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Definitions

o Safety Case

A collection of arguments and evidence to demonstrate
the safety of a facility

Developed in concert with the facility as scientific
understanding advances

Includes:
Pre- and post-closure safety assessments
Descriptions of barriers and their performance
Supporting evidence (e.g., geologic analogues)
Acknowledges unresolved issues

Geologic Disposal of Radioactive Waste, IAEA, 2006
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Definitions

o Post-Closure Safety Assessment
Systematic analysis of:
the hazards associated with the facility and

the ability of the site and the design of the facility to
provide for the safety functions and meet technical
requirements

Quantifies performance and associated uncertainties
Compares to relevant safety standards

Safety assessments are site and design specific
Constructed to address regulatory requirements

Geologic Disposal of Radioactive Waste, IAEA, 2006
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Safety Case Example:
Yucca Mountain Repository License Application

U.S. DEPARTMENT OF EHERGY

DOE/RW-0573 Rev 0 W

DOE/RW-0573, Rev. 0

June 2008

* General Information (Gl)
General Description

Proposed Schedules for Construction, Receipt and
Emplacement of Waste

Physical Protection Plan
Material Control and Accounting Program
Site Characterization

Yucca Mountain Repository License Application

GENERAL INFORMATION

« Safety Analysis Report (SAR)
Repository Safety Before Permanent Closure
Repository Safety After Permanent Closure

Research and Development Program to Resolve Safety e
Questions K. b

Performance Confirmation Program
Management Systems

Yucca Mountain Repository License Application

SAFETY ANALYSIS REPORT

* Available from the NRC (http://www.nrc.gov/waste/hlw-disposal/yucca-
lic-app.html#appdocuments)
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Presenter
Presentation Notes
- The License Application is the formal document an applicant submits to the NRC
- It consists of about 5500 pages and includes General Information and a Safety Analysis Report
- The General Information Section will provide an overview of the repository’s engineering design concept , proposed construction schedules, and other general information.
- The  Safety Analysis report Section will demonstrate how the repository will be constructed, operated in a manner that protects the public and the worker health and safety and preserves the quality of the environment.
- After the license is docketed, the NRC will conduct extensive technical reviews and legal hearings during which it will consider all of the scientific and design information on the repository.
- The draft License Application is currently under review with the expectation that the final LA completed in the November timeframe.



Example

« Safety Case: Compliance Certification Application for the
Waste Isolation Pilot Plant (and applications for
recertification)

» Safety Assessment: 1996 (and 2004 and 2009)
Performance Assessment for the WIPP

« Safety Case includes Safety Assessment(s)
prepared by repository developer
reviewed by regulator
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Basic Structure for Safety Assessment

« Framework for quantitative risk assessment

1. What events and processes can take place at the
facility”?

2. How likely are these events and processes?

3. What are the consequences of the events and
processes?

(Kaplan and Garrick (1979) ‘risk triplet’)
* How certain are the answers to these questions?

* |terative process for answering these questions
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Sources of Uncertainty

 Lack of knowledge about the future state of the system
— probabilities of disruptive events

* Incomplete data
— for example, limited hydrologic data from test wells

« Spatial variability and scaling issues

— data may be available from small volumes (for example,
porosity measurements from core samples), but may be
used in the models to represent large volumes

 Abstraction of physical processes into models
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Presenter
Presentation Notes
Parameters may be best represented in performance assessment calculations by a distribution of values, rather than a single value, for a variety of reasons, including those listed above.  

Scaling issues are particularly important, because there may be circumstances where it is appropriate to use a single value, or a narrow range of values, even when the observed data span a larger range.  For example, rock porosity may vary greatly on a local scale, but if the parameter is used primarily to represent bulk storage volume in a large volume of rock, it may be appropriate to use a single, average value in the analysis.

If available data do not allow a definitive choice between alternative conceptual models, it may be possible to include both in the performance assessment calculations by sampling an index parameter that corresponds to the scientist’s belief about the relative likelihood that either model is correct.  For example, in the WIPP performance assessment large uncertainty remained about the conceptual model for gas generation by microbial activity.  Some microbiologists asserted that gas-generating microbes would not be viable in the WIPP environment, and that the correct model would have no microbial gas generation.  Others asserted that microbes would be viable, and would generate gas at an uncertain rate.  The performance assessment used both models, and sampled a parameter that allowed no microbial gas generation in one half of the realizations and allowed microbial gas generation to occur, with an uncertain rate, in the other half of the realizations.


Classification of Uncertainties

Aleatory Uncertainty

— Inherent randomness in events that could occur in the future

— Alternative descriptors: irreducible, stochastic, intrinsic, type A

— Examples:
» Time and size of an igneous event

> Time and size of a seismic event

Epistemic uncertainty

— Lack of knowledge about appropriate value or model to use
— Alternative descriptors: reducible, subjective, state of knowledge, type B

— Examples:

» Spatially averaged permeabilities, porosities, sorption coefficients, ...

» Rates defining Poisson processes
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Steps in lterative Performance Assessment

« Screen Features, Events, and Processes (FEPs) and
develop scenario classes

Answers first two questions: what can happen? How likely?

e Develop models and abstractions, along with their
scientific basis, for logical groupings of FEPs within
scenario classes

Answers third question: what are the consequences?
e Characterize uncertainty in model inputs

Answers fourth question: how certain are the answers?

e Construct integrated system model using retained FEPs
and perform calculations for the scenario classes

» Evaluate system performance, incorporating uncertainty
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Definitions: FEPsS

 Features

— Elements of engineered or natural system that are
iImportant to represent in disposal system models

— E.g., waste containers, fractures in host rock
* Events

— Future occurrences that affect evolution of the disposal
system

— E.g., seismic events
* Processes

— Physical processes that describe the evolution of the
disposal system

— E.g., water flow, metal corrosion, gas generation from
chemical reactions
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Evaluating FEPs:
Yucca Mountain
Example

* Probability and
significance criteria for
FEPs provided in 10 CFR
63.114

« 374 FEPs evaluated
o 222 excluded
152 included

 Relatively few Events,
many more Features and
Processes
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FEP Analysis

Scenario
Development

Implementation

%

f_ Identify and Classify FEPs Potentially
Important to Postclosure Performance,
Including Input from International Radioactive

Waste Disposal Programs

;

Consequence, and NRC Regulations to

%

Determine Inclusion and Exclusion

#

Scenario Classes from Retained FEPs

|

Construct Calculation of Total
Mean Annual Dose

{ Screen List of FEPs Using Probability,

Y

Specify the Implementation of Nominal
and Disruptive Events Scenario Classes
in TSPA

Construct Nominal and Disruptive Events ]

00817DC_0240.ai




Form Scenarios: Yucca Mountain Example

Group events by similar effects to form Scenario Classes

Nominal Scenario Class
* Nominal Modeling Case

Early Failure Scenario Class

* Waste Package Modeling Case
* Drip Shield Modeling Case

lgneous Scenario Class

* Intrusion Modeling Case
* Eruption Modeling Case

Seismic Scenario Class
* Ground Motion Modeling Case
 Fault Displacement Modeling Case
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Characterizing Aleatory Uncertainty

* What can happen? Define a vector a that describes an individual future, e.g.,
a=[nEW,nED,nll,nlE,nSG,nSF,ag, , a8, &, , 8, & Asr |

* NEW = number of early WP failures * ag,, = vector defining nEW early WP failures

* nED = number of early DS failures *a-p = vector defining nED early DS failures

* nll = number of igneous intrusive events *a,, = vector defining nll igneous intrusive events

* nlE = number of igneous eruptive events * 3, = vector defining nlE igneous eruptive events

* nSG = number of seismic ground motion events * agg = vector defining nSG seismic ground motion events
» nSF = number of fault displacement events * age = vector defining nSF fault displacement events

Form the set 4 of all such vectors (description of all possible futures)
A={a:a=[nEW,nED,nll,nlE,nSG,nSF, &, 8,8, 8,85 Ase |}

* How likely?

Quantitative approach: characterize each element of a with a probability
distribution

Qualitative approach: consider a few subsets of /4 separately
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Characterizing Aleatory Uncertainty

« Scenario-based approach

Define

Reference or nominal scenario — evolution of the disposal system
in the absence of unlikely disturbances

Altered evolution scenarios — unlikely events
Bounding scenarios — extreme events

Stylized scenarios — events for which no likelihood can be
expressed

Results from different scenarios are not combined;
rather, are compared separately to safety standards

Undisturbed performance
Disturbed performance
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Steps in lterative Performance Assessment

e Screen Features, Events, and Processes (FEPs) and
develop scenario classes

Answers first two questions: what can happen? How likely?

e Develop models and abstractions, along with their
scientific basis, for logical groupings of FEPs within
scenario classes

Answers third question: what are the consequences?
« Evaluate uncertainty in model inputs

Answers fourth question: how certain are the answers?

e Construct integrated system model using retained FEPs
and perform calculations for the scenario classes

» Evaluate system performance, incorporating uncertainty
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Example: Groundwater Flow at Yucca Mountain

1;,1 Present Day 150GI: | | |
} "J M Yucca Mountain “l J', | Capillal.ll'y Barrier ,
ﬁo,f'- ; - l x i -.
J& — = o g P ¥ty

} Tiva Canyon
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¥ ,t.,_l (TCw)
S —, | Panbnen
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Monsoon = | Unit (PTn)

- u’ .’ { Lower-bound analog: Yucca Mountain
Wor'y VW Upper-bound analag: Nogales, AZ
e Higher precipitation and temperature
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:{e‘rg;:g:rceiﬁ:: ;r;::mm ‘ o Easllng‘("r;;ers} o
. Infiltration at Surface Vertical Flux at Water Table
Field tests and g moe g £
models provide basis
for understanding
infiltration and flow in £ -
unsaturated rocks at i
Yucca Mountain oo o]} :

P L P IR
168000 170000 172000 174000 168000 170000 172000 174000 168000 170000 172000 174000
Nevada Coordinate E-W (m) Nevada Coordinate E-W (m) Nevada Coordinate E-W (m)

InfilrationVertical Flux [mm/yr]

0 368 12 15 18 21 24 27 30 33 36 39 42 45

Advanced Conceptual and Numerical Methods for Modeling Subsurface
Processes Regarding Nuclear Waste Repository Systems
IAEA Network of Centers of Excellence




Example: Engineered Features at Yucca Mountain

Friction Rock Bolts
(Stainless Steel)

Water Drips

(Including », &
Colloids), ° Per_forated
AN Stainless
Gas (H,0, O,, b o Steel Sets
CO;, Ny) b

= z 4 Basket Materials
Dust — ' -, (Stainless Steel/
7 a %

Drip Shield
(Titanium) Waste Form
© (Spent Nuclear Fuel,

Glass)

Waste Package
(Alloy 22,
Stainless Steel) -

_ Invert Beam
(Carbon Steel)

Emplacement Pallet
(Alloy 22,

Stainless Steel)
Invert Ballast
(Crushed Tuff)

Material testing and
models characterize
performance of the

engineered barriers

abq0063G243.ai

Temperature at the Waste Package (°C)

10 10 10 10 10
Time (years)
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Ex

ample: Estimating Dose to Hypothetical Future Humans

4090000 |

4085000

4080000 F
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UTM Northing (m)
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55 e Modeled groundwater flow paths and

R 4
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Steps in lterative Performance Assessment

e Screen Features, Events, and Processes (FEPs) and
develop scenario classes

Answers first two questions: what can happen? How likely?

e Develop models and abstractions, along with their
scientific basis, for logical groupings of FEPs within
scenario classes

Answers third question: what are the consequences?
« Evaluate uncertainty in model inputs

Answers fourth question: how certain are the answers?

e Construct integrated system model using retained FEPs
and perform calculations for the scenario classes

» Evaluate system performance, incorporating uncertainty
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Characterizing Epistemic Uncertainty

Epistemic Uncertainty in

- Parameters (model inputs) N B
« Models jﬁ’
i g
Parameter uncertainty is § fw
commonly represented by a - ﬁa
probability space
Assign probability distribution ﬁgﬁ
to each uncertain input € n 5 o i ’

Q00 Data
—— MLEfit

E={e:e=[e,e,....e]|

Model uncertainty is commonly addressed qualitatively
Comparison of alternative models
Use of a consensus model

Provide rationale for models that are selected
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Steps in lterative Performance Assessment

e Screen Features, Events, and Processes (FEPs) and
develop scenario classes

Answers first two questions: what can happen? How likely?

e Develop models and abstractions, along with their
scientific basis, for logical groupings of FEPs within
scenario classes

Answers third question: what are the consequences?
« Evaluate uncertainty in model inputs

Answers fourth question: how certain are the answers?

« Construct integrated system model using retained FEPs
and perform calculations for the scenario classes

» Evaluate system performance, incorporating uncertainty
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Example: Yucca Mountain TSPA

|
EXTErnal Process Models Run with GoldSim Fhell darfurntines
Nete: Process madel output pre- and post-procy g software do }“I‘ aSure;
§
2 2
8 s
]
3
E Time
w

E.-- Volcanic Eruption

‘ wi Ash Redistribution

g [ oee MDL-WIS-PA-000005 REV

’(-

00 AD 01, Figure 3-2[a]

Output Parameters Legend
fs Fraction of WPs with Seeps Ap Percolation Flux q; Infiltration Flux H Hydrologic Propertes Response Surface batween Pra
EBS Engineered Barrier System NOj3 Nitrate Concentration DG Drift Geometry SP  Seepage Parameters Process Models
85 Seep Flow Rate T Temperature cl Chioride Concentration RS Rock Strength  Response Surface from TSPA Model OLL
i Evaporation Rate RH  Retative Humidity I lonic Strength RF  Rockfall Size and Number =" Process Model to GoldSim
P pH 5)  Liquid Saturation tszi Saturated Zone Transport Time ) )
ZC0;?  Carbonate Concantration X  AirMass Fraction BDCF; Biosphere Dose Conversion Factor __/ Gonnaction In GoldSim
Pco, Partial Pressure of CO; q  Liquid Flux ag Gas Flux *Nate: q, derived from INFIL madel
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Mathematical Structure

* Two (probability) spaces for inputs
Aleatory uncertainty ~4={a:a=[nEW,nED,...]|
Epistemic uncertainty & = {e e=[e,e,,...,& ]}
» Notionally, a function D(z|a,e) (dose) to be evaluated
« Example: mean value of D(z|a,e)

6(7): EE[EA(D(Tla’eM )|eA)}

:L _L D(Tla,e)dA(a|e)dAJdE (e)dE

.Ls jf Y| Dy (7lae)pd,(ale)dA |de (e)dE

MC
L Scenarios

112

Advanced Conceptual and Numerical Methods for Modeling Subsurface ¢
Processes Regarding Nuclear Waste Repository Systems (S
IAEA Network of Centers of Excellence




Example: Calculation of Dose

Yucca Mountain Seismic Ground Motion Scenario

e Sample values for
epistemic uncertain inputs
(parameters) e — 300
sample elements

» Select a few representative
values for aleatory
uncertain inputs a —
seismic event time, level of
damage

e For each combination (a,e)
calculate dose over time
D(r|ae)

Advanced Conceptual and Numerical Methods for Modeling Subsurface
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Example: Calculation of Expected Dose
Yucca Mountain Seismic Ground Motion Scenario

Calculate Expectation over Aleatory Uncertainty
start
Annual Dose Integrated _
over Damage Area, Interpolated Seismic Futures,
> (6 event times) {multiple event times)
] T L - LTI
Sample Epistemic : i
Uncertainty, e, ;. =300 - . o P T
e = e(parameter uncertainties) & F / 3 B
g f ( ] H
> ® e ame om0 im0 2000 P mm b e zoom
A Tne &5 Tin: (159
Select Aleatory A
Uncertainty, a Annual Dose for Y
a = alevent times, damage areas) Possible Seismic Futures, Expected annual dose
. (6 event times, § damage areas) . curve, given e
10 - 0 -
ol i
g 0 A 4 v .-:,_ g 0 | I
ooooooooooooooooooooooooooooooooo 2 v o il
g~ t fal s R ——
i | S
1) S000 0000 15000 20000 a 1] S000 10000 15000 20000
Thne )y Tne gy

%'u g?lo
E.'D ' !ID
2 | >fn e
I <
g:g | | g s §:§ ’ *“’F - :
{0 7 — 38 wa E=]
B T:‘ﬁ’“ il 87 6 amm  wow s 2o g
Lo Thoe i) o
300 Expected Annual Summary metrics of ESI .
Dose Curves uncertainty in expected B SAR Figure 2.4-8
A annual dose curves gg
: 2
=]
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Steps in lterative Performance Assessment

e Screen Features, Events, and Processes (FEPs) and
develop scenario classes

Answers first two questions: what can happen? How likely?

e Develop models and abstractions, along with their
scientific basis, for logical groupings of FEPs within
scenario classes

Answers third question: what are the consequences?
« Evaluate uncertainty in model inputs

Answers fourth question: how certain are the answers?

e Construct integrated system model using retained FEPs
and perform calculations for the scenario classes

» Evaluate system performance, incorporating uncertainty
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Analysis of Results

Expected Annual Dose (mrem)

103
102
101
100
1071
1072
1073
1074
1075

10-6

MDL-WIS-PA-000005 REV 00 AD 01, Figure 8.1-2[a]b

Example: Yucca Mountain Total Expected Dose

LA_v5.005_ED_003000_000.gsm; LA_v5.005_EW_006000_000.gsm;
LA_v5.005_IG_003000_000.gsm; LA_v5.005_SF_010800_000.gsm;
LA_v5.005_SM_009000_003.gsm; vE1.004_GS_9.60.100_1Myr_ET[event time].gsm;

LA_v5.005_1Myr_Total_Dose_Calcs_Rev00.gsm; LA_v5.005_1Myr_Total_Dose_Rev00.JNB
T T | T T T T T T T T

Mean
— Median

= g5th Percentile
| == 5th Percentile |

L L L 1 I 1 1 L il
400,000 600,000 800,000
Time (years)

200,000
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Four questions:

4.

What determines the shape of
these curves?

What determines the magnitude
of total mean dose?

What determines the uncertainty
in total expected dose?

Are these results stable?




Modeling Cases Contributing to Total Mean Annual Dose

Mean Annual Dose (mrem)

LA_v5.005_ED_003000_000.gsm; LA_v5.005_EW_006000_000.gsm;
LA v5.005_IG 003000 _000.gsm; LA v5.005_SM_008000_003.gsm;
LA v5.005_SF_010800 _000.gsm; vE1.004_GS_9.60.100_1Myr_ET[event time].gsm;

3 LA_v5.005_1Myr_Total_Dose_Mean_Contributions_Rev00.JNB

10 T T T | T T T T T T T ( T T T }‘ T T T g .

102 — Total Seismic Fault Displacement . In Order Of |mp0rtance.
'| == Drip Shield Early Failure Igneous Intrusion 3

Waste Package Early Failure Volcanic Eruption
Seismic Ground Motion | )

Igneous Intrusion and

L

— Seismic Ground Motion
(includes effects of
j nominal processes)
3 Seismic Fault Displacement
s Early Failure, Volcanic
- B Eruption
El 200,|000 400,‘000 600,[000 800,‘000 1,000,000

Time (years)

MDL-WIS-PA-000005 REV 00 AD 01, Figure 8.1-3[a]
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Construction of Total Expected Dose

Expected Annual Dose (mrem)

vE1.004_GS_9.60,100_1Myr_ET[event time].gsm;,

vE1.004_GS_8.60.100_1Myr_Dose_Total_Rev00.JNB LA_v5.005_IG_003000_000.gsm:LA_v5.005_IG_003000_000_Total_Dose_Rev00.JNB

10% —— . 107 — — T T T T3
? ‘ ? | Intrusio
102 1| Mean 1 | - H 102 ; -gn QLS ..n....rL!S!v.n.
Median 1igneous cruptlve = 3 ]
10" L | —— 95th Percentile 2| o 10
E | —— Sth Percentile E E
o (MDL-WIS-000005 REV 00 Fig 8.2-8b) 3 3 o
101 L ] O 1o
- E + ©
102 L ] 2 102
= ——
107 L : — 2 10° —
——— £ . E
107 8 g0 Moan ]
5 :  (MDL-WIS-000005 REV 00 ADO1 e s | ]
10° ; R : 10° E Fig 8. ‘7b[d1) ~—— 5th Percentile
108 Hm S— == F[1 N I — — S
0 200000 400000 600000 800000 1000000 0 200000 400000 600000 800000 1000000
Time (years) Time (years)

LA_v5 005_ED_003000_000 gsm; LA_v5.005_EW_006000_000 gsm;
LA_v5.005_IG_003000_000 gsm; LA_v5 005_SF_010800_000.gsm;

i LA_v5.005_SM_009000_003 gsm; LA_v5.005_SM_009000_003_Total_Dose_Rev00 JNB Levy3.005:5M 00300005, asmivE:1.004- 65 9.60 100 My ET [ewertt lime].gsm;

: T 108 LA_vE.005_1Myr_Total_Dose_Calcs_Rev00.gsm; LA_v5.005_1Myr_Total_Dose_Rev00.JNB
w4 Seismic GM (+ Nominal) . Total
T : — — 1Otdl
- ) — F 4~
g 10" i N T S N E——— 5 10 L e
S o | — e g g, —
§ g
o] o
= Q g1 e
10° 1
ccc E 1072 == —
g 0° g 10°
5] 4
L 1ot | Mean g - Meap 1
l | ol ]! Median E g 10t Median B
105 J (MDL-WIS $tn Percentie | | @ ] (MDL-WIS-000005 REV 00 ADO1 | — %t Percertic | ]
Fig 8.2-11 5th Percentile | 10° - ; ercentie |
] = Fig 8.1-2[a]) 3
10% — et S * s . PR — e
1
0 200000 400000 600000 800000 1000000 0 200000 400000 600000 800000 1000000

Time (years) Time (years)

Advanced Conceptual and Numerical Methods for Modeling Subsurface
Processes Regarding Nuclear Waste Repository Systems
IAEA Network of Centers of Excellence




Decomposition of Seismic Ground Motion Dose

Expected Annual Dose (mrem)

109 LA VS 005_: SM GOQOUO _003 gsm LA v5 005 SM_ OOQDOO 003 _Total_| Dose ReVGO JNB
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Radionuclides Important to Mean Dose

Mean Annual Dose (mrem)

— Total
LA w5005 ED 003000 000 gsm; LA w5 005 BEVY 008000 _000 gsm; 14C
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. E indicates “early” and refers to the time period
Time (years) before ~ 200,000 yr. L indicates “late” and refers to
the time period after ~ 200,000 yr
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Radionuclide Inventory

Activity (Ci)
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Example Barrier Capability lllustration
Seismic GM + Nominal Processes

LA_v5.005_SM_009000_003.gsm:
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LA_v5.005_SM_009000_003_SZ_Act_Rel Rev01.JNB
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Mean Activity Released from the Saturated Zone
Seismic Ground Motion Modeling Case
Representative Subset of all Radionuclides
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Features and Processes Contributing to Repository Performance

Precipitation—) infiltration —)> seepage into repository drifts

Climate Precipitation Infiltration Seepage (mm/yr)
(mm/yr) (mm/yr)

Present-day’ 150 4 0.04
Post-10k yr? - 22 8.6

1) Nominal scenario, 10th percentile infiltration scenario, spatial averages, seepage converted from m3/WP/yr
2) Seismic + nominal, 10th percentile infiltration scenario, spatial averages, seepage converted from m3/WP/yr

Low likelihood of advection through WP outer barrier
« WP outer barrier failure generally consists of stress corrosion cracking
* Low likelihood of igneous events, rupture, general corrosion failures
« Limited water available interior to WPs

Iron oxyhydroxides from degraded WP materials sorb actinides,
buffer water chemistry away from acidic conditions

Travel times preclude transport of relatively short-lived radionuclides
(e.g. *%Pu), reduce concentrations of long-lived radionuclides
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Sensitivity Analyses

 Inputs to TSPA-LA model are uncertain — model output is uncertain

* Monte Carlo analysis — sample from probability space describing
inputs, for each sample element generate output

« Symbolically, for a vector x; of sampled values for inputs, obtain a
vector y; = f(x;) of values for the outputs

 Sensitivity analyses examine the relationship between x; and y;,
e Explain which uncertain inputs cause uncertainty in output

» Correlation methods, graphical methods, global measures such as
sample standard variation

e A. Saltelli et al — several textbooks on methods
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Uncertainty in Total Expected Dose
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Stability of Total Dose

Expected Annual Dose {(mrem)
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Replicated sampling
demonstrates that sample
size is sufficient
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Mean Annual Dose (mrem)
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Confidence interval illustrates
precision of estimate of total
mean dose




Summary

» Basic Structure for Safety Assessments
— Quantitative Risk Assessment
—What can happen? How likely?
—What are the consequences?
— How certain are the answers?
o |terative Process
— Screen Features, Events and Processes
— Develop Model
— Characterize Uncertainty
— Construct System Model
— Evaluate System Performance
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