
Uncertainty Quantification R&D
with Applications to Nuclear Weapons

Laura P. Swiler

Optimization and Uncertainty Quantification Dept.

Albuquerque, NM

CIS External Panel Review

May 26-28, 2010

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2010-3216P



2

Regulatory Drivers

• In 2001, the National Nuclear Security Administration (NNSA) initiated 
development of a process designated Quantification of Margins and 
Uncertainty (QMU) for the use of risk assessment methodologies in the 
certification of the reliability and safety of the nation’s nuclear weapons 
stockpile.

• JASON. Quantifications of Margins and Uncertainties (QMU). JSR-04-3330. McLean, VA: The Mitre Corporation 2005.

• U.S. GAO (U.S. Government Accountability Office).  Nuclear Weapons: NNSA Needs to Refine and More Effectively Manage Its New Approach 
for Assessing and Certifying Nuclear Weapons. GAO-06-261. Washington, DC: U.S. Government Accountability Office 2006.

• NNSA (National Nuclear Security Administration). Nuclear Weapon Assessments Using Quantification of Margins and Uncertainties 
Methodologies. NNSA Policy Letter: NAP-XX, Draft 5/1/07. Washington, DC: 2007.
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reducible), and aleatory 
(random) uncertainties



3

0.00

0.25

0.50

0.75

1.00

C
u
m

 P
ro

b

2e+15 4e+15 6e+15 8e+15 1e+16 1.2e+16response metric

Intervals on 
statistics

Regulatory Drivers

• In 2001, the National Nuclear Security Administration (NNSA) initiated 
development of a process designated Quantification of Margins and 
Uncertainty (QMU) for the use of risk assessment methodologies in the 
certification of the reliability and safety of the nation’s nuclear weapons 
stockpile.

• JASON. Quantifications of Margins and Uncertainties (QMU). JSR-04-3330. McLean, VA: The Mitre Corporation 2005.

• U.S. GAO (U.S. Government Accountability Office).  Nuclear Weapons: NNSA Needs to Refine and More Effectively Manage Its New Approach 
for Assessing and Certifying Nuclear Weapons. GAO-06-261. Washington, DC: U.S. Government Accountability Office 2006.

• NNSA (National Nuclear Security Administration). Nuclear Weapon Assessments Using Quantification of Margins and Uncertainties 
Methodologies. NNSA Policy Letter: NAP-XX, Draft 5/1/07. Washington, DC: 2007.

Distinguish between epistemic
(incomplete knowledge, 
reducible), and aleatory 
(random) uncertainties
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Uncertainty Quantification Research

Workhorse
• Sampling Methods

– Latin Hypercube Sampling

• Reliability Methods

Current R&D Focus
• Stochastic Expansion*

• Interval Analysis*

• Second-order Probability*

• Dempster-Shafer

Implemented in DAKOTA

Challenge:  Maximize accuracy of UQ results 
while minimizing total cost of computations

• Automatic Differentiation (Sacado)*

• Adjoint Methods

• Stochastic Expansion (Stokhos) 

• Trilinos provides growing support for 
embedded UQ methods

Black-Box

Embedded

NOT a “one-size fits all” approach

*Covered in review talks the past two years
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Uncertainty Quantification Research

• Stochastic expansion:

– dimension adaptive methods, anisotropic 
Smolyak sparse grids

– numerically generated orthogonal 
polynomials

– Sobol’ sensitivity indices (variance-based)

• New capabilities for “mixed” 
epistemic/aleatory uncertainty: 

– Estimate bounding intervals using local or 
global optimization methods

• Surrogate or metamodel construction 
(Surfpack)

– Use of Gaussian process emulators in both 
UQ and optimization

• Other:  Bayesian calibration, collaborations 
with LANL, UT; ASCR projects

epistemic
optimization

aleatory
stoch exp

simulation

Convergence Plot for Stochastic Expansion

Mixed UQ using optimization

in the nested process
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W87 Abnormal Thermal UQ

Contents of this slide removed for unlimited release
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W87 Abnormal:  Thermal Race Margin

Contents of this slide removed for unlimited release
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QASPR Predictions of Circuit Voltages

8

Contents of this slide removed for unlimited release
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System Generated ElectroMagnetic Pulse

Contents of this slide removed for unlimited release
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Summary

• The CIS has an active UQ research and development program. 

• Research areas:

– embedded UQ

– adaptive black-box methods

– multi-scale/multi-physics UQ

– Bayesian approaches

• UQ is not a “one size fits all” problem, R&D in a variety of methods 
needed. 

• DAKOTA is frequently used on our high performance computers to run 
UQ studies for weapons applications.

• Our current milestones and UQ efforts are building up to the B-61 Life 
Extension Program, which is a very important deliverable for Sandia.

Innovation and Implementation in UQ

Impact for NW
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Extra slides
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Uncertainty Quantification Research

• Sampling Methods: Monte Carlo, Latin Hypercube, quasi MC

• Reliability Methods: Focus on finding the probability of failure by 
transforming the UQ problem to an optimization problem. 

• Stochastic Expansion: Represent the uncertain output as a stochastic 
process, specifically as a spectral expansion in terms of suitable 
orthogonal polynomials (e.g. Polynomial Chaos) 

• Interval Analysis: Given interval bounds on the inputs, determine interval 
bounds on the outputs (optimization vs. sampling)

• Second-order Probability: Epistemic “outer loop” and aleatory “inner loop”

• Dempster-Shafer: Propagate “evidence structures” on inputs to outputs.  
This results in two output measures:  plausibility and belief.

We have all of these methods implemented in the 
DAKOTA optimization/UQ toolkit

Challenge:  Maximize accuracy of UQ results 
while minimizing total cost of computations
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Selected UQ Recent Publications

• Sampling Methods: Swiler, L.P. and West, N.J., "Importance Sampling: Promises and Limitations,"  AIAA 
2010-2850 at 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 
Orlando, FL, Apr 12-15, 2010.

• Reliability Methods: Bichon, B.J., Eldred, M.S., Swiler, L.P., Mahadevan, S., and McFarland, J.M., 
"Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions," AIAA Journal, Vol. 46, No. 10, 

October 2008, pp. 2459-2468.

• Stochastic Expansion:  Eldred, M.S., "Recent Advances in Non-Intrusive Polynomial Chaos and 
Stochastic Collocation Methods for Uncertainty Analysis and Design," paper AIAA-2009-2274 in Proceedings of the 
50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, CA, 
May 4-7, 2009.

• Interval Analysis: Eldred, M.S., Swiler, L.P., and Tang, G., "Mixed Aleatory-Epistemic Uncertainty 
Quantification with Stochastic Expansions and Optimization-Based Interval Estimation," (in review) Reliability 
Engineering and System Safety (RESS).

• Second-order Probability: Jakeman, J., Eldred, M.S., and Xiu, D., "A Numerical Approach for 
Quantification of Epistemic Uncertainty," Journal of Computational Physics (JCP), Vol. 229, No. 12, June 2010, pp. 

4648-4663.

• Dempster-Shafer: Tang, G., Swiler. L.P., and Eldred, M.S., "Using Stochastic Expansion Methods in 
Evidence Theory for Mixed Aleatory-Epistemic Uncertainty Quantification," in 51st AIAA/ASME/ASCE/AHS/ASC 

Structures, Structural Dynamics, and Materials Conference Orlando, FL, Apr 12-15, 2010.

Sandia, led by CIS, has an active research agenda in UQ.
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DAKOTA Usage by Method

• 92% of DAKOTA invocations on SNL clusters over 2 month 
period (Jan-Feb. 2010) were UQ or parameter studies

dot_mmfd,

npsol_sqp

list_parameter_study,

optpp_fd_newton

conmin_frcg,

nond_global_reliability

nond_stoch_collocation

nond_local_reliability

nl2sol

nond_polynomial_chaos

multidim_parameter_study,

vector_parameter_study

nond_sampling

External DAKOTA Use: 

• Unique external download registrations over project life: 6411

• Actual source and binary downloads May 2009 – April 2010:  3419
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Simulation
Code(s)

Input

Random

Variables

Output

Metric

Statistics

Introduction: 
Risk-informed Decision Making, QMU, and UQ

In order to support risk-informed decision making using modeling and 

simulation, the following key elements are required:

– Predictive simulations: verified and validated for application of interest

– Quantified uncertainties: the effect of random variability is fully understood

Formal DOE process for Quantification of Margins and Uncertainties (QMU): 

process of providing best estimate + uncertainty in the decision context

Uncertainty Quantification

Critical component of QMU: credible M&S capability for stockpile stewardship

Uncertainty can be categorized to be one of two different types:

– Aleatory/irreducible: inherent variability with sufficient data  probabilistic models

– Epistemic/reducible: uncertainty from lack of knowledge  nonprobabilistic models

PDE

Simulation

Input

Random

Variables

Output

Metric

Statistics
PDE

Simulation

Input

Random

Variables

Output

Metric

Statistics

d

Uncertainty applications: penetration, joint mechanics, abnormal environments, shock physics, …
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Uncertainty Quantification Algorithms @ SNL:
New methods bridge robustness/efficiency gap

Production New Under dev. Planned Collabs.

Sampling Latin Hypercube, 
Monte Carlo

Importance, 
Incremental

Bootstrap, 
Jackknife

FSU

Reliability Local: Mean Value, 
First-order & 
second-order 
reliability methods 
(FORM, SORM)

Global: Efficient 
global reliability 
analysis (EGRA)

Local:
Notre Dame, 
Global:
Vanderbilt

Stochastic 
expansion

Traditional & 
Tailored 
polynomial chaos 
& stochastic 
collocation

Golub-Welsch

numerical 
polynomials 
(arbitrary 
input PDFs)

anisotropic 
sparse grid, 
cubature, 
adaptivity

USC, VPISU, 
Stanford, 
CU Boulder, 
Purdue, 
Illinois

Other 
probabilistic

Random fields/ 
stochastic proc.

Dimension 
reduction

Cornell, 
Maryland

Epistemic Second-order 
probability (nested 
sampling)

Dempster-Shafer, 
Opt-based interval 
estimation

Bayesian Imprecise 
probability 

LANL, 
Applied 
Biometrics

Metrics Importance factors, 
Partial correlations

Main effects, 
Variance-based 
decomposition

Stepwise 
regression

UNM

Additional Tailoring



Stochastic expansions: 
– Polynomial chaos expansions (PCE): known basis, compute coefficients

– (Lagrange) Stochastic collocation (SC): known coefficients, form interpolant

• Tailoring  fine-grained algorithmic control:

– Synchronize PCE form with numerical integration

– Optimal basis & Gauss pts/wts for arbitrary input PDFs

– Anisotropic approaches: emphasize key dimensions 

• h/p-adaptive collocation (FY09-FY10)

Epistemic UQ:

• Refinements to GP-based adaptive approaches 
 EGO, EGRA, EGIE (global opt-based interval est.)

• PCE/SC extensions for epistemic variables

Random Fields / Stochastic Processes (RF/SP): 

• New library: Parallel Environment for Creation Of Stochastics (PECOS)

• Complex random environments (fluctuating pressure field for reentry)

– Gaussian stationary RF/SP (iFFT: Shinozuka-Deodatis, Grigoriu)

– Non-Gaussian, non-stationary RF/SP; K-L, memory saving approaches

Highlights of Foundational UQ

Smart adaptive methods for handling complex uncertainties

super-algebraic for num. 
integration & regression

sqrt(N) for LHS



Generalized Polynomial Chaos Expansions

Approximate response w/ spectral proj. using orthogonal polynomial basis fns

i.e. using

• Nonintrusive: estimate j using sampling (expectation), pt collocation (regression),

tensor-product quadrature or Smolyak sparse grids (numerical integration)

Wiener-Askey Generalized PCE

• Tailor basis: optimal basis selection leads to exponential conv rates

• Tailor expansion type/order/range: TP or TO PCE, h/p-adapt based on PCE error est.

– Dimension p-refinement: anisotropic quadrature/sparse grid

– Dimension h-refinement: discretization of random domain



Stochastic Collocation
(based on Lagrange interpolation)

Advantages relative to PCE:

• Simpler (no expansion order)

• Adapts to integration approach / collocation pt set: 
doesn’t over-/under-integrate a (nonsynchronized) expansion

• Estimating moments of any order is easy: E[Rk] =  rk
j wj

(formation of interpolant only reqd for CDF sampling)

• No intrusive variant:
intrusive approach decouples into collocation

Disadvantages relative to PCE:

• Requires structured data sets: quadrature/sparse grid (cubature?), no random sets

• Expansion variance not guaranteed positive, no analytic VBD

Instead of estimating coeffs for known basis fns, 
form interpolants for known coefficients

Form sparse interpolant using  of tensor products (same as forming sparse grid)

Key is use of same Gauss points/weights from the orthogonal polynomials 
for specified input PDFs  same exponential convergence rates

R



Tailoring of Polynomial Chaos Expansions

Total-orderTensor-product

Multi-index length & content

Monomial coverage
Tensor-prod quadrature (m=5) Sparse grid (nonlinear growth, w=4) Sparse grid (linear growth, w=4)

Traditional PCE: total-order p = m-1
Tailored PCE: tensor-product p = m-1

Traditional PCE: heuristic total-order
Tailored PCE: synchronized total-order
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UQ R&D: New methods bridge critical gap  reliability of LHS at much lower cost

Comparison of Stochastic Expansion Methods

• Nonintrusive PCE: known basis, compute coefficients (sampling, regression, TPQ, SSG)

• SC: known coefficients, compute interpolant (TPQ, SSG)

• SC outperforms traditional PCE using numerical integration due, at least in part, to 
nonoptimal PCE expansion/integration synchronization

• Tailoring of PCE closes, and in some cases eliminates, performance gap

– TPQ: tailored tensor-product PCE identical to SC

– Nonlinear SSG: tailored total-order PCE more reliable than heuristics & more efficient than 
trial & error, but performance falls well short of SC

– Linear SSG: linear growth for Gaussian non-/weakly-nested reduces integrable monomial set 
not appearing in expansion and closes gap with SC.  Don’t use nonlinear growth unless fully nested!

• In no direct comparison does nonintrusive PCE outperform SC. PCE motivated by flexibility 
in collocation sets (i.e., Genz cubature, unstructured/random sets supporting fault tolerance).

• TPQ more efficient for 2 dim, TPQ ~ SSG for 3 dim, SSG more efficient for 4 dim or more

Current directions:

• Additional tailoring and fine-grained algorithmic control

– Numerically generated orthogonal polynomials for arbitrary input PDFs (Golub-Welsch)

– Sparse grids: anisotropy in level w

• Stochastic error estimation & h-p adaptive collocation methods

UQ Remarks
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Stochastic sensitivity analysis: 

• 0th-order combined or 1st-order uncertain expansions  enables OUU, MCUU, Mixed UQ

Optimization Under Uncertainty

• Bi-level, sequential, and multifidelity OUU formulations

• 1st-order uncertain more reliable: effective in bi-level & sequential approaches

• 0th-order combined can be more efficient  explored use as low fidelity UQ surrogate

• Sequential is competitive; quasi-2nd-order linkage assists convergence of iteration

• Multifidelity coerces LF UQ to HF optimum; competitive with cheapest LF UQ (MVFOSM)

Mixed Aleatory-Epistemic UQ

• SOP approaches that are more accurate (crisp bounds from optimizers) and efficient 
(exponential conv. rates from stoch. exp.) than traditional nested sampling

– Inner loop: epistemic-aware stochastic expansions; Outer loop: global opt.-based interval estimation

• EGO with PCE/SC aleatory expansions  intervals using O(102) − O(103) evals. were 
significantly more accurate that those from O(108) simulations w/ nested sampling 

• Uncertain/aleatory expansions were again more effective than combined expansions

– Resolving aleatory stats for selected instances of s one at a time appears more efficient than 
globally resolving these stats for all values of s all at once (insufficient usage to offset construction)

• To further reduce expense or to scale to larger problems, can currently relax from global/ 
global to use local at either/both levels  approx. intervals.  Future: adaptive collocation.

OUU and Mixed UQ Remarks
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Deployment and Support

Access

 Internal/external downloads from http://www.cs.sandia.gov/dakota

 GNU GPL – freely available worldwide (>6000 registered users)

 Releases: Major, Interim, Stable, VOTD [5.0 released Dec. 2009]

 Manuals: Users, Reference, Developers

 GUI:  JAGUAR 2.0,  Java-based “smart” GUI that adapts to 
DAKOTA input spec, deployed Dec. 2009

Platforms

 Linux, Solaris, AIX, Windows (Cygwin/MINGW), Mac

 MPICH, MVAPICH, OpenMPI on IP, GM, IB

SQE
 Nightly platform builds + ~850 serial/parallel tests

 Top SQE score in 2008 ASC assessment

Black Box:
Sandia simulation codes
Commercial simulation codes

Semi-instrusive:
SIERRA (multiphysics), 
SALINAS (structural dynamics),
Xyce (circuits), Sage (CFD),
MATLAB, Mathematica,
ModelCenter, FIPER

DAKOTA
Optimization
Uncertainty Quant.
Parameter Est.
Sensitivity Analysis

Model
Parameters

Design
Metrics

http://www.cs.sandia.gov/dakota
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Mixed Aleatory-Epistemic UQ:
Second-Order Probability using Stochastic Expansions

Second-order probability

• Traditional approach: nested sampling

• Expensive sims  under-resolved 

sampling (especially @ outer loop)

• Epistemic variables may insert or 

augment aleatory variables

Address accuracy and efficiency

• Inner loop: stochastic exp which are epistemic-aware (0th-order combined. 1st-order prob.)

• Outer loop: opt-based interval estimation, adaptive GP-based exploiting min/max data reuse

epistemic
sampling

aleatory
sampling

simulation

Epistemic uncertainty (aka: subjective, reducible, lack of knowledge 

uncertainty): insufficient information to specify probability distributions

SC SSG Aleatory: converged to 5-6 digits by 527 evals.

Nested sampling: 2-3 digits by 108 evals.

Fully converged area interval = [75., 375.], β interval = [−2.18732, 11.5900]

Impact: render mixed UQ studies practical for large-scale applications
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Research Innovations

epistemic
sampling

aleatory
sampling

simulation
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CHALLENGE SOLUTION 

Represent epistemic uncertainty  
Apply stochastic expansion methods to interval 
variables using Legendre basis

Curse of dimensionality Dimension-adaptive stochastic expansion methods  
Curse of dimensionality Anisotropic Smolyak sparse grids

Estimate outer loop bounding interval 

Local gradient-based methods can now leverage 
analytic moments and their sensitivities with respect 
to epistemic parameters. 

Estimate outer loop bounding interval 

Global nongradient-based optimization approaches 
to interval estimation with data reuse among 
minimization and maximization solves, using GP 
emulators

epistemic
optimization

aleatory
stoch exp

simulation

Workhorse SOP Research SOP


