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The SST/macroscale target
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More specifically, we want to:

• Identify causal relationships
– Sensitivity analysis (topology, noise, bandwidth, latency, 

resource contention, etc.)

• Play “what if” games
– Interpolating and extrapolating runtime behavior
– Implementation effects for communication routines
– Multiple networks, perfect/”magic” operations

• Test changes to application algorithms
– Reordering, perfect scheduling, etc. 

• Test novel programming models
– Fault-tolerant or fault-oblivious execution models
– Alternatives to MPI, parallel runtime designs. 



High-level design

• “Process” holds application 
process state
– User-space threads
– Private stacks

• “Interface” bridges threads 
and DES
– Context switching for blocking 

calls
– Management of 

active/blocked queues

• “Simulator” handles DES
– Single-threaded (lock-free)



Example control flow

Two simulated processes exchanging data via MPI send/recv pairs



Example inheritance diagram



Partial collaboration diagram for MPI



Networks
• Currently support simplified network routing/sharing

– Contention-free

– Circuit

– Fair sharing of concurrent flows
• Overcommit

• Even split

• Throttle overcommits

• Ordered



MPI trace example:  AMG2006

AMG2006 on a variety of node counts and decompositions.



MPI trace example:  CTH

CTH runs on 1, 2, and 16 nodes courtesy of Courtenay Vaughan



Skeleton applications

void mpipingpong::run() {
this->mpi_->init();
mpicomm world = this->mpi_->comm_world();
mpitype type = mpitype::mpi_double;
int rank = world.rank().id;
int size = world.size().id;
if(! ((size % 2) && (rank+1 >= size))) {

// With an odd number of nodes, rank (size-1) sits out
mpiid peer(rank ^ 1); // partner nodes 0<=>1, 2<=>3, etc.
mpiapi::const_mpistatus_t stat;
for(int half_cycle = 0; half_cycle < 2*niter; ++half_cycle) {

if((half_cycle + rank) & 1)
mpi_->send(count_, type, peer, mpitag(0), world);

else
mpi_->recv(count_, type, peer, mpitag(0), world, stat);

}
}
mpi_->finalize();

}



Simulator performance

MPI ping-pong on a contention-free network. Total of 4M messages.



Simulated traffic congestion

MPI ping-pong on fat-tree network. Fixed total of 65536 messages.



Example parameter sweep:  Latency

AMG2006 on 128 nodes. Bandwidth constant at 1 GB/s.



Example parameter sweep: Bandwidth

AMG2006 on 128 nodes. Latency constant at 3 µs.



DUMPI:  The MPI tracer

• PMPI link-time library for trace file generation
• Full fingerprints for all MPI-2 functions
• Writes a (reasonably compact) binary trace file
• Negligible runtime overhead
• Reasonably portable (but unreadable) C code

libdumpilibdumpi commoncommon libundumpilibundumpi
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Example of data output by DUMPI

(converted using dumpi2ascii)
MPI_Allgatherv entering at walltime 1274314439.744512000, cputime 0.201756000        \
seconds in thread 0.

int commsize=16

int sendcount=1024

MPI_Datatype sendtype=14 (MPI_DOUBLE)

int recvcounts[16]=[1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, \
1024, 1024, 1024, 1024, 1024]

int displs[16]=[0, 1024, 2048, 3072, 4096, 5120, 6144, 7168, 8192, 9216, 10240, 11264, \
12288, 13312, 14336, 15360]

MPI_Datatype recvtype=14 (MPI_DOUBLE)

MPI_Comm comm=2 (MPI_COMM_WORLD)

MPI_Allgatherv returning at walltime 1274314439.749554000, cputime 0.202159000      \
seconds in thread 0.



Callback-driven parsing of DUMPI files

• Each MPI call is assigned a callback function
• The full set of arguments to the function is passed in as a struct
typedef int (*dumpi_allgatherv_call)(const dumpi_allgatherv *prm, uint16_t thread, 

const dumpi_time *cpu, const dumpi_time *wall, const dumpi_perfinfo *perf,
void *userarg);

typedef struct dumpi_allgatherv {
/** Not an MPI argument.  Added to index relevant data in the struct. */
int  commsize;
/** Argument value before PMPI call */
int  sendcount;
/** Argument value before PMPI call */
dumpi_datatype  sendtype;
/** Argument value before PMPI call.  Array of length [commsize] */
int * recvcounts;
/** Argument value before PMPI call.  Array of length [commsize] */
int * displs;
/** Argument value before PMPI call */
dumpi_datatype  recvtype;
/** Argument value before PMPI call */
dumpi_comm  comm;

} dumpi_allgatherv;



Current efforts

• SST/macroscale
– GUI
– Redoing MPI bindings (internals)
– Better processor models
– Added networks
– Additional non-MPI programming models
– Collecting more traces at various scales
– Various collaboration efforts

• DUMPI
– Updated callback mechanism
– DUMPI to OTF converter
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