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obust data analysis requires appropriate

data abstractions and algorithms

Sandia uses semantic graphs and tensors as unifying data abstractions
® Supports rich relationship-centered analysis
e (Combines large, heterogeneous data corpora
e Different abstractions support different analytics

Real world networks B Raw, unstructured text
e Social networks  \ """ e Newspaper articles
" =& o Cyber traffic —.—=_.\ * Web documents
e etc. e etc.
Semantic oata oat Matrices &
Graph < > ‘orsor Tensors
* Graph algorithms, discrete math * Linear and multilinear algebra,
* Short paths, connection subgraphs, statistics/probability

subgraph isomorphism * Ranking, clustering



Traditional Analysis

Data
matrix

Best rank-k matrix filters out

noise and captures “latent” | Truncated
information, which improves SVD

certain data mining tasks

Examples:

Latent Semantic Analysis
Text Analysis (LSI)

Web search (HITS)
Clustering

But there may be more useful information in the data! @ o
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New Paradigm:
“Multidimensional Data Mining”

e
\#
Build a “data array” such that there is

e a data matrix for each link type.

e > -
/ Multilinear
algebra
DEDICOM

= !

Third dimension offers more . ]

explanatory power: uncovers new Tucker 7~ 7~
latent information and reveals + + ..
subtle relationships

PARAFAC

* Unique data mining capability @ Sandia
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any Types of Tensor Decompositions
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Kolda & Bader, Tensor
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~ Case Study:
> /.,' Discussion Tracking in Email
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53,733 messages
e Sjtuational awareness from 184 employees

e What can we learn from these email conversations?
- What are the major topics of conversations? erm-athor-time

Who are the major participants? array

= When are they taking place?
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Bader, Berry, Browne, Discussion tracking in Enron email @ Sandia
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Tensor analysis finds unusual activity by
associating terms with people over time

7y 7 4

Authors Authors
Term-authoriday = ., Ld_i_ . Ld_l_
array S £
@ @
Conversation #1 Conversation #2
1 I I I I
0.8 Weekly pro & college footbalH
061 Discussions about energy betting pool at Enron

projects in California

02| kil | HH\H :

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Conversation Level

Month
Key terms: California, power, games, week,
utilities, energy, utility, missed, picked, prize,
governor, market wins, scored, upsets
Key authors: J. Steffes, S. Kean, J. Dasovich, A. Pace, L. Campbell,

R. Shapiro, P. Allen, .. C. Dean @ Nofioal
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V‘, / Four-way analysis shows
> /.,' deeper relationships

4-way array: Author x Recipient x Terms x Time

® 4-way analysis may track subconversation already found
by 3-way analysis
® Provides context and temporal patterns of social network

3-way Results
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Bader, Berry, Langville, Text analysis using nonnegative @ Sandia
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matrix/tensor factorizations, in Text Mining, 2009. Laboratories



Case Study:

- /.} Pattern Analysis in Email Networks

Email communications at Enron (1998-2002)

3500

(data released by U.S. Federal Energy Regulatory Commission)

3000

2500 Emails among 184 employees
over 44 months
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o~

' Analysis shows employee roles
and communication patterns

& pattern

roles

N A
N RS > A
| L. Kitchen - President, Enron Online | 0.11 -0.09 0.53 0.00 |

Soft clustering

N

Communication patterns over time
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ur algorithms can handle missing data

' Random or
E systematic patterns
of missing data

>

Data

array

Fit model using
derivative-based
algorithms

" 4392 time-freq.

|
|
842)8

http://www.lnadehow.com/ |

64 channels 25

* Acar, Dunlavy, Kolda, Mgrup, Scalable Tensor
Factorization with Missing Data, SDM2010.
* Acar, Dunlavy, Kolda, Mgrup, Scalable Tensor

Factorization with Incomplete Data, in revision, 2010.

« Simultaneous analysis in 3 ways
will fill in the gaps

e Qur approach is faster than
alternatives

« Specialized algorithm for large-
scale problems

- 500 x 500 x 500 with 99% missing
data (1.25M nonzeros)

- 1000 x 1000 x 1000 with 99.5%
missing data (5M nonzeros)

No Missing Data  46% Missing Data
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Missing data facilitates another
approach to anomaly detection

.—>
— <€
Data
matrix

Model estimate compared
with data record

DEDICOM

PARAFAC2

PARAFAC
s
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" - 7, Preliminary ldeas for
5 /-,‘ Trading Networks

Directed edge from node A to L,/' V Energy L,/ V Oil
node B indicates that trader A~ Sy b L Agriculture | o7 P_* | -Sugar
8 ® o i—»o o o i—»o
--Soybeans

“Corn

sold to trader B .-~ T / T | Soft commodities
o MI “Metals MI

—Jan 4

Third mode: time, market, or commodity
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Adjacency
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< ttern
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PARAFAC

roles

+
3-way DEDICOM ‘

e Soft clustering of traders by their activity = ® Traders characterized by their

¢ Aggregate trading patterns among clusters ~ “authority”
e Behavior over time or by market ¢ Patterns in time or by market



