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asic Exascale Concerns: Trends, Manycore

» Stein’s Law: If a trend cannot

continue, it will Sl‘Op ’ Parallel CG Performance 512 Threads
Herbert Stein, chairman of the Council of 32 Nodes = 2.2GHz AMD 4sockets X 4cores
Economic Advisers under Nixon and 180
Ford. 160
140 | “Status Quo” ~ MPl-only |
_ 2 120
 Trends at risk: 9 100
Y =0—=p32 x t16
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— Single core performance. 40 -
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— Node count. 0
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_ Memory size & BW. 3D Grid Points with 27pt stencil

— Concurrency expression in
existing Programming

Models.

Edwards: SAND2009-8196
Trilinos ThreadPool Library v1.1.
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. » DOE Office of Science Math/CS Institute
Extreme-scale Algorlthms & +  $7.425M ($3M SNL), 3-year project.

SW Institute (EAS') «  Algorithms and Software.
IAA/Algorithms = EASI = X-Stack (We Hope)

EASI Project Team

* B. Barrett, Boman, Brightwell, Demmel (UC Berkeley ) + Mark Hoemmen (Demmel, UC)

Heroux (SNL) Dongarra (UTK) - Siva Rajamanickam (Davis, FL)
» Baker, Fann, Geist*, Vallée (ORNL) Gropp (UIUC) « Michael Wolf (Heath, UIUC)




_
; I”IIPI Shared Memory Allocation

Idea:

Shared memory alloc/free
functions:

— MPI_Comm_alloc_mem
— MPI_Comm_free_mem

Predefined communicators:
MPI_COMM_NODE - ranks on node
MPI_COMM_SOCKET — UMA ranks
MPI_COMM_NETWORK — inter

node

Status:

— Available in current development
branch of OpenMPI.

— First “Hello World” Program
works.

— Incorporation into standard still
not certain. Need to build case.

— Next Step: Demonstrate usage
with threaded triangular solve.
Exascale potential:
— Incremental path to MPI+X.
— Dial-able SMP scope.
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Percent Time

Preconditioners for Scalable Multicore Systems

Charon Timing Breakdown on TLCC

Strong scaling of Charon on TLCC (P. Lin, J. Shadid 2009)

Strong Scaling 28M Unknowns

# Linear Solver Iterations
per Newton Step

153
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0% & Preconditioner setup
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Observe: lteration count increases with number of subdomains.

With scalable threaded triangular solves
— Solve triangular system on larger subdomains.
— Reduce number of subdomains.
Goal:
— Better kernel scaling (threads vs. MPI processes).
— Better convergence, More robust.
Note: App (-solver) scales very well in MPl-only mode.

Exascale Potential: Tiled, pipelined implementation.
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Factors Impacting Performance of Multithreaded Sparse Triangular Solve, Michael M. Wolf and
Michael A. Heroux and Erik G. Boman, VECPAR 2010, to appear.
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|angular Solve Results

N

| Name ||

nnz

|N/nlevels|

application area |

asic680ks
cagel?2

pkustk04

besstk32

682,712
130,228
55,590
44,609

2,320,176
2,032,536
4,218,660
2,014,701

13932.9
1973.2
149.4
15.1

circuit simulation
DNA electrophoresis
structural engineering

structural engineering

Passive (PB) vs. Active (AB) Barriers: Critical for Performance

B PB, threads=2
B AB, threads=2

asico80ks

B PB, threads=4

¥ AB, threads=4

B PB, threads=8

B AB, threads=8
besstk32

cagel2 pkustk04

Nehalem

BNTA, threads=2

BTA, threads=2

asich80ks

ONTA, threads=4
B TA, threads=4
BNTA, threads=8

BTA threads=8

cagel2 pkustk04 besstk32

B PB, threads=2

8 AB, threads=2

W PB, threads=6

B AB, threads=6
" PB, threads=12
B AB, threads=12

asic680ks cagel2 pkustk04  hesstk32
Istanbul

BNTA, threads=2
B TA, threads=2
BNTA, threads=6
B TA, threads=6
UNTA, threads=12
B TA threads=12

asic680ks cagel2 pkustk04 besstk32

AB + No Thread Affinity (NTA) vs. AB + Thread Affinity (TA) : Also

Sandia

Levlgﬂg{lslzl Trilinos/Isorropia

Core Kernel Timings: Trilinos/Kokkos.
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“Are C++ templates safe? No, but they are good.”

‘ Compile-time Polymorphism

Templates and Sanity upon a shifting foundation

Software delivery:
» Essential Element of EASI

How can we:

* Implement mixed precision algorithms?

* Implement generic fine-grain parallelism?
» Support hybrid CPU/GPU computations?
» Support extended precision?

» Explore redundant computations?

» Prepare for both exascale “swim lanes”?

C++ templates only sane way:

* Moving to completely templated Trilinos
libraries.

» Other important benefits.
» A usable stack exists now in Trilinos.
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ol Summary, Additional Topics

EASI is not Easy: Great Team, Good Start, Challenging Decade Ahead

Additional Topics
» Software Development and Delivery.
» Evolving Parallel Programming Model.
» Mixed-precision computations.
""""""""" ' « Manycore Node API.
rreaded progran ’ Hybrld CPU/GPU Computing.
"""""""" » Data Placement for NUMA.
 Resilient Algorithms.
B * New Core Linear Algebra Needs for
till an iss Advanced Modeling & Simulation.
« Communication-avoiding Algorithms.
» Threaded incomplete factorizations.

g * Scenarios for extra-precise
computations.
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EASI-related External Collaborations

* [IESP: Int'| Exascale SW Project
— Quarterly meetings: US, Europe, Asia.
— Draft Software Plan.
— Dosanjh, Heroux from SNL (Secretary for software write-up).

« X-Stack: DOE Office of Science Call ( Proposal completed).
— 4 labs (SNL is only NNSA lab).
— 6 universities.
 TOPS-2: Toward Optimal Petascale Simulation.
— Forum for DOE library efforts to collaborate.
— ANL, LBL, LLNL, SNL, universities.
* SCiDAC-e: U of Texas, Wheeler.
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National
11 m Laboratories




p e

Software Development and Delivery
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Solver Software Stack

Optimization
Unconstrained:

Find » e R" that minimizes g(u)

Constrained: Find ze®™ and ueR" that
' minimizes g¢g(xz,u) s.t. f(xz,u) =0
Given nonlinear operator F(x,u) € RN
Bifurcation Analysi OF
irfurcation Analysis For F(g;’u) —0 flnd space u ¢ 7 5 8—
xr

Transient Problems
DAEs/ODEs:

Solve f(z(t),z(t),t) =0 ,
t €[0,7T],z(0) = zg,z2(0) = xq
for z(t) e R",t € [0,T]

Nonlinear Problems

Given nonlinear operator F(z) e R —
Solve F(x)=0 ze®Rh"

Linear Problems
Linear Equations:

Eigen Problems:

Given Linear Ops (Matrices) A, B € R~
Solve Az =10b for z e R"
Solve Av = ABv for (all) veR",

AE

Distributed Linear Algebra
Matrix/Graph Equations:

Vector Problems:
13

Compute y = Azx; A = A(G), Ac %mxn,G e gmxn
COmpute Y= azx —|— /6’(1), a = <w’y>,$,y c éRn



Solver Software Stack

Phase III packages: Manycore*, templated

Optimization
Unconstrained:

Constrained:

Find » e R" that minimizes g(u)

Find ze®R"™ and ueR" that
minimizes g¢g(x,u) s.t. f(z,u) =0

Bifurcation Analysis

Given nonlinear operator F(z,u) € R*T7"

OF
For F(x,u) =0 find space uwecU 98—
xr

Transient Problems
DAEs/ODEs:

Solve f(z(t),z(t),t) =0 ,
t €[0,7T],z(0) = zg,z2(0) = xq
for z(t) e R",t € [0,T]

Nonlinear Problems

Given nonlinear operator F(z) e R —
Solve F(x)=0 ze®Rh"

Linear Problems
Linear Equations:

Eigen Problems:

Given Linear Ops (Matrices) A, B € R~
Solve Az =b for ze&R"
Solve Av = ABvr for (all) veR", Xe

Distributed Linear Algeb

Vector Problems:
14

a
Matrix/Graph Equationg: Compute y = Ax; A = A(G); A € %an’ G e gmxn

Compute y = ax+ fw;a = (z,y);z,y € K"



Developers

Downloads (100s)

Genearal release

packages

Limited release
packages

Fackages in
repository

Trilinos Statistics by Release

a 10

20

30 4
Counts

20

B0

it

" Releasa 10.2 (310)
* Releasa 10.0 (3/09)
B Releasa 9.0 (3/08)
B Releasza 5.0 (2/107)
O Releasa 7.0 (3/08)
O Release 6.0 (3/05)
B Releasa 5.0 (3/05)
B Releasa 4.0 (5104)

Trilinos
Statistics

Stats: Trilinos
Download Page
05/10/2010.
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, Registered User Statistics

Registered Users by Type (4099 Total)

Registered Users by Type (4770 Total)

Industry; 537 _ Other; 1 5

Personal; 504 Wiintvaraity B University
B Government Personal; 588 E Government
g Pdmonal OPersonal
Industry O Industry
Government; B Other B Other
605 Government;
71
Fagiatared Unevs: by Begion (068 Tl Registered Users by Region (4770 Total)
B Europe 61
57 B Europe
BUS (except Sandia) 235

OSandia {includes
unregistered)

OAsia

B Americas (except US)

O Australia/NZ

B Africa

BUS (except Sandia)
OSandia (includes

unregistered)
OAsia

B Americas (except US)

B Australia/NZ

B Africa

Stats: Trilinos Download Page 11/02/2009.

Sandia
National

Stats: Trilinos Download Page 05/10/2010.
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Evolving Parallel Programming Model
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Parallel Programming Model:
Multi-level/Multi-device

Inter-node/inter-device (distributed)

parallelism and resource management Message Passing

network of l
computational T ———
nodes erative Solver’s |
node-local control flow (serial)

4 N
Intra-node (manycore)
computational parallelism and resource Threading ‘
node with management
manycore CPUs \_ /
and / or l
GPGPU Iterative Sol-ver s
stateless computational kernels stateless kernels |
run on each core

Sandia
Slide courtesy H. Carter Edwards fl'l National
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Mixed Precision Computations
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++ Templates and Mixed-precision

// Standard method prototype for apply matrix-vector multiply:
template<typename ST, typename OT>

CrsMatrix::apply(Vector<ST, OT> const& x, Vector<ST, OT>& y)

// Mixed precision method prototype (DP vectors, SP matrix):
template<typename ST, typename OT>

CrsMatrix::apply(Vector<ScalarTraits<ST>::dp(), OT> const& x,
Vector<ScalarTraits<ST>::dp(), OT> & y)

// Sample usage:
Tpetra::Vector<double, int> x, y;

Tpetra::CrsMatrix<float, int> A;

A.apply(x, y); // Single precision matrix applied to double precision vectors

20
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'Tpetra Linear Algebra Library

» Tpetra is a templated version of the Petra distributed linear algebra
model in Trilinos.

— Objects are templated on the underlying data types:

MultiVector<scalar=double, local_ordinal=int,
global_ordinal=local_ordinal> ...
CrsMatrix<scalar=double, local_ordinal=int,
global_ordinal=local_ordinal> ...

— Examples:

MultiVector<double, int, long int> V,
CrsMatrix<float> A;

f
Speedup of float over double loat double speedup
in Belos linear solver. 18 s 26 s 1.42x
Scalar float denly  Couldss glEes Arbitrary precision solves
double double )

using Tpetra and Belos

Solve time (s) 2.6 5.3 29.9 76.5 .
linear solver package

Accuracy 106 1012 1024 1048

Sandia
National
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FP Accuracy Analysis:
- FloatShadowDouble Datatype

class FloatShadowDouble {

public:
FloatShadowDouble( ) {
f=0.0f;
d=0.0; }
FloatShadowDouble( const FloatShadowDouble & fd) {
f=1d.f;
d=1fd.d; }

inline FloatShadowDouble operator+= (const FloatShadowDouble & fd ) {
f+=fd.f;
d += fd.d;

return *this; }

inline std::ostream& operator<<(std::ostreamé& os, const FloatShadowDouble& fd) {
0s << fd.f <<"f" << fd.d <<"d”; return os;}

Sandia
National
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FloatShadowDouble

Sample usage:

#include “FloatShadowDouble.hpp”

Tpetra::Vector<FloatShadowDouble> x, y;
Tpetra::CrsMatrix<FloatShadowDouble> A;

A.apply(x, y); // Single precision, but double results also computed, available

Initial Residual = 455.194f 455.194d
Iteration = 15 Residual = 5.07328f 5.07618d
Iteration =30 Residual = 0.00147022f 0.00138466d
Iteration =45 Residual = 5.14891e-06f 2.09624¢-06d
Iteration = 60 Residual =4.03386e-09f 7.91927e-10d

Sandia
m National
Laboratories
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Trilinos/Kokkos Node API
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V
}' Abstract Inter-node Communicator

* Not a novel idea.

— Many distributed solvers/applications provide some
wrapper for the communication, via diverse approaches.

* This technique is typically used for a few interfaces:
— Trivial serial scenario, MPl and PVM

* Increasing combination of shared and distributed
memory in legacy applications suggests more exotic
possibilities may be ripe.

 Tpetra utilizes abstract base class Comm from Teuchos
packages.

Sandia
National
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Generic Shared Memory Node

=ad

 Abstract inter-node comm provides DMP support.
* Need some way to portably handle SMP support.

» Goal: allow code, once written, to be run on any parallel
node, regardless of architecture.

* Difficulty #1: Many different memory architectures

— Node may have multiple, disjoint memory spaces.

— Optimal performance may require special memory
placement.

» Difficulty #2: Kernels must be tailored to architecture
— Implementation of optimal kernel will vary between archs
— No universal binary = need for separate compilation paths

Sandia
National
26 m Laboratories




Kokkos Node API

=ad

» Kokkos provides two main components:

— Kokkos memory model addresses Difficulty #1
« Allocation, deallocation and efficient access of memory
« compute buffer: special memory used for parallel computation
* New: Local Store Pointer and Buffer with size.
— Kokkos compute model addresses Difficulty #2
 Description of kernels for parallel execution on a node
* Provides stubs for common parallel work constructs
» Currently, parallel for loop and parallel reduce

* Code is developed around a polymorphic Node object.

« Supporting a new platform requires only the
implementation of a new node type.

Sandia
National
27 m Laboratories




Kokkos Memory Model

* A generic node model must at least:
— support the scenario involving distinct device memory
— allow efficient memory access under traditional scenarios

* Nodes provide the following memory routines:

ArrayRCP<T> Node:

void Node:

void Node:

ArrayRCP<T> Node:

void Node:

:allocBuffer<T>(size t sz);
:copyToBuffer<T>( T * src,

ArrayRCP<T> dest);

:copyFromBuffer<T> (ArrayRCP<T> src,

T * dest);

:viewBuffer<T> (ArrayRCP<T> buff);
:readyBuffer<T> (ArrayRCP<T> buff);

Sandia
m National
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P ' Kokkos Compute Model

* How to make shared-memory programming generic:

— Parallel reduction is the intersection of aot () and normi ()

— Parallel for loop is the intersection of axpy () and mat-vec

— We need a way of fusing kernels with these basic constructs.
* Template meta-programming is the answer.

— This is the same approach that Intel TBB and Thrust take.
— Has the effect of requiring that Tpetra objects be templated on Node type.

* Node provides generic parallel constructs, user fills in the rest:

template <class WDP> template <class WDP>

void Node::parallel for( WDP: :ReductionType Node::parallel reduce(
int beg, int end, WDP workdata); int beg, int end, WDP workdata);

Work-data pair (WDP) struct provides: Work-data pair (WDP) struct provides:

* loop body via wpPp: :execute (i) » reduction type WDP: : ReductionType

* element generation via wDP: : generate (i)
* reduction via WDP: : reduce (x, v)

odliuid
National
” ()
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lIII"'
P 4 ' Example Kernels: axpy() and dot()

30

template <class WDP>

void

Node: :parallel for(int beg, int end,
WDP workdata )

template <class T>

struct AxpyOp {

const T * x;

T *y;

T alpha, beta;

void execute(int i)

{ y[1i] = alpha*x[i] + beta*y[i]; }
¥

AxpyOp<double> op;

op.X = ...; op.alpha = ...;

op.y = ..., op.beta = ...;

node.parallel for< AxpyOp<double> >
(0, length, op);

template <class WDP>

WDP: :ReductionType

Node: :parallel reduce(int beg, int end,
WDP workdata )

template <class T>
struct DotOp {
typedef T ReductionType;
const T * x, * y;
T identity() { return (T)0; }
T generate(int i) { return x[i]*y[i]; }

T reduce(T x, T y) { return x + y; }
}s
DotOp<float> op;
op.X = ...; OpP.Y = ...;
float dot;

dot = node.parallel reduce< DotOp<float> >
(0, length, op);

Sandia
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Hybrid CPU/GPU Computing
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_
P 4 ' Hybrid Timings (Tpetra)

Tests of a simple iterations:

» power method: one sparse mat-vec, two vector operations

 conjugate gradient: one sparse mat-vec, five vector operations

DNVS/x104 from UF Sparse Matrix PM CG

« NCCS/ORNL Lens node includes: Single thread 140 614
* one NVIDIA Tesla C1060 8800 GPU 1,172 1,222
+one NVIDIA 8800 GTX Tesla GPU 1,475 1,331

981 1,025
* Four AMD quad-core CPUs Vsl < S0
, 16 threads 816 1,376

* Results are very tentative! 1 node

- suboptimal GPU traffic 15 threads + Tesla 867 1,731
2 nodes
* bad format/kernel for GPU 15 threads + Tesla 1,677 2,102

* bad data placement for threads

Sandia
National
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Data Placement
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34

A
}‘ Data Placement on NUMA

 Memory Intensive computations: Page placement
has huge impact.

* Most systems: First touch.

 Application data objects:

— Phase 1: Construction phase, e.g., finite element
assembly.

— Phase 2: Use phase, e.g., linear solve.
* Problem: First touch difficult to control in phase 1.
* |[dea: Page migration.

— Not new: SGI Origin. Many old papers on topic.

Sandia
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} Data placement experiments

* MiniApp: HPCCG (Mantevo Project)
 Construct sparse linear system, solve with CG.

 Two modes:
— Data placed by assembly, not migrated for NUMA
— Data migrated using parallel access pattern of CG.

* Results on dual socket quad-core Nehalem system.

Sandia
National
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“Tiny Problem”

12000
10000
8000
6000
4000
2000

MFLOPS/s

Strong Scaling Tiny Problem
Dim 32768 Global Fixed

==MPI

-#-Non-conditioned

~#—Conditioned

H# cores

Qualitatively similar behavior between three approaches.

Threaded (both versions) will outpace MPI.

Sandia
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Laboratories



37

Strong Scaling Problem

Strong Scaling
Dim 4.2M Global Fixed

6000
5000
4000
3000
2000
1000

MFLOPS/s

# cores

=—=MPI
-#-Non-conditioned

~#—Conditioned

= MPI and conditioned data approach comparable.

= Non-conditioned very poor scaling.

Sandia
National
Laboratories



38

Weak Scaling Problem

Weak Scaling
Dim 260K Per core

6000

5000

4000
3000

2000

MFLOPS/s

1000

# cores

== MVIP|
-#-Non-conditioned

—#=Conditioned

= MPI and conditioned data approach comparable.

= Non-conditioned very poor scaling.

Sandia
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} Page Placement summary

* MP1+OpenMP (or any threading approach) is best
overall.
* But:
— Data placement is big issue.
— Hard to control.
— Insufficient runtime support.
 Current work:
— Migrate on next-touch (MONT).
— Considered in OpenMP (next version).
— Also being studied in Kitten (Kevin Pedretti).

Sandia
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Resilient Algorithms
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A o
} My Luxury in Life (wrt FT/Resilience)

The privilege to think of a computer as a
reliable, digital machine.

41




A 4
} Emerging Reality

“At 8 nm process technology, it will be harder
totella1fromadO.”

(W. Camp 2008, 2010)

42 m




}' Users’ View of the System Now

« “All nodes up and running.”

* Certainly nodes fail, but invisible to user.
*No need for me to be concerned.

* Someone else’s problem.

43




Users’ View of the System
Future

=ad

* Nodes in one of four states.

1. Dead.
2. Dying (perhaps producing faulty results).
3. Reviving.

4. Running properly
a) Fully reliable or...
b) Maybe still producing an occasional bad result.

 States 1-3:
— Do | need to worry? | hope not.

« State 4b: Must | address this state”? Hopefully not but...

* Here are some ideas.

44
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} Algorithm-Based Fault Tolerance

Numerous approaches.

*Most common strategies:

—Meta data:

* Embed meta data into user-defined data
structures.

« Manage fault detection, recovery manually.

—Algorithm results validation:
» Use known algorithm properties.

* Validate computed to known (e.g., residual
check).

45
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} Two New? Ideas

1. Atomic Computation Regions.
2. Template-based redundancy.

46
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‘ Consider GMRES as an example of how

soft errors affect correctness

« Basic Steps

1)
2)
3)

4)
5)

Compute Krylov subspace (preconditioned sparse matrix-
vector multiplies)

Compute orthonormal basis for Krylov subspace (matrix
factorization)

Compute vector yielding minimum residual in subspace
(linear least squares)

Map to next iterate in the full space
Repeat until residual is sufficiently small

« More examples in Bronevetsky & Supinski, 2008

Sandia
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}' Why GMRES?

* Most Sandia Apps are implicit.

* Most popular linear solver is preconditioned
GMRES.

* Only small subset of calculations need to be
reliable.

— GMRES is iterative, but also direct.

48




Every calculation matters

« Small PDE Problem: Dim 21K, Nz 923K.

* ILUT/GMRES

» Correct computation 35 lters: 343M FLOPS

* Two examples of a single bad floating point op

Description FLOPS | Recursive Solution Error
Residual Error

All Correct Calcs 343M 4.6e-15 1.0e-6
Iter=2, y[1] += 1.0

SpMV incorrect 35 343M 6.7e-15 3.7e+3
Ortho subspace

Q[1][1] +=1.0 N/C N/A 7.7e-02 5.9e+5

Non-ortho subspace

Sandia
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One possible approach is transactional computation

» Database transactions: atomic
 Transactional memory: atomic memory operation

 Transactional computation:

— Designated sensitive computation region (orthogonalization
step in GMRES)

— Guarantee accurate computation or notify user.

Sandia
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Needs to be coupled with SW-
enabled guaranteed data regions

s \

» User-designated reliable data region

 Extra protection to improve reliable data storage and
transfer

« Examples
— Original input data (needed for verification)

— Linear solver: A, x, b
— Orthogonal vectors for GMRES

Sandia
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Goal

* Algorithms well-conditioned wrt soft failure.

* Now:
— Single soft error produces erroneous results.

» Goal:
— Correct results always.
— Cost increase proportional to number of soft errors.

* Note: These are just two approaches to ABFT.

Sandia
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P RedundantCalcDouble Datatype

53

class RedundantCalcDouble { T lat bl
* lemplates enanie

new resiliency

public: capabilities
RedundantCalcDouble( ) { i
e « Example:
d=0.0; } Redundant
RedundantCalcDouble ( const RedundantCalcDouble & d _in) { e a .
o calculation

inline RedundantCalcDouble operator+= (const RedundantCalcDouble & d in) {
d+=d in.d;
double d tmp=d+d in.d;
if (d_tmp!=d) throw std::exception;

return *this; }

inline std::ostream& operator<<(std::ostream& os, const RedundantCalcDouble & d in) {
os <<d_in.d”; return os;}

Sandia
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54

}' RedundantCalcDouble

Sample usage:

#include “RedundantCalcDouble.hpp”
Tpetra::Vector<RedundantCalcDouble> x, y;
Tpetra::CrsMatrix<RedundantCalcDouble> A;

try {
A.apply(x, y); // Redundant calculation

)
catch (...) {

Sandia
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New Core Linear Algebra Needs
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i Advanced Modeling and Simulation Capabilities:

Stability, Uncertainty and Optimization

* Promise: 10-1000 times increase in parallelism (or more).

Transient
Optimization:

<+—1
] 0
. EEEEE
SPDEs: —1- —— EE
n - ] Em
: l. I. I-l=. l:. Lower Block
=. l. l=ll-.. mEm Bi-diagonal
" Em = = mm .
[ ] [ ] [ | n m EE uE
] ] ] EEE L]
1] ] ] H Em "]
. n = = Em Em
n ] | u um N
1] n [ E EE -
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mEn ] n
(N ]
EE N ]
I [
] (]
1 [
am .
n n

* Pre-requisite: High-fidelity “forward” solve:

— Computing families of solutions to similar problems."

— Differences in results must be meaningful.

m - Size of a single forward problem

‘Block
Tri-diagonal
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' Advanced Capabilities:

Readiness and Importance

Modeling Area Sufficient Other concerns Advanced
Fidelity? capabilities priority
Seismic Yes. None as big. Top.
S. Collis, C. Ober
Shock & Multiphysics | Yes, but some Constitutive models, | Secondary now. Non-
(Alegra) concerns. material responses intrusive most

A. Robinson, C. Ober

maturity.

attractive.

Multiphysics Reacting flow w/ | Higher fidelity, more | Emerging, not top.
(Charon) simple transport, | accurate multiphysics.
device w/ drift
J. Shadid diffusion, ...
Solid mechanics Yes, but... Better contact. Better | Not high for now.
timestepping. Failure
K. Pierson modeling.
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P ‘ Advanced Capabilities:
Other issues

* Non-intrusive algorithms (e.g., Dakota):

— Task level parallel:
A true peta/exa scale problem?
* Needs a cluster of 1000 tera/peta scale nodes.
« Embedded/intrusive algorithms (e.g., Trilinos):

— Cost of code refactoring:
* Non-linear application becomes “subroutine”.
* Disruptive, pervasive design changes.
« Forward problem fidelity:
— Not uniformly available.
— Smoothness issues.
— Material responses.
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Advanced Capabilities:
Derived Requirements

» Large-scale problem presents collections of related subproblems with
forward problem sizes.

. LinearSolvers: Ax=b—>AX =B, Ax'=b', A'x' =b'

— Krylov methods for multiple RHS, related systems.

i i
* Preconditioners: 4 = Ao + A4

— Preconditioners for related systems.

» Data structures/communication: pattern(Ai) = pattern(Aj)
— Substantial graph data reuse.
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Threaded Triangular Solve Details
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}Motivation for Triangular Solve Work

 Triangular solver is important numerical kernel

 Essential role in preconditioning linear systems
— Forward/back solve of Incomplete factorizations.
— Smoother kernel for Gauss-Seidel.

« Difficult algorithm to parallelize.

* Focus of work: threaded triangular solve on each
node/socket
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“Bad” data locality

* Initial attempts at threaded triangular solve were awful.

« Simple prototype of level set threaded triangular solve
— Assumes fixed number of rows per level
— Assumes matrices preordered by level
— Pthreads

* Allowed us to explore factors affecting performance
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'Factor 1: Type of Barrier

Algorithm 1 Passive Barrier. Algorithm 2 Active Barrier.
void passiveBarrier() void activeBarrier ()
{ {
pthread_mutex_lock (&mutex) ; pthread_spin_lock(&lock) ;
numArrived++; actNumArrived++;
if (numArrived < NUM_THREADS) A if (actNumArrived==NUM_THREADS) {
pthread_cond_wait (&barrCond, &mutex) ; actLoopFlag = false;
+ }
else { pthread_spin_unlock(&lock) ;
pthread_cond_broadcast (&barrCond) ;
numArrived = O; while(actLoopFlag) {}
+ +

pthread_mutex_unlock (&mutex) ;

* Implemented two different barriers
— “Passive” barrier
* Mutexes and conditional wait statements
— “Active” barrier
» Spin locks and active polling
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} Factor 1: Type of Barrier

64

B PB, threads=2
W AB, threads=2
B PB,threads=4
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 Results for good data locality matrices
* Active/aggressive barriers essential for scalability
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Factor 1: Type of Barrier
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* Results for good data locality matrices

 Active/aggressive barriers essential for
scalability
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}' Factor 2: Thread Affinity

 Studied the importance of thread affinity

 Thread affinity allows threads to be pinned to cores

— Less likely for threads to be switched (beneficial for
cache utilization)

— Ensures that threads are running on same socket
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Factor 2: Thread Affinity

B NTA, threads=2
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 Results for good data locality matrices, active barrier

* Thread affinity not as important as active barrier
— But can be beneficial for some problem sizes
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# Factor 2: Thread Affinity
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* Thread affinity not as important as active barrier
— But can be beneficial for some problem sizes
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P 'Threaded Solve Summary

69

« Threading can improve performance:
— Good speedup.
— Reduction in global iteration counts.
— Modest size level sets needed. Multicoloring can increases sizes.

 Existing programming models lacking sufficient barriers:

— Need two types of barriers:
» Passive: exiting library to user control.
 Active: syncing between phases of libraries execution.

— Not supported in current PMs (OpenMP, TBB, CUDA)
» Pthreads (not a model) can support it.

— In Discussion with PM developers (e.g., IWOMP 2010).
* Thread affinity:

— Still an open issue.

— Other work shows affinity is essential.

* Final Note: Per core memory requirement should go down!

Factors Impacting Performance of Multithreaded Sparse Triangular Solve, Michael M. Wolf and
Michael A. Heroux and Erik G. Boman, VECPAR 2010, to appear.
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Hybrid MPI-only, MPI+threading details
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'
P 4 ' Parallel Machine Block Diagram

71

Node 0 Node 1

Node m-1

— Parallel machine with p = m * n processors:
* m = number of nodes.

* n = number of shared memory processors per node.

— Two ways to program:
 Way 1: p MPI processes.

« Way 2: m MPI processes with n threads per MPI process.

- New third way:

» “Way 1” in some parts of the execution (the app).

« “Way 2” in others (the solver).
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Threading under MPI

» Default approach: Successful in many applications.
« Concerns:

— Opaqueness of work/data pair assignment.
 Lack of granularity control.

— Collisions: Multiple thread models.
» Performance issue, not correctness.

* Bright spot: Intel Thread Building Blocks (TBB).
— lterator (C++ language feature) model.
— Opaque or transparent: User choice.
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& MPI Under MPI

e Scalable multicore:
— Two different MPI architectures.
— Machines within a machine.

- Exploited in single-level MP!I: “Ping-pong” | Latency | Bandwidth
— Short-circuited messages. test (microsec) | (MB/sec)
— Reduce network B/W. Intra-node 0.71 1082
— Missing some potential. machine

- Nested algorithms. Inter-.node 47.5 114

- Already possible. machine

 Real attraction: No new node programming model.

« Can even implement shared memory algorithms (with
some enhancements to MPI).
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i Tramonto vs. Solver Time on Niagara2:
4-48 Threads

Time (sec)
S

E Tramonto
50 i Solver
D ?
4 8 12 16 24 32 36 48
# Threads
Charon vs Solver Time: 1-16 Cores

160

140 -
vy
@
-
@
E ® Charon
=

u Solver

1 4 8 12 16
74 # Cores

i
z : Multicore Scaling: App vs. Solver

Application:

» Scales well
(sometimes superlinear)

* MPI-only sufficient.

Solver:

» Scales more poorly.

* Memory system-limited.
 MPl+threads can help.

* Charon Results:

Lin & Shadid TLCC Report m
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MPI-Only + MPIl/Threading: Ax=b

l

l

|

|

App passes matrix and vector values to library data classes

All ranks store A, x, b data in memory visible to rank 0

a

Mem

Rank 0

Mem

Rank 1

Mem

Rank 2

Mem

Rank 3

A
Multi;Zre: “PN??Z Layout/(

Library solves Ax=>b using shared memory algorithms
on the node.
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