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* Well known that material and
geometric discontinuities can
generate power-law singularities.

— typically much weaker than a
crack tip singularity.

* Do some combinations of crystal and
grain boundary orientations generate
stress levels that are significantly
higher than the nominal value?

* If so, does and elevated stress
occurs over an appreciable region?
» Dependence of singular fields on
- crystal orientations
- crystal properties
- grain boundary orientation
- grain geometry and length scale

What is the nature of the singular stress field at the intersection of a
grain boundary and a stress-free edge in a columnar polycrystal?

Some notable previous work on
triple-grain junctions:

1. R. C. Picu, and V. Gupta: JAM
63, p295 (1996). Focused on
determining strength of
singularity as a function GB
angles and crystal orientations.

2. V. Tvergaard, and J. W.
Hutchinson: J Am Ceram Soc 71,
p157 (1988). Considered certain
special cases with a focus on
grain boundary cracking.
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Test results for when edge discontinuity dominates
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Analyzed highly idealized problem
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Meshed so can resolve nature of stress singularities

 radius of adjacent rings increase by a factor of 1.33
* inner ring at r/s=0.001

Current work focused on
an idealized columnar
polycrystalline 2D, plane
strain geometry.

Explicitly modeled 4
cubic crystals that have
one axis of material
symmetry perpendicular
to the top surface.

Embed crystals in an
effective isotropic
material.

Loaded in uniaxial
tension parallel to the
stress-free surface.

» 21 logarithmically spaced rings surrounding points 1 and 2
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Baseline Configuration

L=2W=80s

— L or W have negligible
effect on local stress

Regular hexagon with angle
between side edges =120°
with side length 2s = 10 um

Ya = 1= =1g= 60°, 3, = 0°.
Cu with

— C,, = 168 GPa,

- C,,=122 GPa

— Cg =76 GPa

Effective isotropic properties
for columnar Cu are E =115
GPa and v=0.354.
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Results for baseline material and geometry
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radial stress dependence of pt1 and pt2 angular stress dependence for pt1
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 Baseline configuration, but y, = v.= -v4, ¥5= 0,
« FEAresults for y, =0, 15, 30, 45, 60, 75 deg
« Only some y, generate stress singularities.
* When singular, only 1 power law term.

» Accuracy of FEA method is verified by
comparison with asymptotic A values
determined using the Stroh formalism for

anisotropic elasticity.

When the stress is singular

where

ience MatteRy

Effect of crystal orientation on strength of singularity at pt1
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K =o' s~ A(geometry, material properties)

v, (degrees)

o, =K rt /f;;(0, grain boundary angle, crystal properties and oreintation)

“‘geometry” includes overall global geometry as well as the local microstructure
and the f; functions have been normalized by setting f,(6=90°) = 1.
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Demarcation between singular and non-singular stress states

« Associated with grain boundary and crystal orientation combinations that
generate a fully continuous stress state across the interface.

 Derive equation for stress continuity across the interface in terms of y,, »,, and w.
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Governing equation is independent of crystal compliances.
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Solutions: Y« =7t nz where n = integer

T :
o=y, +y,+ ngwhere n = integer
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Effect of crystal orientation on pt1 singular stress state

o, = Kar)“fl.j (0, etc.)

K, =0 s * A(geometry, material properties)

LOMOO[O] A | & | tfs |0,0-09/0%] 0,(6=0°)/c*
1/s=0.01 1/s=0.10
0 0 0 0 - - - 0.78 0.78
15 0 15 | -15 - - - 0.66 0.75
30 0 30 | -30 - - - 0.90 0.90
45 0 45 | -45 | 0.708 | -0.113 | 0.62 1.55 1.19
60 0 60 | -60 | 0.562 | -0.169 | 0.52 1.68 1.13
75 0 75 | -75 | 0.606 | -0.108 | 0.52 1.20 0.93
60 0 60 0 0.726 | -0.168 | 0.18 2.16 1.48
60 | 45 | 30 | -45 | 1.091 | -0.078 | 0.08 1.73 1.41
60 | 75 | 15 | -15 | 0.850 | -0.077 | 0.82 1.38 1.16

ry is distance beyond which the power-law singularity and the FEA analysis values
for o, differ by more than 2% (along the ray directed away from the central crystal).
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Stress intensity factor can be affected by grains other than
those at the singular point.

o, = Karﬂfij (0, etc.)

K, =0 s * A(geometry, material properties)

LOMOO[EO] A | & | tfs |0,6-09/0%] c,(6=0°)/c*
1/s=0.01 1r/s=0.10

0 0 0 0 - - - 0.78 0.78
15 0 15 | -15 - - - 0.66 0.75
30 0 30 | -30 - - - 0.90 0.90
45 0 45 | -45 | 0.708 | -0.113 | 0.62 1.55 1.19
60 0 60 | -60 | 0.562 | -0.169 | 0.52 1.68 1.13

75 0 75 | -75 | 0.606 | -0.108 | 0.52 1.20 0.93
60 0 60 0 0.726 | -0.168 | 0.18 2.16 1.48
60 | 45 | 30 | -45 | 1.091 | -0.078 | 0.08 1.73 1.41
60 | 75 | 15 | -15 | 0.850 | -0.077 | 0.82 1.38 1.16
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Effect of crystal orientation on pt2 singular stress state

o, = Karﬂfl.j (0, etc.)

K, =0 s * A(geometry, material properties)

LOMONONEO] A [ & | 1fs | c.6-180/0c* [o,(6=180°)/c*
1/s=0.01 1/s=0.10
0 0 0 0 - - - 0.78 0.78
15 0 15 | -15 | 0.606 |-0.108 | 0.52 1.20 0.93
30 0 30 | -30 | 0.562 | -0.169 | 0.52 1.68 1.13
45 0 45 | -45 | 0.708 | -0.113 | 0.62 1.55 1.19
60 0 60 | -60 - - - 0.90 0.90
75 0 75 | -75 - - - 0.66 0.75
60 0 60 0 - - - 0.96 0.98
60 | 45 | 30 | -45 | 1.091 | -0.078 | 0.08 1.73 1.41
60 | 75 | 15 | -15 ] 0.883 | -0.139 | 0.10 2.10 1.50
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Combination with strongest singularity does not
necessarily generate highest stress at r/s = 0.1

A
o, =K,r" f;(0,etc)

K, =0 s * A(geometry, material properties)

LOMONO[WO] A | & | tfs |0 6=1809/c* [ o,(6=1809/c*
1/s=0.01 1/s=0.10
0 0 0 0 - - - 0.78 0.78
15 0 15 | -15 | 0.606 |-0.108 | 0.52 1.20 0.93
30 0 30 | -30 [ 0.562 | -0.169 | 0.52 1.68 1.13
45 0 45 | -45 | 0.708 | -0.113 | 0.62 1.55 1.19
60 0 60 | -60 - - - 0.90 0.90
75 0 75 | -75 - - - 0.66 0.75
60 0 60 0 - - - 0.96 0.98
60 | 45 | 30 | -45 | 1.091 | -0.078 | 0.08 1.73 1.41
60 | 75 | 15 | -15 ] 0.883 | -0.139 | 0.10 2.10 1.50
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Effect of crystal properties on pt1 singular stress state

Baseline case, but vary crystal material.

*Ni has C,, = 248 GPa, C,, = 155 GPa, and Cz; = 124 GPa

— effective isotropic properties of E =201 and v= 0.310.
*Si has C,, = 166 GPa, C,, = 64 GPa, and Cgz; = 80 GPa

— effective isotropic properties of E =156 and v = 0.222.
*Note R and Q are measures on anisotropy.

— R=(Cy2+2 Cg)/Cyyand Q = Ce/C

— R=1 for an isotropic material.

=0°)/c*
& e O O A By B
| % Si 1.35 1.25 0.84 -0.058 0.72 1.21 1.06
:§ Ni 1.63 0.80 0.64 -0.133 0.52 1.53 1.12
Cu 1.63 0.62 0.56 -0.169 0.52 1.68 1.13
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Size effects

e As is linear elastic fracture mechanics, there is an intrinsic
size effect, with side length playing the role of crack length.

— a uniform increase in the size of all crystals results in K,
value that scales has s+

— for baseline configuration, increasing s by a factor of 2
increases stress at a fixed distance r from the singular
point by a factor of 1.12, (i.e. 2019 = 1.12).

» The effect of increasing the size of only some of the crystals
is less obvious.

« Examined case where the center crystal geometry is the
same as that of the baseline, but the size of the
surrounding crystals is increased.
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* A limited set of results indicated no consistent trend.
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Conclusions

There are combinations of grain boundary and crystal
orientations that generate elevated stress of more than 1.4s*
for r/s < 0.1.

The region dominated by a singularity can be relatively large.

The magnitude of the elevated stress can be affected by
grains other than those at the singular point.

Orientation combinations with a more negative A do not
necessarily generate a higher stress at r/s = 0.1.

There may be relatively few special triple-grain junctions
along a surface that dominate behavior and possibly influence

initial yielding or failure.
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Additional results

16

LABORATORY DIRECTED RESEARCH & DEVELOPMENT



Center crystal is surrounded by larger crystals

|+ 4s ~»
2s
“— 06s — W 4s X+ 6s
2 1
pt1 singular stress state for y,=y.=-y, ,=0 and s=5 yum
geometry ¥4 (°) A A ry/s c,(6=0°)/c* c,(6=0°)/c*
r/s=0.01 r/s=0.10

baseline 60 0.562 -0.169 0.52 1.68 1.13
larger crystals 60 0.515 -0.170 0.13 1.54 1.03
baseline 45 0.708 -0.113 0.62 1.55 1.19
larger crystals 45 0.735 -0.113 0.62 1.61 1.24

* Share same @, so have same A.
* This limited set of results indicate that there is no consistent trend.
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Effect of grain boundary angle on pt1 stress state

« Performed a few calculations to examine the effect of grain
boundary angle.

» Used same “big grains around small grain” geometry, except
move point 1 (2) to change the grain boundary angle o, (®,) from
120° (60°) to 90° (90°) or 150° (30°).

o, I, Yo Yo Yq A A ry/s c,(6=0)/c* c,(6=0)/c*
©) ©) (©) ©) ©) r/s=0.01 r/s=0.10
90 45 0 45 -45 - 0.050 - 1.57 1.60

90 0 45 0 -15 - 0.087 - 0.65 0.77
90 0 15 0 0 - 0.002 - 0.80 0.81
150 45 0 45 -45 - 0.146 - 0.42 0.59
150 75 0 75 -75 0.690 -0.040 0.24 0.83 0.77
150 75 15 75 -75 0.694 -0.142 0.13 1.40 1.02

Deformed geometry (highly
deformed) for case where
®,=90° and with y, =45, y,=0,
Yo = 45, v4= -45.

Peak stress at r/s=0.042

=
=
=
=
'
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Asymptotic solution using Stroh’s
formalism for anisotropic elasticity




Asymptotic solution using Stroh’s formalism for anisotropic elasticity

* Material a and b are the same cubic /\
material, but with different orientations y, 'a
and y, wrt the x,-axis. o /
* The out-of-plane x;-axis of the crystals are A ! Material a
aligned so in-plane and anti-plane 2
deformations are uncoupled. A
* Solve for in-plane deformations that are %
function only of in-plane coordinates, X, w1
1
e . ®, Material b
* Use contracted notation (o,=0;;, 0,=0,,,
05=0]2) /y:\
* Cubic stiffness components C,, i,j=1,2,6 /

for material a and b are transformed into
the x,-X, coordinate system.
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Asymptotic Solution using Stroh’s formalism for anisotropic elasticity

The in-plane displacement vector # and the surface traction vector ¢ near the vertex of an
anisotropic elastic wedge can be expressed as (see T.C.T. Ting, IJSS, 1986)

2
(@) = (g a,22" +h,a,z" ) (5 +1) (1)
=1
2
1(0) = Zl( bz hwl?wzf,”) (2)
w=1T"

where ¢, and £, are arbitrary complex constants and z_=x +p x, =r(cos(O)+p sin(0)).
The scalars p, and the vectors a, and b , are the eigenvalues and the associated eigenvectors
determined by solving the linear eigenvalue problem

N, N,|a a
2 = (3)
N, N'|b b
where
N, =-T'R”, N,=T", N,=-Q+RT 'R’ (4)
and Q — |:C11 C16:| R = |:C16 C12:| T = |:C66 C26:| (5)
Cl 6 C66 C66 C26 C26 C22

Note: there are two pairs of complex conjugates when the p , are distinct.
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Asymptotic Solution using Stroh’s formalism for anisotropic elasticity

Eq. 1 and 2 can be rewritten in matrix form as (H-P Chen, IJSS, 1998)
w(0) = " AE6)q + AEO)h)/(5 +1) (6)
1) = r°(BE()q + BE(O)h) (7)

where ¢, and 4, are the components of vectors ¢ and h, respectively; a,, and b, are the

columns of matrix A and B, respectively; and the diagonal matrices F(9), E(Q) are
E(0)=Diag(n,",n;",n;"") and E(0)=Diag(n”",’ ") (8)
where 77 =cos(d)+p sin(b), o=1,2

Note that when 8=0, the location of the interface in the problem considered here,

E(6), E (6) arc simply the identify matrix.
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Asymptotic Solution using Stroh’s formalism for anisotropic elasticity

For the problem of interest, the boundary
conditions define eight homogeneous equations

B,E,()q, + B,E,(w)h, =0 /%:\
B.E, (@,)q, + B,E, (w,)h, =0 0 _
pEi( 2_)% 2 2_) g A ! Material a
AaQa + Aaha o Abe o Abhb = 0 ?
BaQa—l_Eaha_Bbe_Ebhb:O /{r
0
where the subscript defines the material, either x; T
material a or b. ®, Material b
A
The determinant of this set of equations defines /

the characteristic equation for the strength of the
singularity o.
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