

Uncertainty Quantification R&D with Applications to Nuclear Weapons

Laura P. Swiler

Optimization and Uncertainty Quantification Dept.

Albuquerque, NM

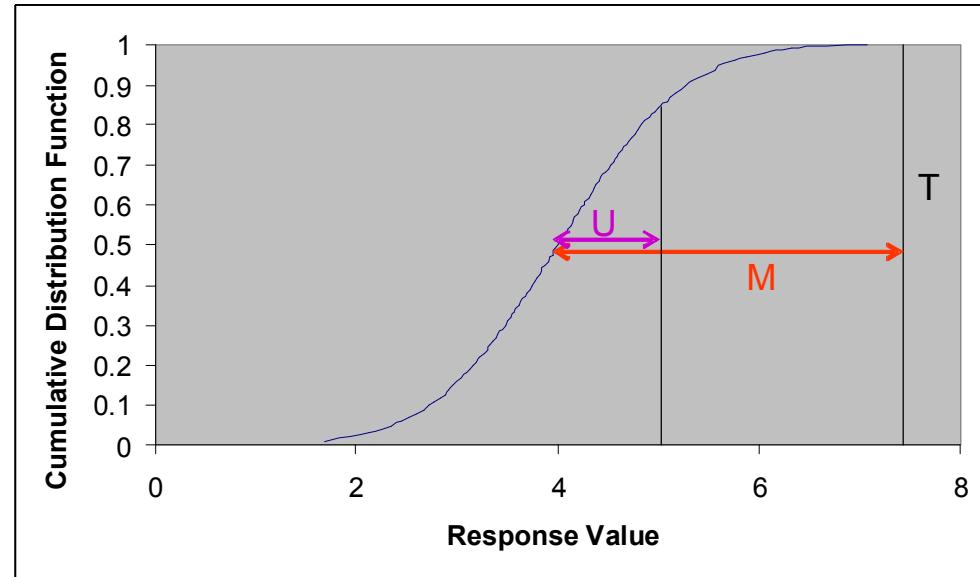
CIS External Panel Review

May 26-28, 2010

Regulatory Drivers

- In 2001, the National Nuclear Security Administration (NNSA) initiated development of a process designated Quantification of Margins and Uncertainty (QMU) for *the use of risk assessment methodologies* in the certification of the reliability and safety of the nation's nuclear weapons stockpile.

Distinguish between **epistemic** (incomplete knowledge, reducible), and **aleatory** (random) uncertainties

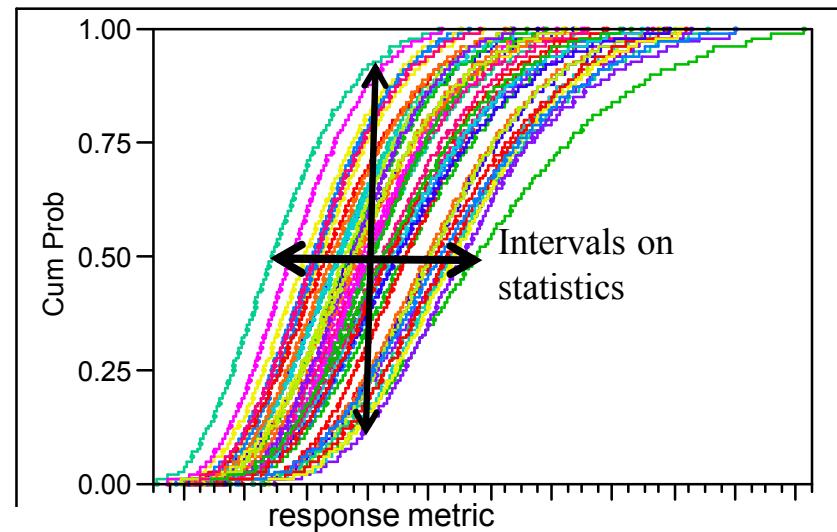


- JASON. *Quantifications of Margins and Uncertainties (QMU)*. JSR-04-3330. McLean, VA: The Mitre Corporation 2005.
- U.S. GAO (U.S. Government Accountability Office). *Nuclear Weapons: NNSA Needs to Refine and More Effectively Manage Its New Approach for Assessing and Certifying Nuclear Weapons*. GAO-06-261. Washington, DC: U.S. Government Accountability Office 2006.
- NNSA (National Nuclear Security Administration). *Nuclear Weapon Assessments Using Quantification of Margins and Uncertainties Methodologies*. NNSA Policy Letter: NAP-XX, Draft 5/1/07. Washington, DC: 2007.

Regulatory Drivers

- In 2001, the National Nuclear Security Administration (NNSA) initiated development of a process designated Quantification of Margins and Uncertainty (QMU) for *the use of risk assessment methodologies* in the certification of the reliability and safety of the nation's nuclear weapons stockpile.

Distinguish between **epistemic** (incomplete knowledge, reducible), and **aleatory** (random) uncertainties



- JASON. *Quantifications of Margins and Uncertainties (QMU)*. JSR-04-3330. McLean, VA: The Mitre Corporation 2005.
- U.S. GAO (U.S. Government Accountability Office). *Nuclear Weapons: NNSA Needs to Refine and More Effectively Manage Its New Approach for Assessing and Certifying Nuclear Weapons*. GAO-06-261. Washington, DC: U.S. Government Accountability Office 2006.
- NNSA (National Nuclear Security Administration). *Nuclear Weapon Assessments Using Quantification of Margins and Uncertainties Methodologies*. NNSA Policy Letter: NAP-XX, Draft 5/1/07. Washington, DC: 2007.

Uncertainty Quantification Research

Challenge: Maximize accuracy of UQ results while minimizing total cost of computations

Black-Box

Workhorse

- Sampling Methods
 - Latin Hypercube Sampling
- Reliability Methods

NOT a “one-size fits all” approach

Current R&D Focus

- Stochastic Expansion*
- Interval Analysis*
- Second-order Probability*
- Dempster-Shafer

Implemented in DAKOTA

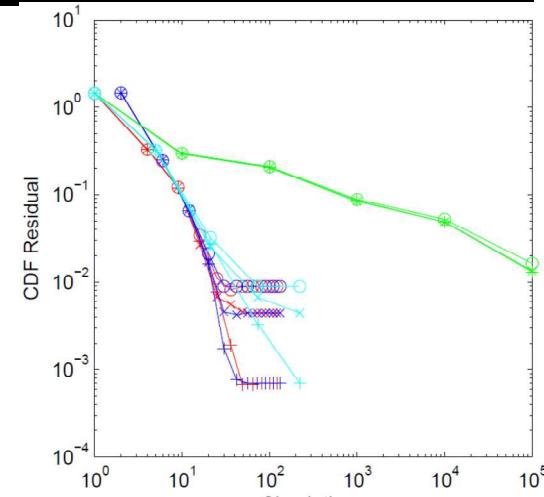
Embedded

- Automatic Differentiation (Sacado)*
- Adjoint Methods
- Stochastic Expansion (Stokhos)
- Trilinos provides growing support for embedded UQ methods

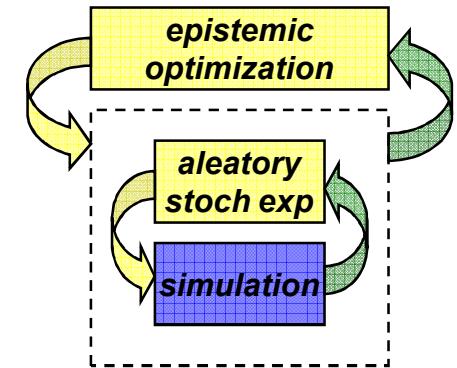
*Covered in review talks the past two years

Uncertainty Quantification Research

- **Stochastic expansion:**
 - dimension adaptive methods, anisotropic Smolyak sparse grids
 - numerically generated orthogonal polynomials
 - Sobol' sensitivity indices (variance-based)
- **New capabilities for “mixed” epistemic/aleatory uncertainty:**
 - Estimate bounding intervals using local or global optimization methods
- **Surrogate or metamodel construction (Surfpack)**
 - Use of Gaussian process emulators in both UQ and optimization
- **Other:** Bayesian calibration, collaborations with LANL, UT; ASCR projects



Convergence Plot for Stochastic Expansion



Mixed UQ using optimization
in the nested process

W87 Abnormal Thermal UQ

Contents of this slide removed for unlimited release

W87 Abnormal: Thermal Race Margin

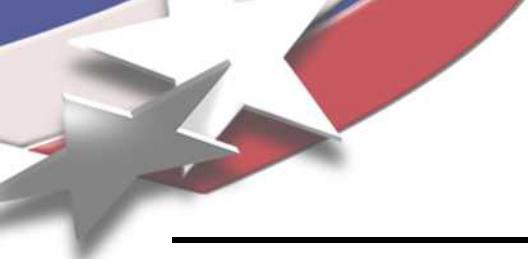
Contents of this slide removed for unlimited release

QASPR Predictions of Circuit Voltages

Contents of this slide removed for unlimited release

System Generated ElectroMagnetic Pulse

Contents of this slide removed for unlimited release



Summary

- The CIS has an active UQ research and development program.
- Research areas:
 - embedded UQ
 - adaptive black-box methods
 - multi-scale/multi-physics UQ
 - Bayesian approaches
- UQ is not a “one size fits all” problem, R&D in a variety of methods needed.
- DAKOTA is frequently used on our high performance computers to run UQ studies for weapons applications.
- Our current milestones and UQ efforts are building up to the B-61 Life Extension Program, which is a very important deliverable for Sandia.

**Innovation and Implementation in UQ
Impact for NW**



Extra slides

Uncertainty Quantification Research

Challenge: Maximize accuracy of UQ results while minimizing total cost of computations

- **Sampling Methods:** Monte Carlo, Latin Hypercube, quasi MC
- **Reliability Methods:** Focus on finding the probability of failure by transforming the UQ problem to an optimization problem.
- **Stochastic Expansion:** Represent the uncertain output as a stochastic process, specifically as a spectral expansion in terms of suitable orthogonal polynomials (e.g. Polynomial Chaos)
- **Interval Analysis:** Given interval bounds on the inputs, determine interval bounds on the outputs (optimization vs. sampling)
- **Second-order Probability:** Epistemic “outer loop” and aleatory “inner loop”
- **Dempster-Shafer:** Propagate “evidence structures” on inputs to outputs. This results in two output measures: plausibility and belief.

We have all of these methods implemented in the DAKOTA optimization/UQ toolkit

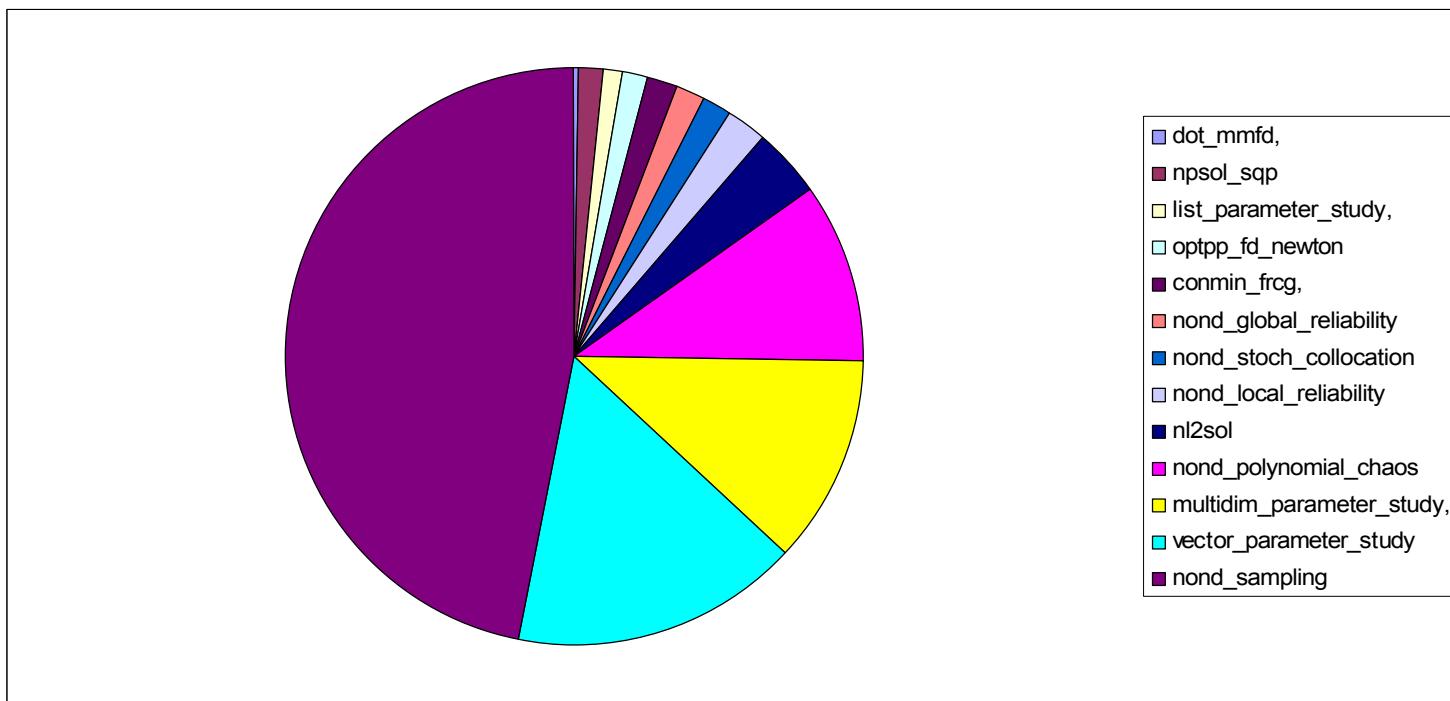
Selected UQ Recent Publications

- **Sampling Methods:** Swiler, L.P. and West, N.J., "Importance Sampling: Promises and Limitations," AIAA 2010-2850 at *51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference*, Orlando, FL, Apr 12-15, 2010.
- **Reliability Methods:** Bichon, B.J., Eldred, M.S., Swiler, L.P., Mahadevan, S., and McFarland, J.M., "Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions," *AIAA Journal*, Vol. 46, No. 10, October 2008, pp. 2459-2468.
- **Stochastic Expansion:** Eldred, M.S., "Recent Advances in Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Analysis and Design," paper AIAA-2009-2274 in Proceedings of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, CA, May 4-7, 2009.
- **Interval Analysis:** Eldred, M.S., Swiler, L.P., and Tang, G., "Mixed Aleatory-Epistemic Uncertainty Quantification with Stochastic Expansions and Optimization-Based Interval Estimation," (in review) *Reliability Engineering and System Safety (RESS)*.
- **Second-order Probability:** Jakeman, J., Eldred, M.S., and Xiu, D., "A Numerical Approach for Quantification of Epistemic Uncertainty," *Journal of Computational Physics (JCP)*, Vol. 229, No. 12, June 2010, pp. 4648-4663.
- **Dempster-Shafer:** Tang, G., Swiler, L.P., and Eldred, M.S., "Using Stochastic Expansion Methods in Evidence Theory for Mixed Aleatory-Epistemic Uncertainty Quantification," in *51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference* Orlando, FL, Apr 12-15, 2010.

Sandia, led by CIS, has an active research agenda in UQ.

DAKOTA Usage by Method

- 92% of DAKOTA invocations on SNL clusters over 2 month period (Jan-Feb. 2010) were UQ or parameter studies



External DAKOTA Use:

- Unique external download *registrations* over project life: 6411
- *Actual source and binary downloads* May 2009 – April 2010: 3419

Introduction: Risk-informed Decision Making, QMU, and UQ

In order to support risk-informed decision making using modeling and simulation, the following key elements are required:

- **Predictive simulations:** verified and validated for application of interest
- **Quantified uncertainties:** the effect of random variability is fully understood

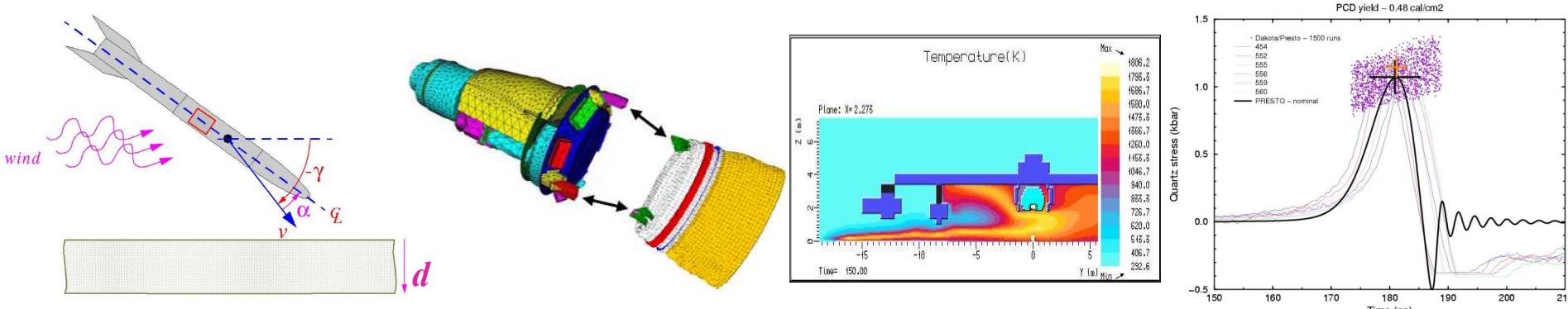
Formal DOE process for Quantification of Margins and Uncertainties (QMU): process of providing *best estimate* + *uncertainty* in the decision context

Uncertainty Quantification

Critical component of QMU: credible M&S capability for stockpile stewardship

Uncertainty can be categorized to be one of two different types:

- Aleatory/irreducible: inherent variability with sufficient data → probabilistic models
- Epistemic/reducible: uncertainty from lack of knowledge → nonprobabilistic models



Uncertainty applications: penetration, joint mechanics, abnormal environments, shock physics, ...

Uncertainty Quantification Algorithms @ SNL:

New methods bridge robustness/efficiency gap

	Production	New	Under dev.	Planned	Collabs.
Sampling	Latin Hypercube, Monte Carlo	Importance, Incremental		Bootstrap, Jackknife	FSU
Reliability	<i>Local:</i> Mean Value, First-order & second-order reliability methods (FORM, SORM)	<i>Global:</i> Efficient global reliability analysis (EGRA) Additional Tailoring			<i>Local:</i> Notre Dame, <i>Global:</i> Vanderbilt
Stochastic expansion		Traditional & Tailored polynomial chaos & stochastic collocation	Golub-Welsch numerical polynomials (arbitrary input PDFs)	anisotropic sparse grid, cubature, adaptivity	USC, VPISU, Stanford, CU Boulder, Purdue, Illinois
Other probabilistic		Random fields/ stochastic proc.		Dimension reduction	Cornell, Maryland
Epistemic	Second-order probability (nested sampling)	Dempster-Shafer, Opt-based interval estimation	Bayesian	Imprecise probability	LANL, Applied Biometrics
Metrics	Importance factors, Partial correlations	Main effects, Variance-based decomposition	Stepwise regression		UNM

Highlights of Foundational UQ

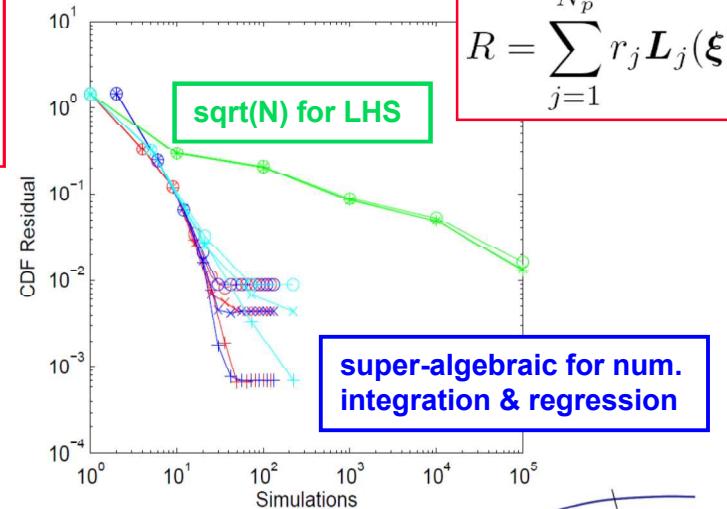
Stochastic expansions:

- Polynomial chaos expansions (PCE): known basis, compute coefficients
- (Lagrange) Stochastic collocation (SC): known coefficients, form interpolant

- Tailoring → fine-grained algorithmic control:
 - Synchronize PCE form with numerical integration
 - Optimal basis & Gauss pts/wts for arbitrary input PDFs
 - Anisotropic approaches: emphasize key dimensions
- h/p-adaptive collocation (FY09-FY10)

$$R = \sum_{j=0}^P \alpha_j \Psi_j(\xi)$$

$$R = \sum_{j=1}^{N_p} r_j L_j(\xi)$$

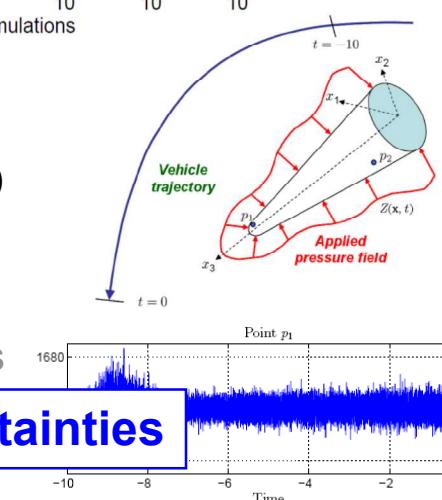


Epistemic UQ:

- Refinements to GP-based adaptive approaches
→ EGO, EGRA, EGIE (global opt-based interval est.)
- PCE/SC extensions for epistemic variables

Random Fields / Stochastic Processes (RF/SP):

- New library: Parallel Environment for Creation Of Stochastics (PECOS)
- Complex random environments (fluctuating pressure field for reentry)
 - Gaussian stationary RF/SP (iFFT: Shinozuka-Deodatis, Grigoriu)
 - Non-Gaussian, non-stationary RF/SP; K-L, memory saving approaches



Smart adaptive methods for handling complex uncertainties

Generalized Polynomial Chaos Expansions

Approximate response w/ spectral proj. using orthogonal polynomial basis fns

i.e.

$$R = \sum_{j=0}^P \alpha_j \Psi_j(\xi)$$

using

$$\begin{aligned} \Psi_0(\xi) &= \psi_0(\xi_1) \psi_0(\xi_2) = 1 \\ \Psi_1(\xi) &= \psi_1(\xi_1) \psi_0(\xi_2) = \xi_1 \\ \Psi_2(\xi) &= \psi_0(\xi_1) \psi_1(\xi_2) = \xi_2 \\ \Psi_3(\xi) &= \psi_2(\xi_1) \psi_0(\xi_2) = \xi_1^2 - 1 \\ \Psi_4(\xi) &= \psi_1(\xi_1) \psi_1(\xi_2) = \xi_1 \xi_2 \\ \Psi_5(\xi) &= \psi_0(\xi_1) \psi_2(\xi_2) = \xi_2^2 - 1 \end{aligned}$$

- **Nonintrusive:** estimate α_j using sampling (expectation), pt collocation (regression), tensor-product quadrature or Smolyak sparse grids (numerical integration)

Wiener-Askey Generalized PCE

- **Tailor basis:** optimal basis selection leads to exponential conv rates

Distribution	Density function	Polynomial	Weight function	Support range
Normal	$\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$	Hermite $He_n(x)$	$e^{-\frac{x^2}{2}}$	$[-\infty, \infty]$
Uniform	$\frac{1}{2}$	Legendre $P_n(x)$	1	$[-1, 1]$
Beta	$\frac{(1-x)^\alpha (1+x)^\beta}{2^{\alpha+\beta+1} B(\alpha+1, \beta+1)}$	Jacobi $P_n^{(\alpha, \beta)}(x)$	$(1-x)^\alpha (1+x)^\beta$	$[-1, 1]$
Exponential	e^{-x}	Laguerre $L_n(x)$	e^{-x}	$[0, \infty]$
Gamma	$\frac{x^\alpha e^{-x}}{\Gamma(\alpha+1)}$	Generalized Laguerre $L_n^{(\alpha)}(x)$	$x^\alpha e^{-x}$	$[0, \infty]$

- **Tailor expansion type/order/range:** TP or TO PCE, h/p-adapt based on PCE error est.
 - Dimension p-refinement: anisotropic quadrature/sparse grid
 - Dimension h-refinement: discretization of random domain

Stochastic Collocation (based on Lagrange interpolation)

*Instead of estimating coeffs for known basis fns,
form interpolants for known coefficients*

$$L_i = \prod_{\substack{j=1 \\ j \neq i}}^m \frac{x - x_j}{x_i - x_j}$$

$$R = \sum_{j=1}^{N_p} r_j L_j(\xi)$$

$$R = \sum_{j_1=1}^{m_{i_1}} \cdots \sum_{j_n=1}^{m_{i_n}} r(\xi_{j_1}^{i_1}, \dots, \xi_{j_n}^{i_n}) (L_{j_1}^{i_1} \otimes \cdots \otimes L_{j_n}^{i_n})$$

Form sparse interpolant using Σ of tensor products (same as forming sparse grid)

*Key is use of same Gauss points/weights from the orthogonal polynomials
for specified input PDFs \rightarrow same exponential convergence rates*

Advantages relative to PCE:

- Simpler (no expansion order)
- Adapts to integration approach / collocation pt set:
doesn't over-/under-integrate a (nonsynchronized) expansion
- Estimating moments of any order is easy: $E[R^k] = \sum r_j^k w_j$
(formation of interpolant only reqd for CDF sampling)
- No intrusive variant:
intrusive approach decouples into collocation

$$\begin{aligned} \mu_R &= \sum_{j=1}^{N_p} r_j w_j \\ \sigma_R^2 &= \sum_{j=1}^{N_p} r_j^2 w_j - \mu_R^2 \end{aligned}$$

Disadvantages relative to PCE:

- Requires structured data sets: quadrature/sparse grid (cubature?), no random sets
- Expansion variance not guaranteed positive, no analytic VBD

Tailoring of Polynomial Chaos Expansions

$$R = \sum_{j=0}^P \alpha_j \Psi_j(\xi)$$

$$\Psi_j(\xi) = \prod_{i=1}^n \psi_{m_i^j}(\xi_i)$$

Multi-index length & content

Tensor-product

$$\begin{aligned}\Psi_0(\xi) &= \psi_0(\xi_1) \psi_0(\xi_2) = 1 \\ \Psi_1(\xi) &= \psi_1(\xi_1) \psi_0(\xi_2) = \xi_1 \\ \Psi_2(\xi) &= \psi_2(\xi_1) \psi_0(\xi_2) = \xi_1^2 - 1 \\ \Psi_3(\xi) &= \psi_0(\xi_1) \psi_1(\xi_2) = \xi_2 \\ \Psi_4(\xi) &= \psi_1(\xi_1) \psi_1(\xi_2) = \xi_1 \xi_2 \\ \Psi_5(\xi) &= \psi_2(\xi_1) \psi_1(\xi_2) = (\xi_1^2 - 1) \xi_2 \\ \Psi_6(\xi) &= \psi_0(\xi_1) \psi_2(\xi_2) = \xi_2^2 - 1 \\ \Psi_7(\xi) &= \psi_1(\xi_1) \psi_2(\xi_2) = \xi_1 (\xi_2^2 - 1) \\ \Psi_8(\xi) &= \psi_2(\xi_1) \psi_2(\xi_2) = (\xi_1^2 - 1) (\xi_2^2 - 1)\end{aligned}$$

$$N_t = 1 + P = \prod_{i=1}^n (p_i + 1)$$

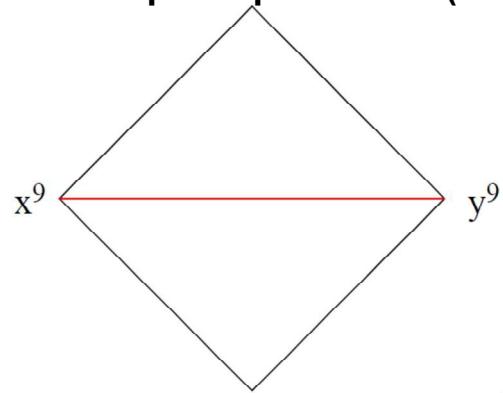
Total-order

$$\begin{aligned}\Psi_0(\xi) &= \psi_0(\xi_1) \psi_0(\xi_2) = 1 \\ \Psi_1(\xi) &= \psi_1(\xi_1) \psi_0(\xi_2) = \xi_1 \\ \Psi_2(\xi) &= \psi_0(\xi_1) \psi_1(\xi_2) = \xi_2 \\ \Psi_3(\xi) &= \psi_2(\xi_1) \psi_0(\xi_2) = \xi_1^2 - 1 \\ \Psi_4(\xi) &= \psi_1(\xi_1) \psi_1(\xi_2) = \xi_1 \xi_2 \\ \Psi_5(\xi) &= \psi_0(\xi_1) \psi_2(\xi_2) = \xi_2^2 - 1\end{aligned}$$

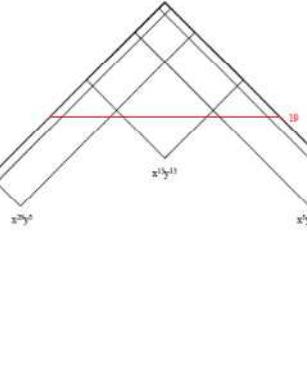
$$N_t = 1 + P = 1 + \sum_{s=1}^p \frac{1}{s!} \prod_{r=0}^{s-1} (n+r) = \frac{(n+p)!}{n!p!}$$

Monomial coverage

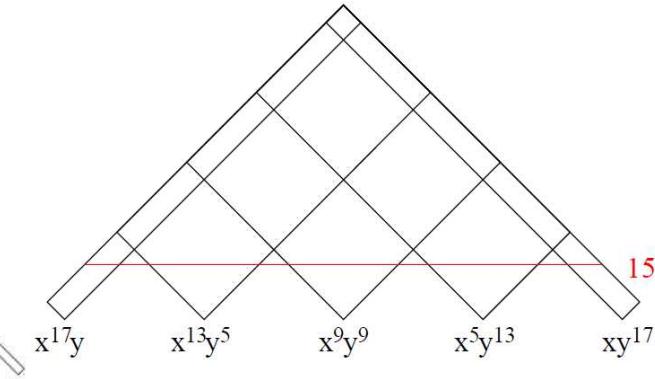
Tensor-prod quadrature (m=5)



Sparse grid (nonlinear growth, w=4)



Sparse grid (linear growth, w=4)



Traditional PCE: total-order $p = m-1$

Tailored PCE: tensor-product $p = m-1$

Traditional PCE: heuristic total-order

Tailored PCE: synchronized total-order

UQ Remarks

UQ R&D: New methods bridge critical gap → reliability of LHS at much lower cost

Comparison of Stochastic Expansion Methods

- Nonintrusive PCE: known basis, compute coefficients (sampling, regression, TPQ, SSG)
- SC: known coefficients, compute interpolant (TPQ, SSG)
- SC outperforms traditional PCE using numerical integration due, at least in part, to nonoptimal PCE expansion/integration synchronization
- Tailoring of PCE closes, and in some cases eliminates, performance gap
 - TPQ: tailored tensor-product PCE identical to SC
 - Nonlinear SSG: tailored total-order PCE more reliable than heuristics & more efficient than trial & error, but performance falls well short of SC
 - Linear SSG: linear growth for Gaussian non-/weakly-nested reduces integrable monomial set not appearing in expansion and closes gap with SC. Don't use nonlinear growth unless fully nested!
- In no direct comparison does nonintrusive PCE outperform SC. PCE motivated by flexibility in collocation sets (i.e., Genz cubature, unstructured/random sets supporting fault tolerance).
- TPQ more efficient for 2 dim, TPQ \sim SSG for 3 dim, SSG more efficient for 4 dim or more

Current directions:

- Additional tailoring and fine-grained algorithmic control
 - Numerically generated orthogonal polynomials for arbitrary input PDFs (Golub-Welsch)
 - Sparse grids: anisotropy in level w

OUU and Mixed UQ Remarks

Stochastic sensitivity analysis:

- 0th-order combined or 1st-order uncertain expansions → enables OUU, MCUU, Mixed UQ

Optimization Under Uncertainty

- Bi-level, sequential, and multifidelity OUU formulations
- 1st-order uncertain more reliable: effective in bi-level & sequential approaches
- 0th-order combined can be more efficient → explored use as low fidelity UQ surrogate
- Sequential is competitive; quasi-2nd-order linkage assists convergence of iteration
- Multifidelity coerces LF UQ to HF optimum; competitive with cheapest LF UQ (MVFOSM)

Mixed Aleatory-Epistemic UQ

- SOP approaches that are more accurate (crisp bounds from optimizers) and efficient (exponential conv. rates from stoch. exp.) than traditional nested sampling
 - Inner loop: epistemic-aware stochastic expansions; Outer loop: global opt.-based interval estimation
- EGO with PCE/SC aleatory expansions → intervals using O(10²) – O(10³) evals. were significantly more accurate than those from O(10⁸) simulations w/ nested sampling
- Uncertain/aleatory expansions were again more effective than combined expansions
 - Resolving aleatory stats for selected instances of s one at a time appears more efficient than globally resolving these stats for all values of s all at once (insufficient usage to offset construction)
- To further reduce expense or to scale to larger problems, can currently relax from global/global to use local at either/both levels → approx. intervals. Future: adaptive collocation.

Deployment and Support

Access

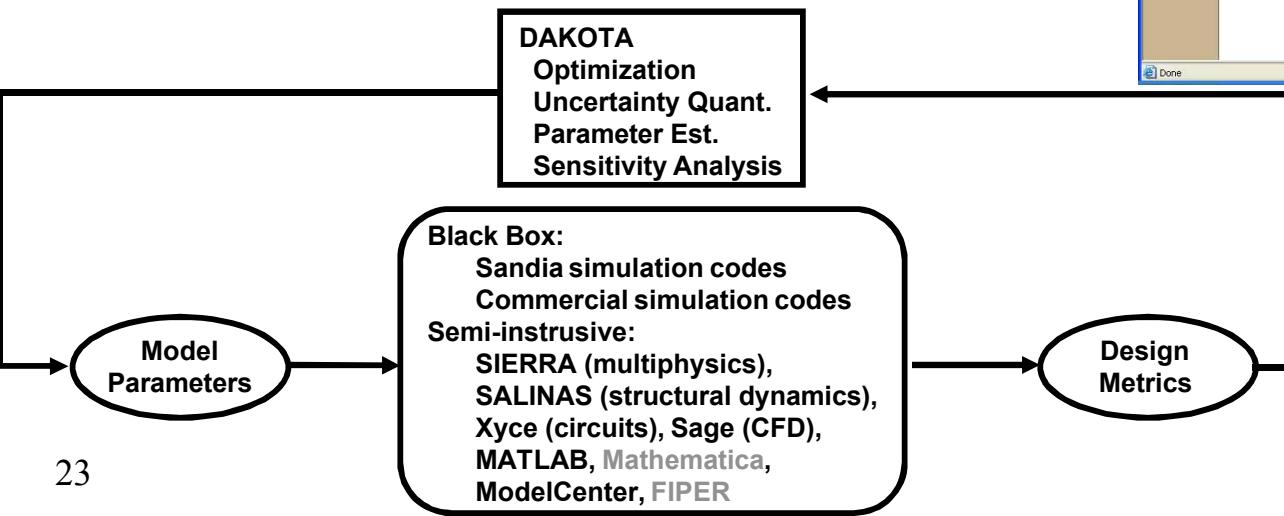
- Internal/external downloads from <http://www.cs.sandia.gov/dakota>
- GNU GPL – freely available worldwide (>6000 registered users)
- Releases: Major, Interim, Stable, VOTD [5.0 released Dec. 2009]
- Manuals: Users, Reference, Developers
- GUI: JAGUAR 2.0, Java-based “smart” GUI that adapts to DAKOTA input spec, deployed Dec. 2009

Platforms

- Linux, Solaris, AIX, Windows (Cygwin/MINGW), Mac
- MPICH, MVAPICH, OpenMPI on IP, GM, IB

SQE

- Nightly platform builds + ~850 serial/parallel tests
- Top SQE score in 2008 ASC assessment

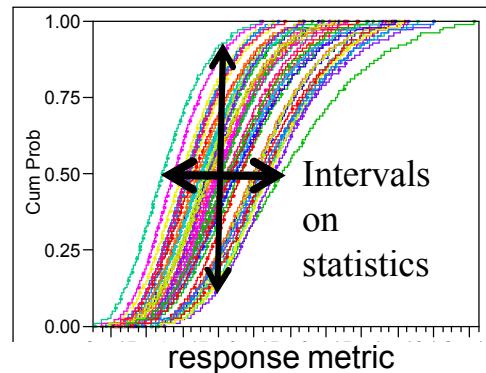
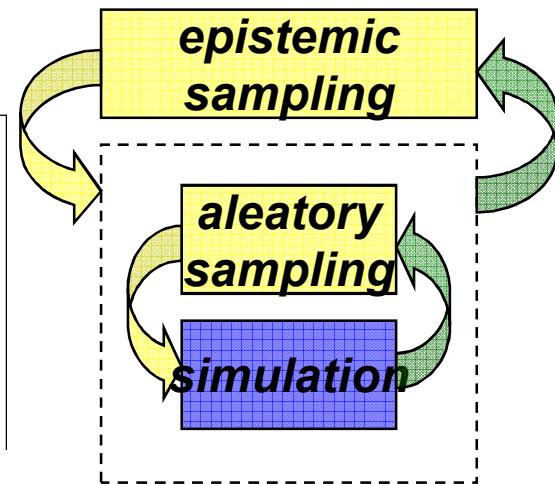


Mixed Aleatory-Epistemic UQ: Second-Order Probability using Stochastic Expansions

Epistemic uncertainty (aka: subjective, reducible, lack of knowledge uncertainty): insufficient information to specify probability distributions

Second-order probability

- Traditional approach: nested sampling
- Expensive sims \rightarrow under-resolved sampling (especially @ outer loop)
- Epistemic variables may insert or augment aleatory variables



Address accuracy and efficiency

- Inner loop: stochastic exp which are epistemic-aware (0th-order combined. 1st-order prob.)
- Outer loop: opt-based interval estimation, adaptive GP-based exploiting min/max data reuse

$$\begin{aligned} & \text{minimize} && M(s) \\ & \text{subject to} && s_L \leq s \leq s_U \\ \\ & \text{maximize} && M(s) \\ & \text{subject to} && s_L \leq s \leq s_U \end{aligned}$$

SC SSG Aleatory: converged to 5-6 digits by 527 evals.

EGO	SC SSG w = 1	Aleatory	(119, 0)	[75.0002, 374.999]	[-2.26264, 11.8623]
EGO	SC SSG w = 2	Aleatory	(527, 0)	[75.0002, 374.999]	[-2.18735, 11.5900]
EGO	SC SSG w = 3	Aleatory	(1785, 0)	[75.0002, 374.999]	[-2.18732, 11.5900]
EGO	SC SSG w = 4	Aleatory	(5049, 0)	[75.0002, 374.999]	[-2.18732, 11.5900]

Nested sampling: 2-3 digits by 10^8 evals.

LHS 100	LHS 100	N/A	$(10^4, 0)$	[80.5075, 338.607]	[-2.14505, 8.64891]
LHS 1000	LHS 1000	N/A	$(10^6, 0)$	[76.5939, 368.225]	[-2.19883, 11.2353]

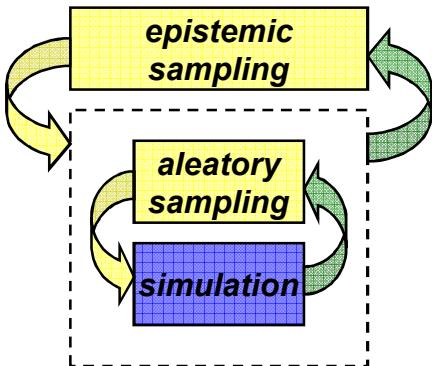
Impact: render mixed UQ studies practical for large-scale applications

[-2.16323, 11.5593]

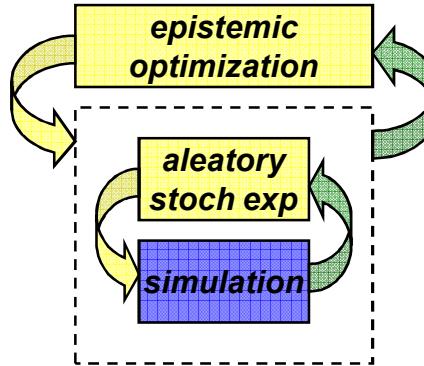
Fully converged area interval = [75., 375.], β interval = [-2.18732, 11.5900]

Research Innovations

CHALLENGE	SOLUTION
Represent epistemic uncertainty	Apply stochastic expansion methods to interval variables using Legendre basis
Curse of dimensionality	Dimension-adaptive stochastic expansion methods
Curse of dimensionality	Anisotropic Smolyak sparse grids
Estimate outer loop bounding interval	Local gradient-based methods can now leverage analytic moments and their sensitivities with respect to epistemic parameters.
Estimate outer loop bounding interval	Global nongradient-based optimization approaches to interval estimation with data reuse among minimization and maximization solves, using GP emulators



Workhorse SOP



Research SOP

