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What is the nature of the singular stress field at the intersection of a 
grain boundary and a stress-free edge in a columnar polycrystal?

• Well known that material and 
geometric discontinuities can 
generate power-law singularities.

– typically much weaker than a 
crack tip singularity.

• Do some combinations of crystal and 
grain boundary orientations generate 
stress levels that are significantly 
higher than the nominal value?

• If so, does and elevated stress 
occurs over an appreciable region?

• Dependence of singular fields on 
- crystal orientations
- crystal properties
- grain boundary orientation
- grain geometry and length scale 

Some notable previous work on 
triple-grain junctions:

1. R. C. Picu, and V. Gupta: JAM 
63, p295 (1996). Focused on 
determining strength of 
singularity as a function GB 
angles and crystal orientations.

2. V. Tvergaard, and J. W. 
Hutchinson: J Am Ceram Soc 71, 
p157 (1988). Considered certain 
special cases with a focus on 
grain boundary cracking.
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Test results for when edge discontinuity dominates

• Edge discontinuity

• Failure initiated at the edge
• Slope of log(strength) vs. log(bond 

thickness) is reasonably consistent 
with theoretical expectation for 
when an edge discontinuity 
dominates 

-0.27 aluminum/epoxy 
-0.30 for steel/epoxy

Adherend

Adherend

Adhesive

Reedy, E. D., Jr. and T. R. Guess (1993). “Comparison of 
Butt Tensile Strength Data with Interface Corner Stress 
Intensity Factor Prediction.” International Journal of Solids 
and Structures 30: 2929-2936.

Reedy, E. D., Jr. and T. R. Guess (1997). “Interface Corner 
Failure Analysis of Joint Strength: Effect of Adherend 
Stiffness.” International Journal of Fracture 88: 305-314.
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Analyzed highly idealized problem
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Meshed so can resolve nature of stress singularities
• 21 logarithmically spaced rings surrounding points 1 and 2
• radius of adjacent rings increase by a factor of 1.33
• inner ring at r/s=0.001

• Current work focused on 
an idealized columnar 
polycrystalline 2D, plane 
strain geometry.

• Explicitly modeled 4 
cubic crystals  that have 
one axis of material 
symmetry perpendicular 
to the top surface.

• Embed crystals in an 
effective isotropic 
material.

• Loaded in uniaxial 
tension parallel to the 
stress-free surface.
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Baseline Configuration

• L=2W=80s

– L or W have negligible 
effect on local stress

• Regular hexagon with angle 
between side edges =120o 

with side length 2s = 10 μm

• γa = γc = -γd = 60o, γb = 0o. 

• Cu with 

– C11 = 168 GPa,

– C12 = 122 GPa

– C66 = 76 GPa

• Effective isotropic properties 
for columnar Cu are E =115 
GPa and ν = 0.354. 
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Results for baseline material and geometry
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When the stress is singular

where

“geometry” includes overall global geometry as well as the local microstructure 
and the fij functions have been normalized by setting ftt(θ=90o) = 1.

Effect of crystal orientation on strength of singularity at pt1

)noreintatio and properties crystal angle,boundary grain  ,(θσ λ
ijaij frK=

)properties materialgeometry,(* AsKa
λσ −=

• Baseline configuration, but γa = γc = -γd, γb= 0, 

• FEA results for γa =0, 15, 30, 45, 60, 75 deg 

• Only some  γa generate stress singularities.

• When singular, only 1 power law term.

• Accuracy of FEA method is verified by 
comparison with asymptotic λ values 
determined using the Stroh formalism for 
anisotropic elasticity.
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Governing equation is independent of crystal compliances.

Solutions:

Demarcation between singular and non-singular stress states

• Associated with grain boundary and crystal orientation combinations that 
generate a fully continuous stress state across the interface.

• Derive equation for stress continuity across the interface in terms of γa, γb, and ω.
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Effect of crystal orientation on pt1 singular stress state

)properties materialgeometry,(* AsKa
λσ −=

)etc. ,(θσ λ
ijaij frK=
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rd is distance beyond which the power-law singularity and the FEA analysis values 
for σrr differ by more than 2% (along the ray directed away from the central crystal).

γa (o) γb (o) γc (o) γd (o) A λ rd/s σrr(θ=0o)/σ*
r/s=0.01

σrr(θ=0o)/σ*
r/s=0.10

0 0 0 0 - - - 0.78 0.78
15 0 15 -15 - - - 0.66 0.75
30 0 30 -30 - - - 0.90 0.90
45 0 45 -45 0.708 -0.113 0.62 1.55 1.19
60 0 60 -60 0.562 -0.169 0.52 1.68 1.13
75 0 75 -75 0.606 -0.108 0.52 1.20 0.93
60 0 60 0 0.726 -0.168 0.18 2.16 1.48
60 45 30 -45 1.091 -0.078 0.08 1.73 1.41
60 75 15 -15 0.850 -0.077 0.82 1.38 1.16
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Stress intensity factor can be affected by grains other than 
those at the singular point.

)properties materialgeometry,(* AsKa
λσ −=

)etc. ,(θσ λ
ijaij frK=
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γa (o) γb (o) γc (o) γd (o) A λ rd/s σrr(θ=0o)/σ*
r/s=0.01

σrr(θ=0o)/σ*
r/s=0.10

0 0 0 0 - - - 0.78 0.78
15 0 15 -15 - - - 0.66 0.75
30 0 30 -30 - - - 0.90 0.90
45 0 45 -45 0.708 -0.113 0.62 1.55 1.19
60 0 60 -60 0.562 -0.169 0.52 1.68 1.13
75 0 75 -75 0.606 -0.108 0.52 1.20 0.93
60 0 60 0 0.726 -0.168 0.18 2.16 1.48
60 45 30 -45 1.091 -0.078 0.08 1.73 1.41
60 75 15 -15 0.850 -0.077 0.82 1.38 1.16
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Effect of crystal orientation on pt2 singular stress state

)properties materialgeometry,(* AsKa
λσ −=

)etc. ,(θσ λ
ijaij frK=
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γa (o) γb (o) γc (o) γd (o) A λ rd/s σrr(θ=180o)/σ*
r/s=0.01

σrr(θ=180o)/σ*
r/s=0.10

0 0 0 0 - - - 0.78 0.78
15 0 15 -15 0.606 -0.108 0.52 1.20 0.93
30 0 30 -30 0.562 -0.169 0.52 1.68 1.13
45 0 45 -45 0.708 -0.113 0.62 1.55 1.19
60 0 60 -60 - - - 0.90 0.90
75 0 75 -75 - - - 0.66 0.75
60 0 60 0 - - - 0.96 0.98
60 45 30 -45 1.091 -0.078 0.08 1.73 1.41
60 75 15 -15 0.883 -0.139 0.10 2.10 1.50
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Combination with strongest singularity does not 
necessarily generate highest stress at r/s = 0.1

)properties materialgeometry,(* AsKa
λσ −=

)etc. ,(θσ λ
ijaij frK=

ω2
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γa (o) γb (o) γc (o) γd (o) A λ rd/s σrr(θ=180o)/σ*
r/s=0.01

σrr(θ=180o)/σ*
r/s=0.10

0 0 0 0 - - - 0.78 0.78
15 0 15 -15 0.606 -0.108 0.52 1.20 0.93
30 0 30 -30 0.562 -0.169 0.52 1.68 1.13
45 0 45 -45 0.708 -0.113 0.62 1.55 1.19
60 0 60 -60 - - - 0.90 0.90
75 0 75 -75 - - - 0.66 0.75
60 0 60 0 - - - 0.96 0.98
60 45 30 -45 1.091 -0.078 0.08 1.73 1.41
60 75 15 -15 0.883 -0.139 0.10 2.10 1.50
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Effect of crystal properties on pt1 singular stress state

Baseline case, but vary crystal material. 

•Ni has C11 = 248 GPa, C12 = 155 GPa, and C66 = 124 GPa
– effective isotropic properties of E = 201 and ν = 0.310.

•Si has C11 = 166 GPa, C12 = 64 GPa, and C66 = 80 GPa
– effective isotropic properties of E = 156 and ν = 0.222.

•Note R and Q are measures on anisotropy. 
– R = (C12 + 2 C66)/C11 and Q = C66/C12
– R=1 for an isotropic material. 

R Q A λ rd/s
σrr(θ=0o)/σ*

r/s=0.01

σrr(θ=0o)/σ*
r/s=0.10

Si 1.35 1.25 0.84 -0.058 0.72 1.21 1.06
Ni 1.63 0.80 0.64 -0.133 0.52 1.53 1.12
Cu 1.63 0.62 0.56 -0.169 0.52 1.68 1.13
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• As is linear elastic fracture mechanics, there is an intrinsic 
size effect, with side length playing the role of crack length.

– a uniform increase in the size of all crystals results in Ka
value that scales has s-λ

– for baseline configuration, increasing s by a factor of 2 
increases stress at a fixed distance r from the singular 
point by a factor of 1.12, (i.e. 20.169 = 1.12). 

• The effect of increasing the size of only some of the crystals 
is less obvious. 

• Examined case where the center crystal geometry is the 
same as that of the baseline, but the size of the 
surrounding crystals is increased.

• A limited set of results indicated no consistent trend.

Size effects
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Conclusions

• There are combinations of grain boundary and crystal 
orientations that generate elevated stress of more than 1.4s*
for r/s < 0.1.

• The region dominated by a singularity can be relatively large.

• The magnitude of the elevated stress can be affected by 
grains other than those at the singular point. 

• Orientation combinations with a more negative λ do not 
necessarily generate a higher stress at r/s = 0.1. 

• There may be relatively few special triple-grain junctions 
along a surface that dominate behavior and possibly influence 
initial yielding or failure.
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Additional results
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Center crystal is surrounded by larger crystals

• Share same ω1 so have same λ.
• This limited set of results indicate that there is no consistent trend.

geometry γa (o) A λ rd/s σrr(θ=0o)/σ*
r/s=0.01

σrr(θ=0o)/σ*
r/s=0.10

baseline 60 0.562 -0.169 0.52 1.68 1.13

larger crystals 60 0.515 -0.170 0.13 1.54 1.03

baseline 45 0.708 -0.113 0.62 1.55 1.19

larger  crystals 45 0.735 -0.113 0.62 1.61 1.24

pt1 singular stress state for γa=γc =-γd, γb=0 and s=5 μm

2s

4s

4s 6s6s
2 1
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Effect of grain boundary angle on pt1 stress state
• Performed a few calculations to examine the effect of grain 

boundary angle.
• Used same “big grains around small grain” geometry, except 

move point 1 (2) to change the grain boundary angle ω1 (ω2) from 
120o  (60o) to 90o (90o) or 150o (30o).

ω1

(o)
Γa

(o)
γb

(o)
γc

(o)
γd

(o)
A λ rd/s σrr(θ=0)/σ*

r/s=0.01
σrr(θ=0)/σ*
r/s=0.10

90 45 0 45 -45 - 0.050 - 1.57 1.60

90 0 45 0 -15 - 0.087 - 0.65 0.77

90 0 15 0 0 - 0.002 - 0.80 0.81

150 45 0 45 -45 - 0.146 - 0.42 0.59

150 75 0 75 -75 0.690 -0.040 0.24 0.83 0.77

150 75 15 75 -75 0.694 -0.142 0.13 1.40 1.02

Deformed geometry (highly 
deformed) for case where 
ω1=90o and with γa = 45,  γb = 0,  
γc = 45, γd= -45.

Peak stress at r/s=0.042
1
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Asymptotic solution using Stroh’s 
formalism for anisotropic elasticity
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Asymptotic solution using Stroh’s formalism for anisotropic elasticity

r
θ

Material a

Material b
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• Material a and b are the same cubic 
material, but with different orientations γa
and γb wrt the x1-axis.

• The out-of-plane x3-axis of the crystals are 
aligned so in-plane and anti-plane 
deformations are uncoupled.

• Solve for in-plane deformations that are 
function only of in-plane coordinates, x1
and x2. 

• Use contracted notation (σ1=σ11, σ2=σ22, 
σ6=σ12)

• Cubic stiffness components Cij, i,j=1,2,6 
for material a and b are transformed into 
the x1-x2 coordinate system.
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The in-plane displacement vector u and the surface traction vector t near the vertex of an 
anisotropic elastic wedge can be expressed as (see T.C.T. Ting, IJSS, 1986) 

where qw and hw are arbitrary complex constants and zω=x1+pωx2 =r(cos(θ)+pωsin(θ)).
The scalars pω and the vectors aω and bω are the eigenvalues and the associated eigenvectors  
determined by solving the linear eigenvalue problem

where

and

Note: there are two pairs of complex conjugates when the pω are distinct.

Asymptotic Solution using Stroh’s formalism for anisotropic elasticity
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Asymptotic Solution using Stroh’s formalism for anisotropic elasticity

Eq. 1 and 2 can be rewritten in matrix form as (H-P Chen, IJSS, 1998)

where qω and hω are the components of vectors q and h, respectively; aω and bω, are the 
columns of matrix A and B, respectively; and the diagonal matrices                      are

where ηω=cos(θ)+pωsin(θ), ω=1,2

Note that when θ=0, the location of the interface in the problem considered here,
are simply the identify matrix.

( ) )1/()(ˆ)()( 1 ++= + δθθθ δ hEAqAEru

( )hEBqBErt )(ˆ)()( θθθ δ +=

),,Diag( )(ˆ   and    ),,Diag( )( 1
3

1
2

1
1

1
3

1
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1
1

++++++ == δδδδδδ ηηηθηηηθ EE
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Asymptotic Solution using Stroh’s formalism for anisotropic elasticity
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For the problem of interest, the boundary 
conditions define eight homogeneous equations

where the subscript defines the material, either 
material a or b. 

The determinant of this set of equations defines 
the characteristic equation for the strength of the 
singularity δ.
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