
Extreme Algorithms and Software Co-Design:
It’s EASI!

Michael A. Heroux

Scalable Algorithms

CIS External Panel Review

May 26-28, 2010

Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2010-3120P

Basic Exascale Concerns: Trends, Manycore

• Stein’s Law: If a trend cannot
continue, it will stop.

Herbert Stein, chairman of the Council of
Economic Advisers under Nixon and
Ford.

• Trends at risk:

– Power.

– Single core performance.

– Node count.

– Memory size & BW.

– Concurrency expression in
existing Programming
Models.

0

20

40

60

80

100

120

140

160

180

1E+05 1E+06 1E+07

G
ig

a
fl

o
p

s

3D Grid Points with 27pt stencil

Parallel CG Performance 512 Threads
32 Nodes = 2.2GHz AMD 4sockets X 4cores

p32 x t16

p128 x t4

p512 x t1

Edwards: SAND2009-8196
Trilinos ThreadPool Library v1.1.

“Status Quo” ~ MPI-only

2

Strong Scaling Potential

Extreme-scale Algorithms &
SW Institute (EASI)

IAA/Algorithms  EASI  X-Stack (We Hope)

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

• B. Barrett, Boman, Brightwell,
Heroux (SNL)

• Baker, Fann, Geist*, Vallée (ORNL)

• B. Barrett, Boman, Brightwell,
Heroux (SNL)

• Baker, Fann, Geist*, Vallée (ORNL)

• Mark Hoemmen (Demmel, UC)

• Siva Rajamanickam (Davis, FL)

• Michael Wolf (Heath, UIUC)

• Mark Hoemmen (Demmel, UC)

• Siva Rajamanickam (Davis, FL)

• Michael Wolf (Heath, UIUC)

• Demmel (UC Berkeley)

• Dongarra (UTK)

• Gropp (UIUC)

• Demmel (UC Berkeley)

• Dongarra (UTK)

• Gropp (UIUC)

EASI Project TeamEASI Project Team

33

• DOE Office of Science Math/CS Institute

• $7.425M ($3M SNL), 3-year project.

• Algorithms and Software.

• DOE Office of Science Math/CS Institute

• $7.425M ($3M SNL), 3-year project.

• Algorithms and Software.

MPI Shared Memory Allocation

Idea:
• Shared memory alloc/free

functions:
– MPI_Comm_alloc_mem

– MPI_Comm_free_mem

• Predefined communicators:
MPI_COMM_NODE – ranks on node

MPI_COMM_SOCKET – UMA ranks

MPI_COMM_NETWORK – inter
node

• Status:
– Available in current development

branch of OpenMPI.

– First “Hello World” Program
works.

– Incorporation into standard still
not certain. Need to build case.

– Next Step: Demonstrate usage
with threaded triangular solve.

• Exascale potential:
– Incremental path to MPI+X.

– Dial-able SMP scope.

4

int n = …;

double* values;

MPI_Comm_alloc_mem(

MPI_COMM_NODE, // comm (SOCKET works too)

n*sizeof(double), // size in bytes

MPI_INFO_NULL, // placeholder for now

&values); // Pointer to shared array (out)

// At this point:

// - All ranks on a node/socket have pointer to a shared buffer (values).

// - Can continue in MPI mode (using shared memory algorithms) or

// - Can quiet all but one:

int rank;

MPI_Comm_rank(MPI_COMM_NODE, &rank);

if (rank==0) { // Start threaded code segment, only on rank 0 of the node

…

}

MPI_Comm_free_mem(MPI_COMM_NODE, values);

• Observe: Iteration count increases with number of subdomains.

• With scalable threaded triangular solves

– Solve triangular system on larger subdomains.

– Reduce number of subdomains.

• Goal:

– Better kernel scaling (threads vs. MPI processes).

– Better convergence, More robust.

• Note: App (-solver) scales very well in MPI-only mode.

• Exascale Potential: Tiled, pipelined implementation.

Preconditioners for Scalable Multicore Systems

Strong scaling of Charon on TLCC (P. Lin, J. Shadid 2009)

MPI
Tasks Threads Iterations

4096 1 153

2048 2 129

1024 4 125

512 8 117

256 16 117

128 32 111

5

Factors Impacting Performance of Multithreaded Sparse Triangular Solve, Michael M. Wolf and
Michael A. Heroux and Erik G. Boman, VECPAR 2010, to appear.

Level Set Triangular Solver

L

DAG

Permuted

System

Multi-step

Algorithm

Triangular Solve:

• Critical Kernel

- MG Smoothers

- Incomplete IC/ILU

• Naturally Sequential

• Building on classic algorithms:

• Level Sched:

• circa 1990.

• Vectorization.

• New: Generalized.

6

Triangular Solve Results

Sp
e

e
d

u
p

Sp
e

e
d

u
p

Sp
e

e
d

u
p

Sp
e

e
d

u
p

Passive (PB) vs. Active (AB) Barriers: Critical for Performance

AB + No Thread Affinity (NTA) vs. AB + Thread Affinity (TA) : Also
Helpful

Nehalem Istanbul

Level sets: Trilinos/Isorropia Core Kernel Timings: Trilinos/Kokkos.7

Compile-time Polymorphism
Templates and Sanity upon a shifting foundation

8

“Are C++ templates safe? No, but they are good.”

Software delivery:

• Essential Element of EASI

How can we:

• Implement mixed precision algorithms?

• Implement generic fine-grain parallelism?

• Support hybrid CPU/GPU computations?

• Support extended precision?

• Explore redundant computations?

• Prepare for both exascale “swim lanes”?

C++ templates only sane way:

• Moving to completely templated Trilinos
libraries.

• Other important benefits.

• A usable stack exists now in Trilinos.

Template Benefits:
– Compile time polymorphism.

– True generic programming.

– No runtime performance hit.

– Strong typing for mixed precision.

– Support for extended precision.

– Many more…

Template Drawbacks:
– Huge compile-time performance hit:

• But good use of multicore :)

• Eliminated for common data types.

- Complex notation:

- Esp. for Fortran & C programmers).

- Can insulate to some extent.

Summary, Additional Topics

Summary

• MPI+X is essential, even now.

• Hybrid MPI-only/MPI+threading important:

– Working prototype in OpenMPI.

– Enables dual mode.

– Allows gradual app migration to full
MPI+threading.

– Co-design with Runtime/OS.

• Threaded programming:

– Challenging, but ultimately useful.

– Should dramatically reduce memory/core
requirement.

– Structuring framework for “the average
programmer” still an issue.

– Co-design (barriers): PMs, HW

• C++ templates and meta-programming:

– Write-once, run-anywhere portability.

– Mixed-precision, extended precision,
redundant computation.

– Threaded parallelism.

– Hybrid CPU/GPU computations.
9

Additional Topics

• Software Development and Delivery.

• Evolving Parallel Programming Model.

• Mixed-precision computations.

• Manycore Node API.

• Hybrid CPU/GPU computing.

• Data Placement for NUMA.

• Resilient Algorithms.

• New Core Linear Algebra Needs for
Advanced Modeling & Simulation.

• Communication-avoiding Algorithms.

• Threaded incomplete factorizations.

• Scenarios for extra-precise
computations.

EASI is not Easy: Great Team, Good Start, Challenging Decade Ahead

Extra Slides

10

EASI-related External Collaborations

• IESP: Int’l Exascale SW Project

– Quarterly meetings: US, Europe, Asia.

– Draft Software Plan.

– Dosanjh, Heroux from SNL (Secretary for software write-up).

• X-Stack: DOE Office of Science Call (Proposal completed).

– 4 labs (SNL is only NNSA lab).

– 6 universities.

• TOPS-2: Toward Optimal Petascale Simulation.

– Forum for DOE library efforts to collaborate.

– ANL, LBL, LLNL, SNL, universities.

• SciDAC-e: U of Texas, Wheeler.

11

Software Development and Delivery

12

Solver Software Stack

Bifurcation Analysis LOCA

DAEs/ODEs:

Transient Problems

Rythmos

Eigen Problems:

Linear Equations:

Linear Problems

AztecOO

Ifpack, ML, etc...

Anasazi

Vector Problems:

Matrix/Graph Equations:

Distributed Linear Algebra Epetra

Teuchos

Optimization

MOOCHO
Unconstrained:

Constrained:

Nonlinear Problems NOX

S
e

n
s
it

iv
it

ie
s

(A
u

to
m

a
ti

c
 D

if
fe

re
n

ti
a
ti

o
n

:
S

a
c
a
d

o
)

Phase I packages: SPMD, int/double Phase II packages: Templated

13

Solver Software Stack

Bifurcation Analysis

DAEs/ODEs:

Transient Problems

Rythmos

Eigen Problems:

Linear Equations:

Linear Problems
AztecOO

Ifpack,

ML, etc...

Anasazi

Vector Problems:

Matrix/Graph Equations:

Distributed Linear Algebra Epetra

Optimization

MOOCHO
Unconstrained:

Constrained:

Nonlinear Problems NOX

S
e

n
s
it

iv
it

ie
s

(A
u

to
m

a
ti

c
 D

if
fe

re
n

ti
a
ti

o
n

:
S

a
c
a
d

o
)

LOCA

Phase I packages Phase II packages

Teuchos

T-LOCA

Belos*

Tpetra*

Kokkos*

T-Ifpack*,

T-ML*, etc...

T-NOX

Phase III packages: Manycore*, templated

14

Trilinos
Statistics

Stats: Trilinos
Download Page
05/10/2010.

Registered User Statistics

Stats: Trilinos Download Page 11/02/2009. Stats: Trilinos Download Page 05/10/2010.

Evolving Parallel Programming Model

17

Parallel Programming Model:
Multi-level/Multi-device

Iterative Solver’s

stateless computational kernels

run on each core

Intra-node (manycore)
parallelism and resource

management

Iterative Solver’s

node-local control flow (serial)

Inter-node/inter-device (distributed)
parallelism and resource management

Threading

Message Passing

stateless kernels

computational
node with

manycore CPUs

and / or

GPGPU

network of
computational

nodes

18 Slide courtesy H. Carter Edwards

Mixed Precision Computations

19

C++ Templates and Mixed-precision

// Standard method prototype for apply matrix-vector multiply:

template<typename ST, typename OT>

CrsMatrix::apply(Vector<ST, OT> const& x, Vector<ST, OT>& y)

// Mixed precision method prototype (DP vectors, SP matrix):

template<typename ST, typename OT>

CrsMatrix::apply(Vector<ScalarTraits<ST>::dp(), OT> const& x,

Vector<ScalarTraits<ST>::dp(), OT> & y)

// Sample usage:

Tpetra::Vector<double, int> x, y;

Tpetra::CrsMatrix<float, int> A;

A.apply(x, y); // Single precision matrix applied to double precision vectors

20

• Tpetra is a templated version of the Petra distributed linear algebra
model in Trilinos.
– Objects are templated on the underlying data types:

MultiVector<scalar=double, local_ordinal=int,
global_ordinal=local_ordinal> …
CrsMatrix<scalar=double, local_ordinal=int,
global_ordinal=local_ordinal> …

– Examples:

MultiVector<double, int, long int> V;
CrsMatrix<float> A;

Tpetra Linear Algebra Library

Scalar float double
double-
double

quad-
double

Solve time (s) 2.6 5.3 29.9 76.5

Accuracy 10-6 10-12 10-24 10-48

Arbitrary precision solves

using Tpetra and Belos

linear solver package

Speedup of float over double
in Belos linear solver.

float double speedup

18 s 26 s 1.42x

21

class FloatShadowDouble {

public:

FloatShadowDouble() {

f = 0.0f;

d = 0.0; }

FloatShadowDouble(const FloatShadowDouble & fd) {

f = fd.f;

d = fd.d; }

…

inline FloatShadowDouble operator+= (const FloatShadowDouble & fd) {

f += fd.f;

d += fd.d;

return *this; }

…

inline std::ostream& operator<<(std::ostream& os, const FloatShadowDouble& fd) {

os << fd.f << "f " << fd.d << "d”; return os;}

FP Accuracy Analysis:
FloatShadowDouble Datatype

• Templates enable
new analysis
capabilities

• Example: Float with
“shadow” double.

FloatShadowDouble

Initial Residual = 455.194f 455.194d

Iteration = 15 Residual = 5.07328f 5.07618d

Iteration = 30 Residual = 0.00147022f 0.00138466d

Iteration = 45 Residual = 5.14891e-06f 2.09624e-06d

Iteration = 60 Residual = 4.03386e-09f 7.91927e-10d

Sample usage:

#include “FloatShadowDouble.hpp”

Tpetra::Vector<FloatShadowDouble> x, y;

Tpetra::CrsMatrix<FloatShadowDouble> A;

A.apply(x, y); // Single precision, but double results also computed, available

Trilinos/Kokkos Node API

24

Abstract Inter-node Communicator

• Not a novel idea.

– Many distributed solvers/applications provide some
wrapper for the communication, via diverse approaches.

• This technique is typically used for a few interfaces:

– Trivial serial scenario, MPI and PVM

• Increasing combination of shared and distributed
memory in legacy applications suggests more exotic
possibilities may be ripe.

• Tpetra utilizes abstract base class Comm from Teuchos

packages.

25

Generic Shared Memory Node

• Abstract inter-node comm provides DMP support.

• Need some way to portably handle SMP support.

• Goal: allow code, once written, to be run on any parallel
node, regardless of architecture.

• Difficulty #1: Many different memory architectures

– Node may have multiple, disjoint memory spaces.

– Optimal performance may require special memory
placement.

• Difficulty #2: Kernels must be tailored to architecture

– Implementation of optimal kernel will vary between archs

– No universal binary  need for separate compilation paths

26

Kokkos Node API

• Kokkos provides two main components:

– Kokkos memory model addresses Difficulty #1

• Allocation, deallocation and efficient access of memory

• compute buffer: special memory used for parallel computation

• New: Local Store Pointer and Buffer with size.

– Kokkos compute model addresses Difficulty #2

• Description of kernels for parallel execution on a node

• Provides stubs for common parallel work constructs

• Currently, parallel for loop and parallel reduce

• Code is developed around a polymorphic Node object.

• Supporting a new platform requires only the
implementation of a new node type.

27

Kokkos Memory Model

• A generic node model must at least:

– support the scenario involving distinct device memory

– allow efficient memory access under traditional scenarios

• Nodes provide the following memory routines:
ArrayRCP<T> Node::allocBuffer<T>(size_t sz);

void Node::copyToBuffer<T>(T * src,

ArrayRCP<T> dest);

void Node::copyFromBuffer<T>(ArrayRCP<T> src,

T * dest);

ArrayRCP<T> Node::viewBuffer<T> (ArrayRCP<T> buff);

void Node::readyBuffer<T>(ArrayRCP<T> buff);

Kokkos Compute Model

• How to make shared-memory programming generic:

– Parallel reduction is the intersection of dot() and norm1()

– Parallel for loop is the intersection of axpy() and mat-vec

– We need a way of fusing kernels with these basic constructs.

• Template meta-programming is the answer.

– This is the same approach that Intel TBB and Thrust take.

– Has the effect of requiring that Tpetra objects be templated on Node type.

• Node provides generic parallel constructs, user fills in the rest:

template <class WDP>

void Node::parallel_for(

int beg, int end, WDP workdata);

template <class WDP>

WDP::ReductionType Node::parallel_reduce(

int beg, int end, WDP workdata);

Work-data pair (WDP) struct provides:

• loop body via WDP::execute(i)

Work-data pair (WDP) struct provides:

• reduction type WDP::ReductionType

• element generation via WDP::generate(i)

• reduction via WDP::reduce(x,y)

29

Example Kernels: axpy() and dot()

template <class WDP>

void

Node::parallel_for(int beg, int end,

WDP workdata);

template <class WDP>

WDP::ReductionType

Node::parallel_reduce(int beg, int end,

WDP workdata);

template <class T>

struct AxpyOp {

const T * x;

T * y;

T alpha, beta;

void execute(int i)

{ y[i] = alpha*x[i] + beta*y[i]; }

};

template <class T>

struct DotOp {

typedef T ReductionType;

const T * x, * y;

T identity() { return (T)0; }

T generate(int i) { return x[i]*y[i]; }

T reduce(T x, T y) { return x + y; }

};

AxpyOp<double> op;

op.x = ...; op.alpha = ...;

op.y = ...; op.beta = ...;

node.parallel_for< AxpyOp<double> >

(0, length, op);

DotOp<float> op;

op.x = ...; op.y = ...;

float dot;

dot = node.parallel_reduce< DotOp<float> >

(0, length, op);

30

Hybrid CPU/GPU Computing

31

Hybrid Timings (Tpetra)

• Tests of a simple iterations:

• power method: one sparse mat-vec, two vector operations

• conjugate gradient: one sparse mat-vec, five vector operations

• DNVS/x104 from UF Sparse Matrix
Collection (100K rows, 9M entries)

• NCCS/ORNL Lens node includes:

• one NVIDIA Tesla C1060

• one NVIDIA 8800 GTX

• Four AMD quad-core CPUs

• Results are very tentative!

• suboptimal GPU traffic

• bad format/kernel for GPU

• bad data placement for threads

Node
PM

(mflop/s)
CG

(mflop/s)

Single thread 140 614

8800 GPU 1,172 1,222

Tesla GPU 1,475 1,531

Tesla + 8800 981 1,025

16 threads 816 1,376

1 node
15 threads + Tesla 867 1,731

2 nodes
15 threads + Tesla 1,677 2,102

32

Data Placement

33

Data Placement on NUMA

• Memory Intensive computations: Page placement
has huge impact.

• Most systems: First touch.

• Application data objects:

– Phase 1: Construction phase, e.g., finite element
assembly.

– Phase 2: Use phase, e.g., linear solve.

• Problem: First touch difficult to control in phase 1.

• Idea: Page migration.

– Not new: SGI Origin. Many old papers on topic.

34

Data placement experiments

• MiniApp: HPCCG (Mantevo Project)

• Construct sparse linear system, solve with CG.

• Two modes:

– Data placed by assembly, not migrated for NUMA

– Data migrated using parallel access pattern of CG.

• Results on dual socket quad-core Nehalem system.

35

“Tiny Problem”

 Qualitatively similar behavior between three approaches.

 Threaded (both versions) will outpace MPI.
36

Strong Scaling Problem

 MPI and conditioned data approach comparable.

 Non-conditioned very poor scaling.
37

Weak Scaling Problem

 MPI and conditioned data approach comparable.

 Non-conditioned very poor scaling.
38

Page Placement summary

• MPI+OpenMP (or any threading approach) is best
overall.

• But:

– Data placement is big issue.

– Hard to control.

– Insufficient runtime support.

• Current work:

– Migrate on next-touch (MONT).

– Considered in OpenMP (next version).

– Also being studied in Kitten (Kevin Pedretti).

39

Resilient Algorithms

40

My Luxury in Life (wrt FT/Resilience)

The privilege to think of a computer as a
reliable, digital machine.

41

Emerging Reality

“At 8 nm process technology, it will be harder
to tell a 1 from a 0.”

(W. Camp 2008, 2010)

42

Users’ View of the System Now

• “All nodes up and running.”

•Certainly nodes fail, but invisible to user.

•No need for me to be concerned.

•Someone else’s problem.

43

Users’ View of the System
Future

• Nodes in one of four states.

1. Dead.

2. Dying (perhaps producing faulty results).

3. Reviving.

4. Running properly
a) Fully reliable or…

b) Maybe still producing an occasional bad result.

• States 1-3:

– Do I need to worry? I hope not.

• State 4b: Must I address this state? Hopefully not but…

• Here are some ideas.

44

Algorithm-Based Fault Tolerance

•Numerous approaches.

•Most common strategies:

–Meta data:

• Embed meta data into user-defined data
structures.

• Manage fault detection, recovery manually.

–Algorithm results validation:

• Use known algorithm properties.

• Validate computed to known (e.g., residual
check).

45

Two New? Ideas

1. Atomic Computation Regions.

2. Template-based redundancy.

46

Consider GMRES as an example of how
soft errors affect correctness

• Basic Steps
1) Compute Krylov subspace (preconditioned sparse matrix-

vector multiplies)

2) Compute orthonormal basis for Krylov subspace (matrix
factorization)

3) Compute vector yielding minimum residual in subspace
(linear least squares)

4) Map to next iterate in the full space

5) Repeat until residual is sufficiently small

• More examples in Bronevetsky & Supinski, 2008

47

Why GMRES?

•Most Sandia Apps are implicit.

•Most popular linear solver is preconditioned
GMRES.

•Only small subset of calculations need to be
reliable.

– GMRES is iterative, but also direct.

48

Every calculation matters

• Small PDE Problem: Dim 21K, Nz 923K.

• ILUT/GMRES

• Correct computation 35 Iters: 343M FLOPS

• Two examples of a single bad floating point op

Description Iterations FLOPS Recursive
Residual Error

Solution Error

All Correct Calcs 35 343M 4.6e-15 1.0e-6

Iter=2, y[1] += 1.0
SpMV incorrect
Ortho subspace

35 343M 6.7e-15 3.7e+3

Q[1][1] += 1.0
Non-ortho subspace

N/C N/A 7.7e-02 5.9e+5

49

One possible approach is transactional computation

• Database transactions: atomic

• Transactional memory: atomic memory operation

• Transactional computation:
– Designated sensitive computation region (orthogonalization

step in GMRES)

– Guarantee accurate computation or notify user.

50

Needs to be coupled with SW-
enabled guaranteed data regions

• User-designated reliable data region

• Extra protection to improve reliable data storage and
transfer

• Examples
– Original input data (needed for verification)

– Linear solver: A, x, b

– Orthogonal vectors for GMRES

51

Goal

• Algorithms well-conditioned wrt soft failure.

• Now:
– Single soft error produces erroneous results.

• Goal:
– Correct results always.

– Cost increase proportional to number of soft errors.

• Note: These are just two approaches to ABFT.

52

class RedundantCalcDouble {

public:

RedundantCalcDouble() {

d = 0.0; }

RedundantCalcDouble (const RedundantCalcDouble & d_in) {

d = d_in.d; }

…

inline RedundantCalcDouble operator+= (const RedundantCalcDouble & d_in) {

d += d_in.d;

double d_tmp = d + d_in.d;

if (d_tmp!=d) throw std::exception;

return *this; }

…

inline std::ostream& operator<<(std::ostream& os, const RedundantCalcDouble & d_in) {

os <<d_in.d”; return os;}

RedundantCalcDouble Datatype

• Templates enable
new resiliency
capabilities

• Example:
Redundant
calculation

53

RedundantCalcDouble

Sample usage:

#include “RedundantCalcDouble.hpp”

Tpetra::Vector<RedundantCalcDouble> x, y;

Tpetra::CrsMatrix<RedundantCalcDouble> A;

try {

A.apply(x, y); // Redundant calculation

}

catch (…) {

…

}

54

New Core Linear Algebra Needs

Advanced Modeling and Simulation Capabilities:
Stability, Uncertainty and Optimization

• Promise: 10-1000 times increase in parallelism (or more).

• Pre-requisite: High-fidelity “forward” solve:

– Computing families of solutions to similar problems.

– Differences in results must be meaningful.

SPDEs: Transient

Optimization:

- Size of a single forward problem

Lower Block

Bi-diagonal

Block

Tri-diagonal

t0

t0

tn

tn

Advanced Capabilities:
Readiness and Importance

Modeling Area Sufficient
Fidelity?

Other concerns Advanced
capabilities priority

Seismic
S. Collis, C. Ober

Yes. None as big. Top.

Shock & Multiphysics

(Alegra)
A. Robinson, C. Ober

Yes, but some
concerns.

Constitutive models,
material responses
maturity.

Secondary now. Non-
intrusive most
attractive.

Multiphysics

(Charon)

J. Shadid

Reacting flow w/
simple transport,
device w/ drift
diffusion, …

Higher fidelity, more
accurate multiphysics.

Emerging, not top.

Solid mechanics

K. Pierson

Yes, but… Better contact. Better
timestepping. Failure
modeling.

Not high for now.

Advanced Capabilities:
Other issues

• Non-intrusive algorithms (e.g., Dakota):

– Task level parallel:

• A true peta/exa scale problem?

• Needs a cluster of 1000 tera/peta scale nodes.

• Embedded/intrusive algorithms (e.g., Trilinos):

– Cost of code refactoring:

• Non-linear application becomes “subroutine”.

• Disruptive, pervasive design changes.

• Forward problem fidelity:

– Not uniformly available.

– Smoothness issues.

– Material responses.

Advanced Capabilities:
Derived Requirements

• Large-scale problem presents collections of related subproblems with
forward problem sizes.

• Linear Solvers:

– Krylov methods for multiple RHS, related systems.

• Preconditioners:

– Preconditioners for related systems.

• Data structures/communication:

– Substantial graph data reuse.

Ax  b AX  B, Axi  bi , Ai x i  bi

Ai  A0  Ai

pattern(Ai)  pattern(A j)

Threaded Triangular Solve Details

60

• Triangular solver is important numerical kernel

• Essential role in preconditioning linear systems

– Forward/back solve of Incomplete factorizations.

– Smoother kernel for Gauss-Seidel.

• Difficult algorithm to parallelize.

• Focus of work: threaded triangular solve on each
node/socket

Motivation for Triangular Solve Work

61

• Initial attempts at threaded triangular solve were awful.

• Simple prototype of level set threaded triangular solve

– Assumes fixed number of rows per level

– Assumes matrices preordered by level

– Pthreads

• Allowed us to explore factors affecting performance

Simple Prototype

62

“Good” data locality “Bad” data locality

62

• Implemented two different barriers

– “Passive” barrier

• Mutexes and conditional wait statements

– “Active” barrier

• Spin locks and active polling

Factor 1: Type of Barrier

63

• Results for good data locality matrices

• Active/aggressive barriers essential for scalability

Factor 1: Type of Barrier

64

• Results for good data locality matrices

• Active/aggressive barriers essential for
scalability

Factor 1: Type of Barrier

65

• Studied the importance of thread affinity

• Thread affinity allows threads to be pinned to cores

– Less likely for threads to be switched (beneficial for
cache utilization)

– Ensures that threads are running on same socket

Factor 2: Thread Affinity

66

• Results for good data locality matrices, active barrier

• Thread affinity not as important as active barrier

– But can be beneficial for some problem sizes

Factor 2: Thread Affinity

67

• Thread affinity not as important as active barrier

– But can be beneficial for some problem sizes

Factor 2: Thread Affinity

68

Threaded Solve Summary

• Threading can improve performance:

– Good speedup.

– Reduction in global iteration counts.

– Modest size level sets needed. Multicoloring can increases sizes.

• Existing programming models lacking sufficient barriers:

– Need two types of barriers:

• Passive: exiting library to user control.

• Active: syncing between phases of libraries execution.

– Not supported in current PMs (OpenMP, TBB, CUDA)

• Pthreads (not a model) can support it.

– In Discussion with PM developers (e.g., IWOMP 2010).

• Thread affinity:

– Still an open issue.

– Other work shows affinity is essential.

• Final Note: Per core memory requirement should go down!

Factors Impacting Performance of Multithreaded Sparse Triangular Solve, Michael M. Wolf and
Michael A. Heroux and Erik G. Boman, VECPAR 2010, to appear.

69

Hybrid MPI-only, MPI+threading details

70

Parallel Machine Block Diagram

Memory

Core 0 Core n-1

Node 0

Memory

Core
0

Core n-1

Node 1

Memory

Core 0 Core n-1

Node m-1

– Parallel machine with p = m * n processors:

• m = number of nodes.

• n = number of shared memory processors per node.

– Two ways to program:

• Way 1: p MPI processes.

• Way 2: m MPI processes with n threads per MPI process.

- New third way:

• “Way 1” in some parts of the execution (the app).

• “Way 2” in others (the solver).
71

Threading under MPI

• Default approach: Successful in many applications.

• Concerns:

– Opaqueness of work/data pair assignment.

• Lack of granularity control.

– Collisions: Multiple thread models.

• Performance issue, not correctness.

• Bright spot: Intel Thread Building Blocks (TBB).

– Iterator (C++ language feature) model.

– Opaque or transparent: User choice.

App

LibA
(OpenMP)

LibB
(TBB)

72

MPI Under MPI

• Scalable multicore:

– Two different MPI architectures.

– Machines within a machine.

• Exploited in single-level MPI:

– Short-circuited messages.

– Reduce network B/W.

– Missing some potential.

• Nested algorithms.

• Already possible.

• Real attraction: No new node programming model.

• Can even implement shared memory algorithms (with
some enhancements to MPI).

“Ping-pong”
test

Latency

(microsec)

Bandwidth

(MB/sec)

Intra-node
machine

0.71 1082

Inter-node
machine

47.5 114

73

Multicore Scaling: App vs. Solver

Application:
• Scales well

(sometimes superlinear)

• MPI-only sufficient.

Solver:
• Scales more poorly.

• Memory system-limited.

• MPI+threads can help.

* Charon Results:

Lin & Shadid TLCC Report
74

MPI-Only + MPI/Threading: Ax=b

App
Rank 0

App
Rank 1

App
Rank 2

App
Rank 3

Lib
Rank 0

Lib
Rank 1

Lib
Rank 2

Lib
Rank 3

Mem
Rank 0

Mem
Rank 1

Mem
Rank 2

Mem
Rank 3

Multicore: “PNAS” Layout

Lib
Rank 0

Thread 0 Thread 1 Thread 2 Thread 3

App passes matrix and vector values to library data classes

All ranks store A, x, b data in memory visible to rank 0

Library solves Ax=b using shared memory algorithms

on the node.

75

