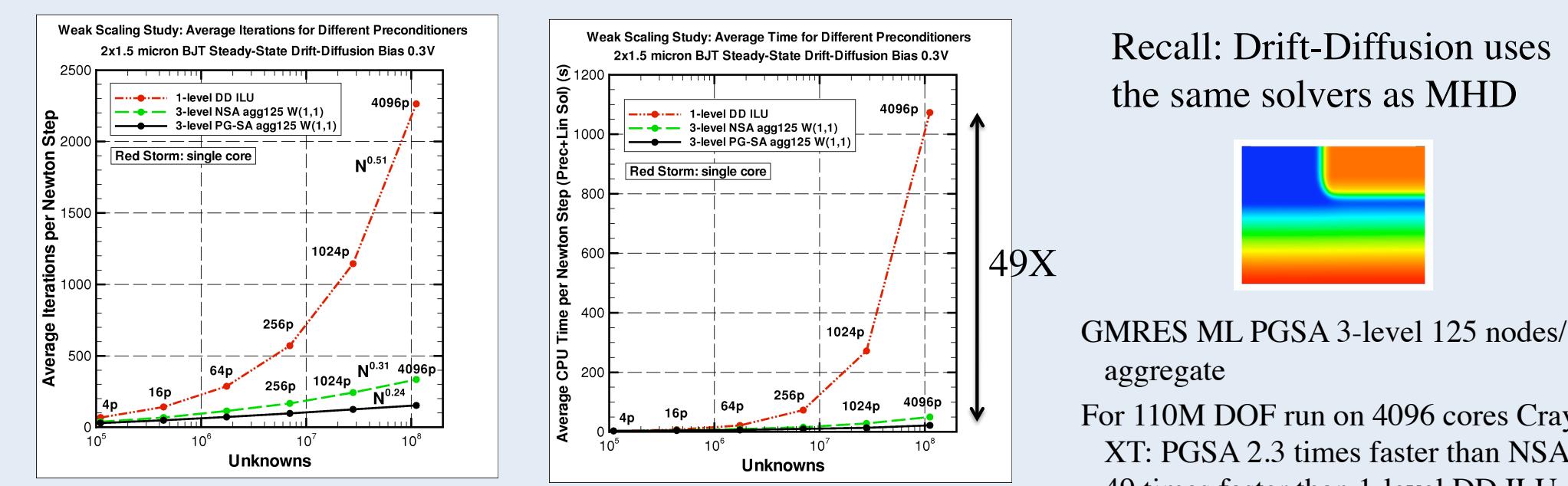
Trilinos ML Library: Algebraic Multilevel Preconditioners (Tuminaro, Hu, Sala, et al.)

Aggregates to produce a coarser operator
 Restriction/prolongation operators
 Construction of $A_{K-1} = R_K A_K P_K$

Level 2 (36 nodes) Level 1 (9 nodes) Level 0 (1 node)

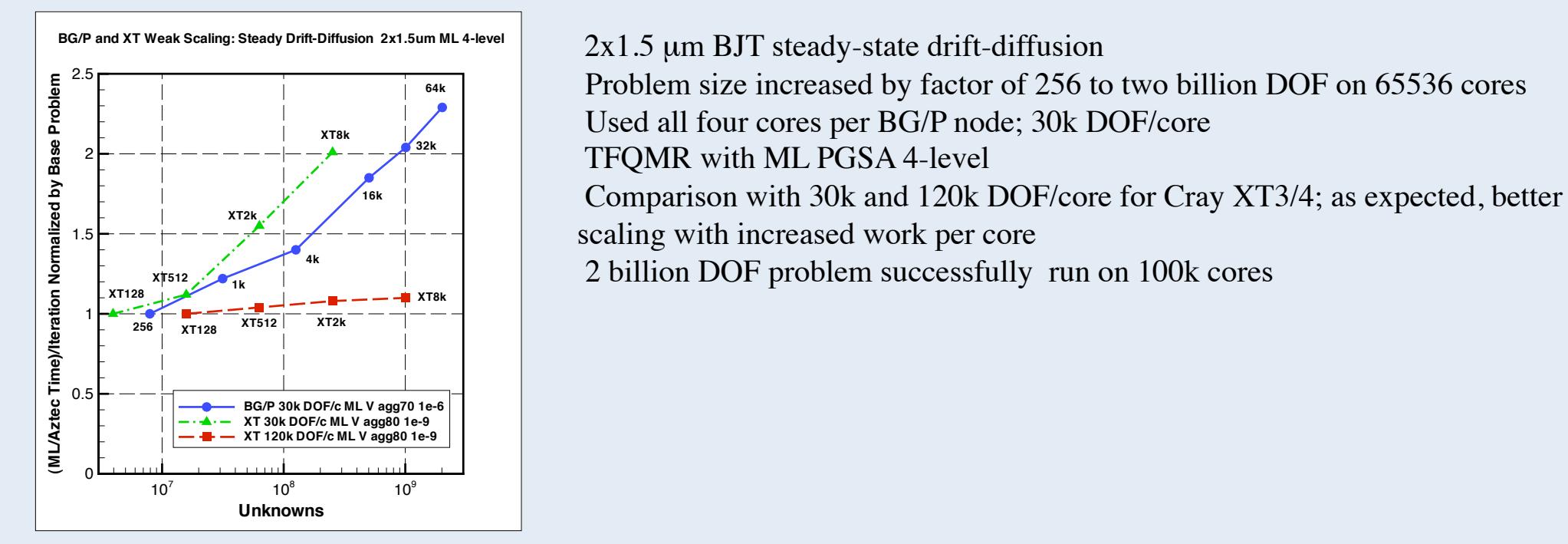

• Nonsmoothed aggregation (NSA)
 • Petrov-Galerkin smoothed aggregation (PGSA)
 • Restriction smoothing
 • Calculate damping parameter to minimize P_i and R_i

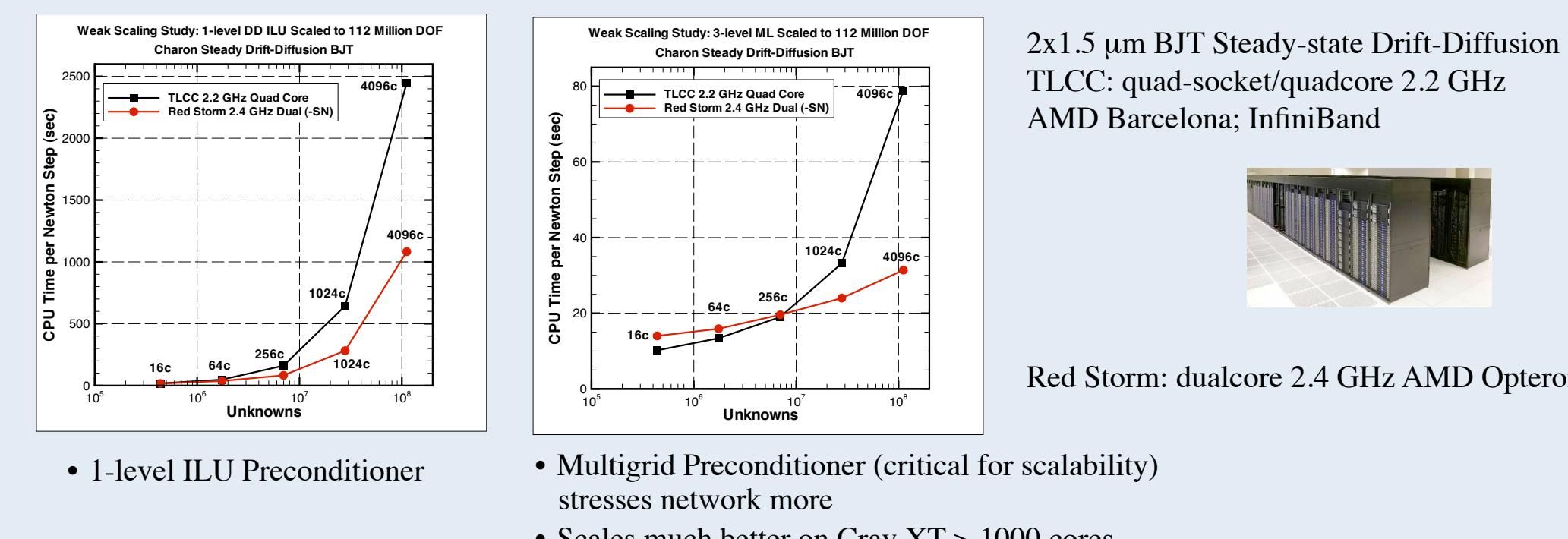
$$P_\ell = (I - \tilde{\Omega} D_\ell^{-1} A_\ell) P_\ell^{(t)}$$


$$R_\ell = [P_\ell^{(t)}]^T (I - A_\ell D_\ell^{-1} \tilde{\Omega})$$

Large-Scale Parallel Performance

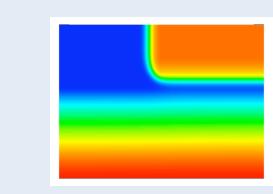
Scaling Performance for Fully-Coupled Resistive MHD: 2D MHD Faraday Conduction Pump


Scaling Performance for Drift-Diffusion: 2D Steady-State 2x1.5 μm BJT


Steady-state Solution Time for 1B DOF on 24k cores of Cray XT3/4

	Fine DOF	Avg iter/N	Time/Newton step (s)			Total time (min)
			Prec	Lin sol	Jac	
MHD	1.05B	86 [18]	63	24	12	99
Drift-Diff	0.10B	243 [11]	50	216	20	243

Weak Scaling to 64k Cores on IBM BG/P


Large-Scale Simulations Need Capability Platforms

The authors gratefully acknowledge funding from the DOE Office of Science Advanced Scientific Computing Research (ASCR) and DOE NNSA Advanced Simulation & Computing (ASC) programs

Future Hardware Trends and Effect on Application Codes: More Sockets per Node, more Cores/Socket

- How efficiently do existing application codes use multiple cores?
- How long will MPI-only programming model work? Future programming paradigm? So far, single-level flat MPI approach still OK, but efficiencies are dropping. Clearly a hybrid approach will be needed in the future. The decrease in memory bandwidth per core is not good; need to exploit locality.

Single Node Multicore Efficiency: Quad-socket, Quadcore CPU

core	DOF	linear sys solve		Jacobian		total	
		time(s)	η	time(s)	η	time(s)	η
1	28K	9.71	Ref	3.52	Ref	14.6	Ref
4	110K	10.7	91	3.48	101	15.4	94
8	219K	11.6	84	3.45	102	16.3	89
12	329K	13.2	74	3.46	102	17.9	81
16	438K	15.8	61	3.13	112	20.1	73

2x1.5 μm BJT steady drift-diffusion

2.2 GHz AMD Barcelona

Weak scaling: 28k DOF/core

Time per Newton step

Linear solve time (preconditioner setup and ML/Aztec) efficiencies problematic

Code performance significantly affected by memory BW

Single Node Multicore Efficiency: Dual-socket, 6-core CPU

core	DOF	linear sys solve		Jacobian		total	
		time(s)	η	time(s)	η	time(s)	η
1	28K	5.38	Ref	2.46	Ref	8.72	Ref
2	55K	5.83	92	2.46	100	9.19	95
4	110K	6.78	79	2.50	98	10.2	86
6	165K	7.65	70	2.55	96	11.1	78
8	219K	8.78	61	2.52	98	12.2	71
10	273K	9.77	55	2.52	98	13.2	66
12	329K	10.97	49	2.55	96	14.5	60

2x1.5 μm BJT steady drift-diffusion

2.6 GHz AMD Istanbul

Weak scaling: 28k DOF/core

Linear solve time (preconditioner setup and ML/Aztec) efficiencies problematic

Multicore Efficiency Study: Network and Nodes

configuration	54.5K DOF/core		218K DOF/core	
	time(s)	η	time(s)	η
128n 1ppn	25.9	Ref	147	Ref
32n 4ppn	26.0	100	152	97
16n 8ppn	27.1	96	163	90
10.5n 12ppn	30.3	86	194	76
8n 16ppn	35.5	73	229	64

Combiner effects of network and node architecture: vary nodes and cores/node for total of 128 cores

TLCC: quad-socket, quadcore 2.2 GHz AMD

Barcelona; InfiniBand

Use all 16 cores per node

2x1.5 μm BJT steady drift-diffusion

Efficiency of using Cray XT3/4 quadcore 2.2 GHz

Budapest (4096 cores)

2x1.5 μm BJT steady drift-diffusion

Multicore Efficiency Study: MHD Pump on Cray XT

</