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Regulatory Drivers

* In 2001, the National Nuclear Security Administration (NNSA) initiated
development of a process designated Quantification of Margins and
Uncertainty (QMU) for the use of risk assessment methodologies in the
certification of the reliability and safety of the nation’s nuclear weapons

stockpile.
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* JASON. Quantifications of Margins and Uncertainties (QMU). JSR-04-3330. McLean, VA: The Mitre Corporation 2005.

* U.S. GAO (U.S. Government Accountability Office). Nuclear Weapons: NNSA Needs to Refine and More Effectively Manage Its New Approach
for Assessing and Certifying Nuclear Weapons. GAO-06-261. Washington, DC: U.S. Government Accountability Office 2006.

* NNSA (National Nuclear Security Administration). Nuclear Weapon Assessments Using Quantification of Margins and Uncertainties

Methodologies. NNSA Policy Letter: NAP-XX, Draft 5/1/07. Washington, DC: 2007. m ﬁandia |
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Regulatory Drivers

* In 2001, the National Nuclear Security Administration (NNSA) initiated
development of a process designated Quantification of Margins and
Uncertainty (QMU) for the use of risk assessment methodologies in the

certification of the reliability and safety of the nation’s nuclear weapons
stockpile.
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ncertainty Quantification Research

Challenge: Maximize accuracy of UQ results
while minimizing total cost of computations

H NOT a “one-size fits all” approach I

Black-Box

Workhorse
« Sampling Methods

— Latin Hypercube Sampling

 Reliability Methods

Current R&D Focus

» Stochastic Expansion*®

* Interval Analysis*

» Second-order Probability*
» Dempster-Shafer

Implemented in DAKOTA

Embedded

» Automatic Differentiation (Sacado)*

 Adjoint Methods
» Stochastic Expansion (Stokhos)

* Trilinos provides growing support for

embedded UQ methods

*Covered in review talks the past two years
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ncertainty Quantification Research

« Stochastic expansion:

— dimension adaptive methods, anisotropic
Smolyak sparse grids

— numerically generated orthogonal
polynomials

— Sobol’ sensitivity indices (variance-based)

* New capabilities for “mixed”
epistemic/aleatory uncertainty:

— Estimate bounding intervals using local or
global optimization methods

» Surrogate or metamodel construction
(Surfpack)
— Use of Gaussian process emulators in both
UQ and optimization

« Other: Bayesian calibration, collaborations
with LANL, UT; ASCR projects
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ASPR Predictions of Circuit Voltages
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* Summary

* The CIS has an active UQ research and development program.

» Research areas:

— embedded UQ

— adaptive black-box methods
— multi-scale/multi-physics UQ
— Bayesian approaches

* UQ is not a “one size fits all” problem, R&D in a variety of methods
needed.

 DAKOTA is frequently used on our high performance computers to run
UQ studies for weapons applications.

 Our current milestones and UQ efforts are building up to the B-61 Life
Extension Program, which is a very important deliverable for Sandia.

Innovation and Implementation in UQ
Impact for NW
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ncertainty Quantification Research

Challenge: Maximize accuracy of UQ results
while minimizing total cost of computations

« Sampling Methods: Monte Carlo, Latin Hypercube, quasi MC

 Reliability Methods: Focus on finding the probability of failure by
transforming the UQ problem to an optimization problem.

» Stochastic Expansion: Represent the uncertain output as a stochastic
process, specifically as a spectral expansion in terms of suitable
orthogonal polynomials (e.g. Polynomial Chaos)

* Interval Analysis: Given interval bounds on the inputs, determine interval
bounds on the outputs (optimization vs. sampling)

« Second-order Probability: Epistemic “outer loop” and aleatory “inner loop”

« Dempster-Shafer: Propagate “evidence structures” on inputs to outputs.
This results in two output measures: plausibility and belief.

We have all of these methods implemented in the
DAKOTA optimization/UQ toolkit
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Selected UQ Recent Publications

Sampling Methods: swiler, L.P. and West, N.J., "Importance Sampling: Promises and Limitations," AIAA

2010-2850 at 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,
Orlando, FL, Apr 12-15, 2010.

 Reliability Methods: Bichon, B.J., Eldred, M.S., Swiler, L.P., Mahadevan, S., and McFarland, J.M.,
"Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions," AIAA Journal, Vol. 46, No. 10,

October 2008, pp. 2459-2468.

 Stochastic Expansion: Eldred, M.S., "Recent Advances in Non-Intrusive Polynomial Chaos and

Stochastic Collocation Methods for Uncertainty Analysis and Design," paper AIAA-2009-2274 in Proceedings of the
50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Palm Springs, CA,
May 4-7, 2009.

* Interval Analysis: Eldred, M.S., Swiler, L.P., and Tang, G., "Mixed Aleatory-Epistemic Uncertainty

Quantification with Stochastic Expansions and Optimization-Based Interval Estimation," (in review) Reliability
Engineering and System Safety (RESS).

« Second-order Probability: Jakeman, J., Eldred, M.S., and Xiu, D., "A Numerical Approach for
Quantification of Epistemic Uncertainty," Journal of Computational Physics (JCP), Vol. 229, No. 12, June 2010, pp.

4648-4663.

° Dempster-Shafer: Tang, G., Swiler. L.P., and Eldred, M.S., "Using Stochastic Expansion Methods in
Evidence Theory for Mixed Aleatory-Epistemic Uncertainty Quantification," in 57st AIAA/ASME/ASCE/AHS/ASC

Structures, Structural Dynamics, and Materials Conference Orlando, FL, Apr 12-15, 2010.

Sandia, led by CIS, has an active research agenda in UQ.
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DAKOTA Usage by Method

* 92% of DAKOTA invocations on SNL clusters over 2 month
period (Jan-Feb. 2010) were UQ or parameter studies

@ dot_mmfd,

B npsol_sqp

O list_parameter_study,

O optpp_fd_newton

W conmin_frcg,

@ nond_global_reliability
m nond_stoch_collocation
0 nond_local_reliability

H nl2sol

m nond_polynomial_chaos
O multidim_parameter_study,
O vector_parameter_study

B nond_sampling

External DAKOTA Use:
* Unique external download registrations over project life: 6411
» Actual source and binary downloads May 2009 — April 2010: 3419
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Introduction:
Risk-informed Decision Making, QMU, and UQ

In order to support risk-informed decision making using modeling and
simulation, the following key elements are required:

— Predictive simulations: verified and validated for application of interest

— Quantified uncertainties: the effect of random variability is fully understood
Formal DOE process for Quantification of Margins and Uncertainties (QMU):
process of providing best estimate + uncertainty in the decision context
Uncertainty Quantification

Critical component of QMU: credible M&S capability for stockpile stewardship

Uncertainty can be categorized to be one of two different types:
— Aleatoryl/irreducible: inherent variability with sufficient data - probabilistic models
— Epistemic/reducible: uncertainty from lack of knowledge - nonprobabilistic models
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Uncertainty applications: penetration, joint mechanics, abnormal environments, shock pﬁg/sics,



ncertainty Quantification Algorithms @ SNL.:
New methods bridge robustness/efficiency gap

Latin Hypercube, Importance, Bootstrap, FSU
Monte Carlo Incremental Jackknife
Local: Mean Value, Global: Efficient Local:
First-order & global reliability Notre Dame,
second-order analysis (EGRA) Global:
reliability methods Additional Tailoring Vanderbilt
(FORM, SORM)
Traditional & Golub-Welsch | anisotropic | USC, VPISU,
Tailored numerical sparse grid,| Stanford,
polynomial chaos | polynomials cubature, CU Boulder,
& stochastic (arbitrary adaptivity Purdue,
collocation input PDFs) lllinois
Random fields/ Dimension Cornell,
stochastic proc. reduction Maryland
Second-order Dempster-Shafer, Bayesian Imprecise LANL,
probability (nested | Opt-based interval probability | Applied
sampling) estimation Biometrics
Importance factors, | Main effects, Stepwise UNM
Partial correlations | Variance-based regression
decomposition




i Highlights of Foundational UQ

Stochastic expansions: P
— Polynomial chaos expansions (PCE): known basis, compute coefficients R= Z a;W;(§)

— (Lagrange) Stochastic collocation (SC): known coefficients, form interpolant =

N,

 Tailoring = fine-grained algorithmic control: 10° ’
. . o . R=Y r;L;(&)

— Synchronize PCE form with numerical integration i =

— Anisotropic approaches: emphasize key dimensions

— Optimal basis & Gauss pts/wts for arbitrary input PDFs ; AN sqrt(}w ok J
 h/p-adaptive collocation (FY09-FY10)

CDF Residual

EplS?emlC UQ: ] 107} t super-algebraic for num.
» Refinements to GP-based adaptive approaches integration & regression
- EGO, EGRA, EGIE (global opt-based interval est.) R 11)5

Simulations

» PCE/SC extensions for epistemic variables

Random Fields / Stochastic Processes (RF/SP):
* New library: Parallel Environment for Creation Of Stochastics (PECOS)
« Complex random environments (fluctuating pressure field for reentry)
— Gaussian stationary RF/SP (iFFT: Shinozuka-Deodatis, Grigoriu)
— Non-Gaussian, non-stationary RF/SP; K-L, memory saving approaches = g rrrrrrrrrrrrrrrrrr

Smart adaptive methods for handling complex uncertainties ——

i i
-10 -8 -6 —4 -2 0
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eneralized Polynomial Chaos Expansions

Approximate response w/ spectral proj. using orthogonal polynomial basis fns

= Uo(&) = (&) to(é2) 1
. . Ui(g) = (&) vol&) = &
.€. R= Z ;W ;(§) using Ua(6) = vol&) (&) = &
j=0 Us(€) = wo(&) volée) = & -1
V() = (&) vil&) = &&
Us(6) = vo(&) vall) = & -1

* Nonintrusive: estimate «; using sampling (expectation), pt collocation (regression),
tensor-product quadrature or Smolyak sparse grids (numerical integration)

Wiener-Askey Generalized PCE
« Tailor basis: optimal basis selection leads to exponential conv rates

Distribution  Density function Polynomial Weight function  Support range
Normal \/1276 5 Hermite He,,(x) e~ [—o0, 00]
Uniform - Legendre P, (x) 1 [—1,1]

Beta _)iif%}(f\lﬁ');;l) Jacobi P{“) () (1—2)*(1 + )" [—1,1]

Exponential e Laguerre L,, () e~" [0, o0]

Gamma ﬁ Generalized Laguerre Lg,“)(;z?) x*e [0, o]

« Tailor expansion type/order/range: TP or TO PCE, h/p-adapt based on PCE error est.
— Dimension p-refinement: anisotropic quadrature/sparse grid S
— Dimension h-refinement: discretization of random domain m el e
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P 'Stochastic Collocation

(based on Lagrange interpolation)

m
—
) et ]
Instead of estimating coeffs for known basis fns, T
form interpolants for known coefficients i
i\r.n g 1 mi,
) n 11 tn
R="Y r;L;(§) R = Z o) (L @ e L)
Jj=1 J1= Jn= 1

Form sparse interpolant using 2. of tensor products (same as forming sparse grid)

Key is use of same Gauss points/weights from the orthogonal polynomials
for specified input PDFs - same exponential convergence rates

Advantages relative to PCE:
« Simpler (no expansion order)
« Adapts to integration approach / collocation pt set:

intrusive approach decouples into collocation
Disadvantages relative to PCE:

* Requires structured data sets: quadrature/sparse grid (cubature?), no random sets

. . e . Sandia
+ Expansion variance not guaranteed positive, no analytic VBD fl'l Netional

doesn’t over-lunder-integrate a (nonsynchronized) expansion HRrR = Z TW;
- Estimating moments of any order is easy: E[R¥] = = r¥ w, =l
(formation of interpolant only reqd for CDF sampling) Ny
 No intrusive variant: O';)g = Z T‘?wj — ,{LQR
j=1




Tailoring of Polynomial Chaos Expansions

P n
R = Z a;U;(8)| ——=> |¥;(§) H (&) | T—> Multi-index length & content
Vo) = wolér) ¢o(&e) = 1 Uo(§) = vol&r) vol&) = 1
Ui(€) = (&) vo(&2) = & Ui(g) = i) vol&2) = &
Tensor-product Ta(6) = val6) bolts) = -1 Total-order |, . _ ) @ - o
Us(€) = ol&r) (&) = & \1’3(5) = 7#"2(‘51) @50(52) = ff —1
Ua(§) = ¥1(&r) ¥u(&e) = &ié Wy(§) = vi(&r) vilée) = &
Us(€) = va(&) val&a) = (& -1& U5(&) = vo(&1) (&) = & -1
= Ue(€) = o(&1) va(be) = & -1 ) g (it )
N, = 1+P = (pi + 1) | ¥7(€) = ¢ul&) va(&) = &8 - 1) N, =14+P =1+ 5, (n+7r) = D)
E Ta(€) = vo(&) valbe) = E-1)(E-1) ; s! 1:[0 n!p!

Monomial coverage

Tensor-prod quadrature (m=5) Sparse grid (nonlinear growth, w=4)

Sparse grid (linear growth, w=4)

&

N xlly xl3ys x99 xSyl
N\

Traditional PCE: total-order p = m-1
Tailored PCE: tensor-product p = m-1

Traditional PCE: heuristic total-order

Sandia
Tailored PCE: synchronized total-order mh National




UQ Remarks

UQ R&D: New methods bridge critical gap = reliability of LHS at much lower cost

Comparison of Stochastic Expansion Methods

* Nonintrusive PCE: known basis, compute coefficients (sampling, regression, TPQ, SSG)

« SC: known coefficients, compute interpolant (TPQ, SSG)

« SC outperforms traditional PCE using numerical integration due, at least in part, to
nonoptimal PCE expansion/integration synchronization

« Tailoring of PCE closes, and in some cases eliminates, performance gap

— TPQ: tailored tensor-product PCE identical to SC

— Nonlinear SSG: tailored total-order PCE more reliable than heuristics & more efficient than
trial & error, but performance falls well short of SC

— Linear SSG: linear growth for Gaussian non-/weakly-nested reduces integrable monomial set
not appearing in expansion and closes gap with SC. Don’t use nonlinear growth unless fully nested!

* In no direct comparison does nonintrusive PCE outperform SC. PCE motivated by flexibility
in collocation sets (i.e., Genz cubature, unstructured/random sets supporting fault tolerance).

TPQ more efficient for 2 dim, TPQ ~ SSG for 3 dim, SSG more efficient for 4 dim or more

Current directions:

 Additional tailoring and fine-grained algorithmic control
— Numerically generated orthogonal polynomials for arbitrary input PDFs (Golub-Welsch)
— Sparse grids: anisotropy in level w

Sandia
> Stochastic error estimation & h-p adaptive collocation methods m el e




OUU and Mixed UQ Remarks

Stochastic sensitivity analysis:
 Oth-order combined or 1st-order uncertain expansions - enables OUU, MCUU, Mixed UQ

Optimization Under Uncertainty

 Bi-level, sequential, and multifidelity OUU formulations

 1st-order uncertain more reliable: effective in bi-level & sequential approaches

 Oth-order combined can be more efficient > explored use as low fidelity UQ surrogate

« Sequential is competitive; quasi-2"9-order linkage assists convergence of iteration

« Multifidelity coerces LF UQ to HF optimum; competitive with cheapest LF UQ (MVFOSM)

Mixed Aleatory-Epistemic UQ
« SOP approaches that are more accurate (crisp bounds from optimizers) and efficient
(exponential conv. rates from stoch. exp.) than traditional nested sampling
— Inner loop: epistemic-aware stochastic expansions; Outer loop: global opt.-based interval estimation
« EGO with PCE/SC aleatory expansions - intervals using O(102) — O(103) evals. were
significantly more accurate that those from O(108) simulations w/ nested sampling
« Uncertain/aleatory expansions were again more effective than combined expansions

— Resolving aleatory stats for selected instances of s one at a time appears more efficient than
globally resolving these stats for all values of s all at once (insufficient usage to offset construction)

 To further reduce expense or to scale to larger problems, can currently relax from global/
global to use local at either/both levels - approx. intervals. Future: adaptive collocation.



Deployment and Support

ccess

¢ Internal/external downloads from http://www.cs.sandia.gov/dakota

e GNU GPL - freely available worldwide (>6000 registered users)

¢ Releases: Major, Interim, Stable, VOTD [5.0 released Dec. 2009]

e Manuals: Users, Reference, Developers e

e GUI: JAGUAR 2.0, Java-based “smart” GUI that adapts to The DAKOTA Project () sandia National taboratores

DAKOTA i n put Spec, deployed Dec_ 2009 Large-Scale Engineering Optimization and Uncertainty Analysis
| Home | [ about | [ Resources | [ packages | [ oownload | [ search |

Pla tforms Mews  yyelcome to the DAKOTA Project

Contate Home Page

The current release update is: 5.0

Released: December 21, 2009

) LinUX, SolariS, AIX, Windows (CygwinlMINGW), Mac Search DAKOTA The DAKOTA (Design Analysis Kit for Download DAKOTA 5.0 naw.

Site: Optimization and Terascale Applications)

toolkit provides a flexible, extensible interface

« MPICH, MVAPICH, OpenMPI on IP, GM, IB

analysis methods, DAKOTA contains algorithms
for optimization with gradient and

nongradient-based methods; uncertainty
SQE \ guantification with sampling, reliability,

stochastic expansion, and epistemic methods;
/‘ parameter estimation with nonlinear least
. . .
~850 Il I I I t t . squares methods; and sensitivity/variance
e Nightly platform builds + serial/parallel tests AST i e ot ssermens i
parameter study methods. These capahilities
.

may be used on their own or as components

e Top SQE score in 2008 ASC assessment i e ey
optimization, surrogate-hased optimization,
mixed integer nonlinear programming, or optimization under uncertainty. By employing object-

DAKOTA oriented design to implement abstractions of the key components required for iterative
systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-salving

Optimization &1 oe Gl
Uncertainty Quant.
Parameter Est.
Sensitivity Analysis

a

(BIack Box:
Sandia simulation codes
Commercial simulation codes
Semi-instrusive: .
Model SIERRA (multiphysics), Design
Parameters SALINAS (structural dynamics), Metrics
Xyce (circuits), Sage (CFD), Sandia
23 MATLAB, Mathematica, m National _
ModelCenter, FIPER ) Laboratories



http://www.cs.sandia.gov/dakota

Second-Order Probability using Stochastic Expansions

Epistemic uncertainty (aka: subjective, reducible, lack of knowledge epistemic
uncertainty): insufficient information to specify probability distributions sampling

Second-order probability

« Traditional approach: nested sampling

y Intervals
on
statistics

Cum Prob

« Expensive sims - under-resolved
sampling (especially @ outer loop)

« Epistemic variables may insert or
augment aleatory variables

response metric

Address accuracy and efficiency

 Inner loop: stochastic exp which are epistemic-aware (0t-order combined. 1st-order prob.)
» Outer loop: opt-based interval estimation, adaptive GP-based exploiting min/max data reuse

——— SC SSG Aleatory: converged to 5-6 digits by 527 evals.
minimize M (s) : A-ihiiind e — : —
EGO  SCSSGw=1 Aleatory  (110,0)  [75.0002, 374.000] [-2.26264, 11.8623)
subject to sp < s < sy EGO SCSSGw=2  Aleatory  (527.0)  [75.0002, 374.999] [-2.18735, 11.5900]
EGO  SCSSGw=3  Aleatory (1785, 0)  [75.0002, 374.000] [-2.18732, 11.5000)
EGO SCSSGw=4 Aleatory (5049, 0) [75.0002, 374.999] [-2.18732, 11.5900]
maximize M(s T -
‘ (5) Nested sampling: 2-3 digits by 108 evals.
subject to s < s < sy LHS 100 LHS 100 N/A (10, 0)  [80.5075, 338.607] [-2.14505, 8.64891]
LHS 1000 LHS 1000 N/A (108, 0) [76.5939. 368.225] [-2.19883, 11.2353:
Impact: render mixed UQ studies practical for large-scale applications /210523 11.5595
24

Fully converged area interval = [75., 375.], B interval = [-2.18732, 11.5900]



Research Innovations

CHALLENGE SOLUTION
Apply stochastic expansion methods to interval
Represent epistemic uncertainty variables using Legendre basis
Curse of dimensionality Dimension-adaptive stochastic expansion methods
Curse of dimensionality Anisotropic Smolyak sparse grids

Local gradient-based methods can now leverage
analytic moments and their sensitivities with respect
Estimate outer loop bounding interval to epistemic parameters.

Global nongradient-based optimization approaches
to interval estimation with data reuse among
minimization and maximization solves, using GP

Estimate outer loop bounding interval emulators
epistemic epistemic 1.00
sampling optimization
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