
Extreme Algorithms and Software Co-Design: 
It’s EASI!

Michael A. Heroux

Scalable Algorithms

CIS External Panel Review

May 26-28, 2010 

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2010-3120P



Basic Exascale Concerns: Trends, Manycore

• Stein’s Law: If a trend cannot 
continue, it will stop.

Herbert Stein, chairman of the Council of 
Economic Advisers under Nixon and 
Ford.

• Trends at risk:

– Power.

– Single core performance.

– Node count.

– Memory size & BW.

– Concurrency expression in 
existing Programming 
Models.
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Parallel CG Performance 512 Threads
32 Nodes = 2.2GHz AMD 4sockets X 4cores

p32 x t16

p128 x t4

p512 x t1

Edwards: SAND2009-8196 
Trilinos ThreadPool Library v1.1.

“Status Quo” ~ MPI-only
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Strong Scaling Potential



Extreme-scale Algorithms & 
SW Institute (EASI)

IAA/Algorithms  EASI  X-Stack (We Hope)

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.
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• DOE Office of Science Math/CS Institute

• $7.425M ($3M SNL), 3-year project.

• Algorithms and Software.

• DOE Office of Science Math/CS Institute

• $7.425M ($3M SNL), 3-year project.

• Algorithms and Software.



MPI Shared Memory Allocation

Idea:
• Shared memory alloc/free 

functions:
– MPI_Comm_alloc_mem 

– MPI_Comm_free_mem

• Predefined communicators:
MPI_COMM_NODE – ranks on node

MPI_COMM_SOCKET – UMA ranks

MPI_COMM_NETWORK – inter 
node

• Status:
– Available in current development 

branch of OpenMPI.

– First “Hello World” Program 
works.

– Incorporation into standard still 
not certain. Need to build case.

– Next Step: Demonstrate usage 
with threaded triangular solve.

• Exascale potential:
– Incremental path to MPI+X.

– Dial-able SMP scope.
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int n = …; 

double* values;

MPI_Comm_alloc_mem(

MPI_COMM_NODE,  // comm (SOCKET works too)

n*sizeof(double),         // size in bytes

MPI_INFO_NULL,     // placeholder for now 

&values); // Pointer to shared array (out)

// At this point:

// - All ranks on a node/socket have pointer to a shared buffer (values).

// - Can continue in MPI mode (using shared memory algorithms) or 

// - Can quiet all but one:

int rank;

MPI_Comm_rank(MPI_COMM_NODE, &rank);

if (rank==0) { // Start threaded code segment, only on rank 0 of the node

…

}

MPI_Comm_free_mem(MPI_COMM_NODE, values);



• Observe: Iteration count increases with number of subdomains.

• With scalable threaded triangular solves

– Solve triangular system on larger subdomains.

– Reduce number of subdomains.

• Goal: 

– Better kernel scaling (threads vs. MPI processes).

– Better convergence, More robust.

• Note: App (-solver) scales very well in MPI-only mode.

• Exascale Potential: Tiled, pipelined implementation.

Preconditioners for Scalable Multicore Systems

Strong scaling of Charon on TLCC (P. Lin, J. Shadid 2009)

MPI
Tasks Threads Iterations

4096 1 153

2048 2 129

1024 4 125

512 8 117

256 16 117

128 32 111
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Factors Impacting Performance of Multithreaded Sparse Triangular Solve, Michael M. Wolf and 
Michael A. Heroux and Erik G. Boman, VECPAR 2010, to appear.



Level Set Triangular Solver

L

DAG

Permuted

System

Multi-step

Algorithm

Triangular Solve:

• Critical Kernel

- MG Smoothers

- Incomplete IC/ILU

• Naturally Sequential

• Building on classic algorithms:

• Level Sched: 

• circa 1990.

• Vectorization.

• New: Generalized.
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Triangular Solve Results
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Passive (PB) vs. Active (AB) Barriers: Critical for Performance 

AB + No Thread Affinity (NTA) vs. AB + Thread Affinity (TA) : Also 
Helpful

Nehalem Istanbul

Level sets: Trilinos/Isorropia         Core Kernel Timings: Trilinos/Kokkos.7



Compile-time Polymorphism
Templates and Sanity upon a shifting foundation
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“Are C++ templates safe? No, but they are good.”

Software delivery: 

• Essential Element of EASI

How can we:

• Implement mixed precision algorithms?

• Implement generic fine-grain parallelism?

• Support hybrid CPU/GPU computations?

• Support extended precision?

• Explore redundant computations?

• Prepare for both exascale “swim lanes”?

C++ templates only sane way:

• Moving to completely templated Trilinos 
libraries.

• Other important benefits.

• A usable stack exists now in Trilinos.

Template Benefits:
– Compile time polymorphism.

– True generic programming.

– No runtime performance hit.

– Strong typing for mixed precision.

– Support for extended precision.

– Many more…

Template Drawbacks:
– Huge compile-time performance hit:

• But good use of multicore :)

• Eliminated for common data types.

- Complex notation:

- Esp. for Fortran & C programmers).

- Can insulate to some extent.



Summary, Additional Topics

Summary

• MPI+X is essential, even now.

• Hybrid MPI-only/MPI+threading important:

– Working prototype in OpenMPI.

– Enables dual mode.

– Allows gradual app migration to full 
MPI+threading.

– Co-design with Runtime/OS.

• Threaded programming:

– Challenging, but ultimately useful.

– Should dramatically reduce memory/core 
requirement.

– Structuring framework for “the average 
programmer” still an issue.

– Co-design (barriers): PMs, HW

• C++ templates and meta-programming:

– Write-once, run-anywhere portability.

– Mixed-precision, extended precision, 
redundant computation.

– Threaded parallelism.

– Hybrid CPU/GPU computations.
9

Additional Topics

• Software Development and Delivery.

• Evolving Parallel Programming Model.

• Mixed-precision computations.

• Manycore Node API.

• Hybrid CPU/GPU computing.

• Data Placement for NUMA.

• Resilient Algorithms.

• New Core Linear Algebra Needs for 
Advanced Modeling & Simulation.

• Communication-avoiding Algorithms.

• Threaded incomplete factorizations.

• Scenarios for extra-precise 
computations.

EASI is not Easy: Great Team, Good Start, Challenging Decade Ahead



Extra Slides
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EASI-related External Collaborations

• IESP: Int’l Exascale SW Project

– Quarterly meetings: US, Europe, Asia.

– Draft Software Plan.

– Dosanjh, Heroux from SNL (Secretary for software write-up).

• X-Stack: DOE Office of Science Call ( Proposal completed).

– 4 labs (SNL is only NNSA lab).

– 6 universities.

• TOPS-2: Toward Optimal Petascale Simulation.

– Forum for DOE library efforts to collaborate.

– ANL, LBL, LLNL, SNL, universities.

• SciDAC-e: U of Texas, Wheeler.

11



Software Development and Delivery
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Solver Software Stack

Bifurcation Analysis LOCA

DAEs/ODEs:

Transient Problems

Rythmos

Eigen Problems:

Linear Equations:

Linear Problems

AztecOO

Ifpack, ML, etc...

Anasazi

Vector Problems:

Matrix/Graph Equations:

Distributed Linear Algebra Epetra

Teuchos

Optimization

MOOCHO
Unconstrained:

Constrained:

Nonlinear Problems NOX
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Phase I packages: SPMD, int/double Phase II packages: Templated
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Solver Software Stack

Bifurcation Analysis
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Eigen Problems:

Linear Equations:

Linear Problems
AztecOO

Ifpack, 
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Vector Problems:

Matrix/Graph Equations:
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LOCA

Phase I packages Phase II packages

Teuchos

T-LOCA

Belos*

Tpetra*

Kokkos*

T-Ifpack*, 

T-ML*, etc...

T-NOX

Phase III packages: Manycore*, templated
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Trilinos 
Statistics

Stats: Trilinos 
Download Page 
05/10/2010.



Registered User Statistics

Stats: Trilinos Download Page 11/02/2009. Stats: Trilinos Download Page 05/10/2010.



Evolving Parallel Programming Model
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Parallel Programming Model: 
Multi-level/Multi-device

Iterative Solver’s

stateless computational kernels

run on each core

Intra-node (manycore) 
parallelism and resource 

management

Iterative Solver’s

node-local control flow (serial)

Inter-node/inter-device (distributed) 
parallelism and resource management

Threading

Message Passing

stateless kernels

computational 
node with 

manycore CPUs

and / or

GPGPU

network of 
computational 

nodes

18 Slide courtesy H. Carter Edwards



Mixed Precision Computations
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C++ Templates and Mixed-precision

// Standard method prototype for apply matrix-vector multiply:

template<typename ST, typename OT>

CrsMatrix::apply(Vector<ST, OT> const& x, Vector<ST, OT>& y)

// Mixed precision method prototype (DP vectors, SP matrix):

template<typename ST, typename OT>

CrsMatrix::apply(Vector<ScalarTraits<ST>::dp(), OT>  const& x,   

Vector<ScalarTraits<ST>::dp(), OT> & y)

// Sample usage:

Tpetra::Vector<double, int> x, y;

Tpetra::CrsMatrix<float, int> A;

A.apply(x, y);  // Single precision matrix applied to double precision vectors

20



• Tpetra is a templated version of the Petra distributed linear algebra 
model in Trilinos.
– Objects are templated on the underlying data types:

MultiVector<scalar=double, local_ordinal=int, 
global_ordinal=local_ordinal> …
CrsMatrix<scalar=double, local_ordinal=int, 
global_ordinal=local_ordinal> …

– Examples:

MultiVector<double, int, long int> V;
CrsMatrix<float> A;

Tpetra Linear Algebra Library

Scalar float double
double-
double

quad-
double

Solve time (s) 2.6 5.3 29.9 76.5

Accuracy 10-6 10-12 10-24 10-48

Arbitrary precision solves 

using Tpetra and Belos 

linear solver package

Speedup of float over double
in Belos linear solver.

float double speedup

18 s 26 s 1.42x
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class FloatShadowDouble {

public:

FloatShadowDouble( ) {

f = 0.0f;

d = 0.0;  }

FloatShadowDouble( const FloatShadowDouble & fd) {

f = fd.f;

d = fd.d;  }

…

inline FloatShadowDouble operator+= (const FloatShadowDouble & fd ) {

f += fd.f;

d += fd.d;

return *this;  }

…

inline std::ostream& operator<<(std::ostream& os, const FloatShadowDouble& fd) {

os << fd.f << "f " << fd.d << "d”;  return os;}

FP Accuracy Analysis:
FloatShadowDouble Datatype

• Templates enable
new analysis
capabilities

• Example: Float with
“shadow” double.



FloatShadowDouble

Initial Residual =               455.194f         455.194d

Iteration = 15   Residual = 5.07328f         5.07618d

Iteration = 30   Residual = 0.00147022f   0.00138466d

Iteration = 45   Residual = 5.14891e-06f  2.09624e-06d

Iteration = 60   Residual = 4.03386e-09f  7.91927e-10d

Sample usage:

#include “FloatShadowDouble.hpp”

Tpetra::Vector<FloatShadowDouble> x, y;

Tpetra::CrsMatrix<FloatShadowDouble> A;

A.apply(x, y);  // Single precision, but double results also computed, available



Trilinos/Kokkos Node API
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Abstract Inter-node Communicator

• Not a novel idea.

– Many distributed solvers/applications provide some 
wrapper for the communication, via diverse approaches.

• This technique is typically used for a few interfaces:

– Trivial serial scenario, MPI and PVM

• Increasing combination of shared and distributed 
memory in legacy applications suggests more exotic 
possibilities may be ripe.

• Tpetra utilizes abstract base class Comm from Teuchos 

packages.
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Generic Shared Memory Node

• Abstract inter-node comm provides DMP support.

• Need some way to portably handle SMP support.

• Goal: allow code, once written, to be run on any parallel 
node, regardless of architecture.

• Difficulty #1: Many different memory architectures

– Node may have multiple, disjoint memory spaces.

– Optimal performance may require special memory 
placement.

• Difficulty #2: Kernels must be tailored to architecture

– Implementation of optimal kernel will vary between archs

– No universal binary  need for separate compilation paths

26



Kokkos Node API

• Kokkos provides two main components:

– Kokkos memory model addresses Difficulty #1

• Allocation, deallocation and efficient access of memory

• compute buffer: special memory used for parallel computation

• New: Local Store Pointer and Buffer with size.

– Kokkos compute model addresses Difficulty #2

• Description of kernels for parallel execution on a node

• Provides stubs for common parallel work constructs

• Currently, parallel for loop and parallel reduce

• Code is developed around a polymorphic Node object.

• Supporting a new platform requires only the
implementation of a new node type.
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Kokkos Memory Model

• A generic node model must at least:

– support the scenario involving distinct device memory

– allow efficient memory access under traditional scenarios

• Nodes provide the following memory routines:
ArrayRCP<T> Node::allocBuffer<T>(size_t sz);

void        Node::copyToBuffer<T>(  T * src,

ArrayRCP<T>  dest);

void        Node::copyFromBuffer<T>(ArrayRCP<T> src,

T * dest);

ArrayRCP<T> Node::viewBuffer<T> (ArrayRCP<T> buff);

void        Node::readyBuffer<T>(ArrayRCP<T> buff);



Kokkos Compute Model

• How to make shared-memory programming generic:

– Parallel reduction is the intersection of dot() and norm1()

– Parallel for loop is the intersection of axpy() and mat-vec

– We need a way of fusing kernels with these basic constructs.

• Template meta-programming is the answer.

– This is the same approach that Intel TBB and Thrust take.

– Has the effect of requiring that Tpetra objects be templated on Node type.

• Node provides generic parallel constructs, user fills in the rest:

template <class WDP> 

void Node::parallel_for(

int beg, int end, WDP workdata);

template <class WDP>

WDP::ReductionType Node::parallel_reduce(

int beg, int end, WDP workdata);

Work-data pair (WDP) struct provides:

• loop body via WDP::execute(i)

Work-data pair (WDP) struct provides:

• reduction type WDP::ReductionType

• element generation via WDP::generate(i)

• reduction via WDP::reduce(x,y)

29



Example Kernels: axpy() and dot()

template <class WDP>

void 

Node::parallel_for(int beg, int end,  

WDP workdata    );

template <class WDP>

WDP::ReductionType

Node::parallel_reduce(int beg, int end,

WDP workdata    );

template <class T> 

struct AxpyOp {

const T * x;

T * y;

T alpha, beta;

void execute(int i) 

{ y[i] = alpha*x[i] + beta*y[i]; }

};

template <class T>

struct DotOp {

typedef T ReductionType;

const T * x, * y;

T identity()       { return (T)0; }

T generate(int i)  { return x[i]*y[i]; }

T reduce(T x, T y) { return x + y;     }

};

AxpyOp<double> op;

op.x = ...;  op.alpha = ...;

op.y = ...;  op.beta  = ...;

node.parallel_for< AxpyOp<double> >

(0, length, op);

DotOp<float> op;

op.x = ...;  op.y = ...;

float dot;

dot = node.parallel_reduce< DotOp<float> >

(0, length, op);

30



Hybrid CPU/GPU Computing
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Hybrid Timings (Tpetra)

• Tests of a simple iterations:

• power method: one sparse mat-vec, two vector operations

• conjugate gradient: one sparse mat-vec, five vector operations

• DNVS/x104 from UF Sparse Matrix
Collection (100K rows, 9M entries)

• NCCS/ORNL Lens node includes:

• one NVIDIA Tesla C1060

• one NVIDIA 8800 GTX

• Four AMD quad-core CPUs

• Results are very tentative!

• suboptimal GPU traffic

• bad format/kernel for GPU

• bad data placement for threads

Node
PM

(mflop/s)
CG 

(mflop/s)

Single thread 140 614

8800 GPU 1,172 1,222

Tesla GPU 1,475 1,531

Tesla + 8800 981 1,025

16 threads 816 1,376

1 node
15 threads + Tesla 867 1,731

2 nodes
15 threads + Tesla 1,677 2,102

32



Data Placement
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Data Placement on NUMA

• Memory Intensive computations: Page placement 
has huge impact.

• Most systems: First touch.

• Application data objects:

– Phase 1: Construction phase, e.g., finite element 
assembly.

– Phase 2: Use phase, e.g., linear solve.

• Problem: First touch difficult to control in phase 1.

• Idea: Page migration.

– Not new: SGI Origin.  Many old papers on topic.
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Data placement experiments

• MiniApp: HPCCG (Mantevo Project)

• Construct sparse linear system, solve with CG.

• Two modes:

– Data placed by assembly, not migrated for NUMA

– Data migrated using parallel access pattern of CG.

• Results on dual socket quad-core Nehalem system.
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“Tiny Problem”

 Qualitatively similar behavior between three approaches.

 Threaded (both versions) will outpace MPI.
36



Strong Scaling Problem

 MPI and conditioned data approach comparable.

 Non-conditioned very poor scaling.
37



Weak Scaling Problem

 MPI and conditioned data approach comparable.

 Non-conditioned very poor scaling.
38



Page Placement summary

• MPI+OpenMP (or any threading approach) is best 
overall.

• But:

– Data placement is big issue.

– Hard to control.

– Insufficient runtime support.

• Current work:

– Migrate on next-touch (MONT).

– Considered in OpenMP (next version).

– Also being studied in Kitten (Kevin  Pedretti).

39



Resilient Algorithms
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My Luxury in Life (wrt FT/Resilience)

The privilege to think of a computer as a 
reliable, digital machine.

41



Emerging Reality

“At 8 nm process technology, it will be harder 
to tell a 1 from a 0.”  

(W. Camp 2008, 2010)

42



Users’ View of the System Now

• “All nodes up and running.”

•Certainly nodes fail, but invisible to user.

•No need for me to be concerned.

•Someone else’s problem.

43



Users’ View of the System
Future

• Nodes in one of four states.

1. Dead.

2. Dying (perhaps producing faulty results).

3. Reviving.

4. Running properly 
a) Fully reliable or…

b) Maybe still producing an occasional bad result.

• States 1-3: 

– Do I need to worry? I hope not.

• State 4b: Must I address this state? Hopefully not but…

• Here are some ideas.

44



Algorithm-Based Fault Tolerance

•Numerous approaches.

•Most common strategies: 

–Meta data:

• Embed meta data into user-defined data 
structures.

• Manage fault detection, recovery manually.

–Algorithm results validation:

• Use known algorithm properties.

• Validate computed to known (e.g., residual 
check).

45



Two New? Ideas

1. Atomic Computation Regions.

2. Template-based redundancy.

46



Consider GMRES as an example of how 
soft errors affect correctness

• Basic Steps
1) Compute Krylov subspace (preconditioned sparse matrix-

vector multiplies)

2) Compute orthonormal basis for Krylov subspace (matrix 
factorization)

3) Compute vector yielding minimum residual in subspace 
(linear least squares)

4) Map to next iterate in the full space

5) Repeat until residual is sufficiently small

• More examples in Bronevetsky & Supinski, 2008

47



Why GMRES?

•Most Sandia Apps are implicit.

•Most popular linear solver is preconditioned 
GMRES.

•Only small subset of calculations need to be 
reliable.

– GMRES is iterative, but also direct.

48



Every calculation matters

• Small PDE Problem: Dim 21K, Nz 923K.

• ILUT/GMRES

• Correct computation 35 Iters: 343M FLOPS

• Two examples of a single bad floating point op

Description Iterations FLOPS Recursive 
Residual Error

Solution Error

All Correct Calcs 35 343M 4.6e-15 1.0e-6

Iter=2, y[1] += 1.0
SpMV incorrect
Ortho subspace

35 343M 6.7e-15 3.7e+3

Q[1][1] += 1.0
Non-ortho subspace

N/C N/A 7.7e-02 5.9e+5

49



One possible approach is transactional computation

• Database transactions: atomic

• Transactional memory: atomic memory operation

• Transactional computation:
– Designated sensitive computation region (orthogonalization 

step in GMRES)

– Guarantee accurate computation or notify user.

50



Needs to be coupled with  SW-
enabled guaranteed data regions

• User-designated reliable data region

• Extra protection to improve reliable data storage and 
transfer

• Examples
– Original input data (needed for verification)

– Linear solver: A, x, b

– Orthogonal vectors for GMRES

51



Goal

• Algorithms well-conditioned wrt soft failure.

• Now: 
– Single soft error produces erroneous results.

• Goal: 
– Correct results always.

– Cost increase proportional to number of soft errors.

• Note: These are just two approaches to ABFT.
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class RedundantCalcDouble {

public:

RedundantCalcDouble( ) {

d = 0.0;  }

RedundantCalcDouble ( const RedundantCalcDouble & d_in) {

d = d_in.d;  }

…

inline RedundantCalcDouble operator+= (const RedundantCalcDouble & d_in ) {

d += d_in.d;

double d_tmp = d + d_in.d;

if (d_tmp!=d) throw std::exception;

return *this;  }

…

inline std::ostream& operator<<(std::ostream& os, const RedundantCalcDouble & d_in) {

os <<d_in.d”;  return os;}

RedundantCalcDouble Datatype

• Templates enable
new resiliency
capabilities

• Example: 
Redundant
calculation

53



RedundantCalcDouble

Sample usage:

#include “RedundantCalcDouble.hpp”

Tpetra::Vector<RedundantCalcDouble> x, y;

Tpetra::CrsMatrix<RedundantCalcDouble> A;

try {

A.apply(x, y);  // Redundant calculation

} 

catch (…) {

…

}

54



New Core Linear Algebra Needs



Advanced Modeling and Simulation Capabilities:
Stability, Uncertainty and Optimization

• Promise: 10-1000 times increase in parallelism (or more).

• Pre-requisite: High-fidelity “forward” solve:

– Computing families of solutions to similar problems.

– Differences in results must be meaningful.

SPDEs: Transient

Optimization:

- Size of a single forward problem

Lower Block

Bi-diagonal

Block

Tri-diagonal

t0

t0

tn

tn



Advanced Capabilities: 
Readiness and Importance

Modeling Area Sufficient 
Fidelity?

Other concerns Advanced 
capabilities priority

Seismic
S. Collis, C. Ober

Yes. None as big. Top.

Shock & Multiphysics

(Alegra)
A. Robinson, C. Ober

Yes, but some 
concerns.

Constitutive models, 
material responses 
maturity.

Secondary now.  Non-
intrusive most 
attractive.

Multiphysics

(Charon)

J. Shadid

Reacting flow w/ 
simple transport, 
device w/ drift 
diffusion, …

Higher fidelity, more 
accurate multiphysics.

Emerging, not top.

Solid mechanics

K. Pierson

Yes, but… Better contact. Better 
timestepping.  Failure 
modeling.

Not high for now.



Advanced Capabilities:
Other issues

• Non-intrusive algorithms (e.g., Dakota):

– Task level parallel: 

• A true peta/exa scale problem?

• Needs a cluster of 1000 tera/peta scale nodes.

• Embedded/intrusive algorithms (e.g., Trilinos):

– Cost of code refactoring:

• Non-linear application becomes “subroutine”.

• Disruptive, pervasive design changes.

• Forward problem fidelity:

– Not uniformly available.

– Smoothness issues.

– Material responses.



Advanced Capabilities:
Derived Requirements

• Large-scale problem presents collections of related subproblems with 
forward problem sizes.

• Linear Solvers:

– Krylov methods for multiple RHS, related systems.

• Preconditioners:

– Preconditioners for related systems.

• Data structures/communication:

– Substantial graph data reuse. 

Ax  b AX  B, Axi  bi , Ai x i  bi

Ai  A0  Ai

pattern(Ai )  pattern(A j )



Threaded Triangular Solve Details
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• Triangular solver is important numerical kernel

• Essential role in preconditioning linear systems

– Forward/back solve of Incomplete factorizations.

– Smoother kernel for Gauss-Seidel.

• Difficult algorithm to parallelize.

• Focus of work: threaded triangular solve on each 
node/socket

Motivation for Triangular Solve Work
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• Initial attempts at threaded triangular solve were awful.

• Simple prototype of level set threaded triangular solve

– Assumes fixed number of rows per level

– Assumes matrices preordered by level

– Pthreads

• Allowed us to explore factors affecting performance

Simple Prototype
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“Good” data locality “Bad” data locality
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• Implemented two different barriers

– “Passive” barrier

• Mutexes and conditional wait statements

– “Active” barrier

• Spin locks and active polling

Factor 1: Type of Barrier
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• Results for good data locality matrices

• Active/aggressive barriers essential for scalability

Factor 1: Type of Barrier
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• Results for good data locality matrices

• Active/aggressive barriers essential for 
scalability

Factor 1: Type of Barrier
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• Studied the importance of thread affinity

• Thread affinity allows threads to be pinned to cores

– Less likely for threads to be switched (beneficial for 
cache utilization)

– Ensures that threads are running on same socket

Factor 2: Thread Affinity
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• Results for good data locality matrices, active barrier

• Thread affinity not as important as active barrier

– But can be beneficial for some problem sizes

Factor 2: Thread Affinity
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• Thread affinity not as important as active barrier

– But can be beneficial for some problem sizes

Factor 2: Thread Affinity
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Threaded Solve Summary

• Threading can improve performance:

– Good speedup.

– Reduction in global iteration counts.

– Modest size level sets needed.  Multicoloring can increases sizes.

• Existing programming models lacking sufficient barriers:

– Need two types of barriers:

• Passive: exiting library to user control.

• Active: syncing between phases of libraries execution.

– Not supported in current PMs (OpenMP, TBB, CUDA)

• Pthreads (not a model) can support it.

– In Discussion with PM developers (e.g., IWOMP 2010).

• Thread affinity:

– Still an open issue.

– Other work shows affinity is essential.

• Final Note: Per core memory requirement should go down!

Factors Impacting Performance of Multithreaded Sparse Triangular Solve, Michael M. Wolf and 
Michael A. Heroux and Erik G. Boman, VECPAR 2010, to appear.
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Hybrid MPI-only, MPI+threading details
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Parallel Machine Block Diagram

Memory

Core 0 Core n-1

Node 0

Memory

Core 
0

Core n-1

Node 1

Memory

Core 0 Core n-1

Node m-1

– Parallel machine with p = m * n processors: 

• m = number of nodes.

• n = number of shared memory processors per node.

– Two ways to program:

• Way 1: p MPI processes.

• Way 2: m MPI processes with n threads per MPI process.

- New third way:

• “Way 1” in some parts of the execution (the app).

• “Way 2” in others (the solver).
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Threading under MPI

• Default approach: Successful in many applications.

• Concerns:

– Opaqueness of work/data pair assignment.

• Lack of granularity control.

– Collisions: Multiple thread models.

• Performance issue, not correctness.

• Bright spot: Intel Thread Building Blocks (TBB).

– Iterator (C++ language feature) model.

– Opaque or transparent: User choice.

App

LibA
(OpenMP)

LibB
(TBB)    
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MPI Under MPI

• Scalable multicore:

– Two different MPI architectures.

– Machines within a machine.

• Exploited in single-level MPI:

– Short-circuited messages.

– Reduce network B/W.

– Missing some potential.

• Nested algorithms.

• Already possible.

• Real attraction: No new node programming model.

• Can even implement shared memory algorithms (with 
some enhancements to MPI).

“Ping-pong” 
test

Latency

(microsec)

Bandwidth

(MB/sec)

Intra-node 
machine

0.71 1082

Inter-node 
machine

47.5 114
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Multicore Scaling: App vs. Solver

Application: 
• Scales well

(sometimes superlinear)

• MPI-only sufficient.

Solver: 
• Scales more poorly.

• Memory system-limited.

• MPI+threads can help.

*  Charon Results: 

Lin & Shadid TLCC Report
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MPI-Only + MPI/Threading: Ax=b

App
Rank 0

App
Rank 1

App
Rank 2

App
Rank 3

Lib
Rank 0

Lib
Rank 1

Lib
Rank 2

Lib
Rank 3

Mem
Rank 0

Mem
Rank 1

Mem
Rank 2

Mem
Rank 3

Multicore: “PNAS” Layout

Lib
Rank 0

Thread 0   Thread 1   Thread 2  Thread 3

App passes matrix and vector values to library data classes

All ranks store A, x, b data in memory visible to rank 0

Library solves Ax=b using shared memory algorithms

on the node.
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