
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

SST/macroscale

The other simulator

SAND2010-3351P

The SST/macroscale target

Simulation predictivity (pain units)

D
eg

re
e

o
f

p
ar

al
le

lis
m

100

107

101

102

103

104

105

106

Random
number

generator

Exact
hardware

model

Rough
idea

Cause
and

effect

Very
good

estimates

Microscale
simulations

Constitutive
models

Valley
of

Death

Valley
of

Death

More specifically, we want to:

• Identify causal relationships
– Sensitivity analysis (topology, noise, bandwidth, latency,

resource contention, etc.)

• Play “what if” games
– Interpolating and extrapolating runtime behavior
– Implementation effects for communication routines
– Multiple networks, perfect/”magic” operations

• Test changes to application algorithms
– Reordering, perfect scheduling, etc.

• Test novel programming models
– Fault-tolerant or fault-oblivious execution models
– Alternatives to MPI, parallel runtime designs.

High-level design

• “Process” holds application
process state
– User-space threads
– Private stacks

• “Interface” bridges threads
and DES
– Context switching for blocking

calls
– Management of

active/blocked queues

• “Simulator” handles DES
– Single-threaded (lock-free)

Example control flow

Two simulated processes exchanging data via MPI send/recv pairs

Example inheritance diagram

Partial collaboration diagram for MPI

Networks
• Currently support simplified network routing/sharing

– Contention-free

– Circuit

– Fair sharing of concurrent flows
• Overcommit

• Even split

• Throttle overcommits

• Ordered

MPI trace example: AMG2006

AMG2006 on a variety of node counts and decompositions.

MPI trace example: CTH

CTH runs on 1, 2, and 16 nodes courtesy of Courtenay Vaughan

Skeleton applications

void mpipingpong::run() {
this->mpi_->init();
mpicomm world = this->mpi_->comm_world();
mpitype type = mpitype::mpi_double;
int rank = world.rank().id;
int size = world.size().id;
if(! ((size % 2) && (rank+1 >= size))) {

// With an odd number of nodes, rank (size-1) sits out
mpiid peer(rank ^ 1); // partner nodes 0<=>1, 2<=>3, etc.
mpiapi::const_mpistatus_t stat;
for(int half_cycle = 0; half_cycle < 2*niter; ++half_cycle) {

if((half_cycle + rank) & 1)
mpi_->send(count_, type, peer, mpitag(0), world);

else
mpi_->recv(count_, type, peer, mpitag(0), world, stat);

}
}
mpi_->finalize();

}

Simulator performance

MPI ping-pong on a contention-free network. Total of 4M messages.

Simulated traffic congestion

MPI ping-pong on fat-tree network. Fixed total of 65536 messages.

Example parameter sweep: Latency

AMG2006 on 128 nodes. Bandwidth constant at 1 GB/s.

Example parameter sweep: Bandwidth

AMG2006 on 128 nodes. Latency constant at 3 µs.

DUMPI: The MPI tracer

• PMPI link-time library for trace file generation
• Full fingerprints for all MPI-2 functions
• Writes a (reasonably compact) binary trace file
• Negligible runtime overhead
• Reasonably portable (but unreadable) C code

libdumpilibdumpi commoncommon libundumpilibundumpi

MPI type identifiers
MPI function identifiers

Trace file IO
Timers

Performance counters

MPI type identifiers
MPI function identifiers

Trace file IO
Timers

Performance counters

PMPI bindings
Type mapping

Call tree tracing (gcc/icc)

PMPI bindings
Type mapping

Call tree tracing (gcc/icc)
Parsing of trace filesParsing of trace files

Example of data output by DUMPI

(converted using dumpi2ascii)
MPI_Allgatherv entering at walltime 1274314439.744512000, cputime 0.201756000 \
seconds in thread 0.

int commsize=16

int sendcount=1024

MPI_Datatype sendtype=14 (MPI_DOUBLE)

int recvcounts[16]=[1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, \
1024, 1024, 1024, 1024, 1024]

int displs[16]=[0, 1024, 2048, 3072, 4096, 5120, 6144, 7168, 8192, 9216, 10240, 11264, \
12288, 13312, 14336, 15360]

MPI_Datatype recvtype=14 (MPI_DOUBLE)

MPI_Comm comm=2 (MPI_COMM_WORLD)

MPI_Allgatherv returning at walltime 1274314439.749554000, cputime 0.202159000 \
seconds in thread 0.

Callback-driven parsing of DUMPI files

• Each MPI call is assigned a callback function
• The full set of arguments to the function is passed in as a struct
typedef int (*dumpi_allgatherv_call)(const dumpi_allgatherv *prm, uint16_t thread,

const dumpi_time *cpu, const dumpi_time *wall, const dumpi_perfinfo *perf,
void *userarg);

typedef struct dumpi_allgatherv {
/** Not an MPI argument. Added to index relevant data in the struct. */
int commsize;
/** Argument value before PMPI call */
int sendcount;
/** Argument value before PMPI call */
dumpi_datatype sendtype;
/** Argument value before PMPI call. Array of length [commsize] */
int * recvcounts;
/** Argument value before PMPI call. Array of length [commsize] */
int * displs;
/** Argument value before PMPI call */
dumpi_datatype recvtype;
/** Argument value before PMPI call */
dumpi_comm comm;

} dumpi_allgatherv;

Current efforts

• SST/macroscale
– GUI
– Redoing MPI bindings (internals)
– Better processor models
– Added networks
– Additional non-MPI programming models
– Collecting more traces at various scales
– Various collaboration efforts

• DUMPI
– Updated callback mechanism
– DUMPI to OTF converter

Acknowledgments

Contributors

• Curtis Janssen (PI)

• Helgi Adalsteinsson

• Scott Cranford

• Damian Dechev

• David Evensky

• Joseph Kenny

• Jackson Mayo

• Ali Pinar

Friends and neighbors

• Doug Doerfler

• Mike Heroux

• Mahesh Rajan

• Courtenay Vaughan

• Alan Williams

Funding

• ASC/CSSE

