

UQ Algorithm Research and Advanced Deployment within the DAKOTA Project

Michael S. Eldred

Optimization and Uncertainty Quantification Department (1411)

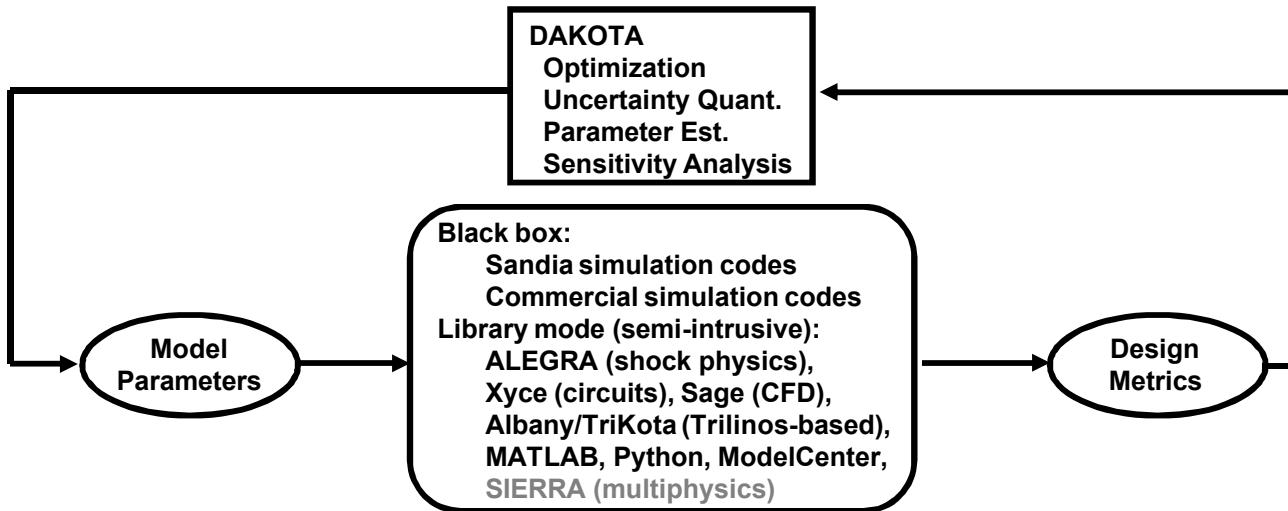
NRC Committee on Mathematical Foundations for V&V and UQ

Albuquerque NM

June 10-11, 2010

- **DAKOTA Intro**
- **Algorithm R&D 1: Adaptive UQ**
- **Algorithm R&D 2: UQ Complexity**
- **Advanced deployment initiatives**
- **Selected deployment case studies**

DAKOTA Software



*Iterative systems analysis
Multilevel parallel computing
Simulation management*

Team: ~10 core personnel in NM/CA + TPL developers

Releases: Major/Interim, Stable/VOTD; 5.0 released 12/09

DAKOTA Training: 8 sessions (~140 students) since 5.0;

26 sessions (~500 students) total since 2001.

2009 Outreach: Minitutorials at IMAC, SIAM CS&E;
SA/UQ short courses at NASA Langley, AFRL WPAFB.

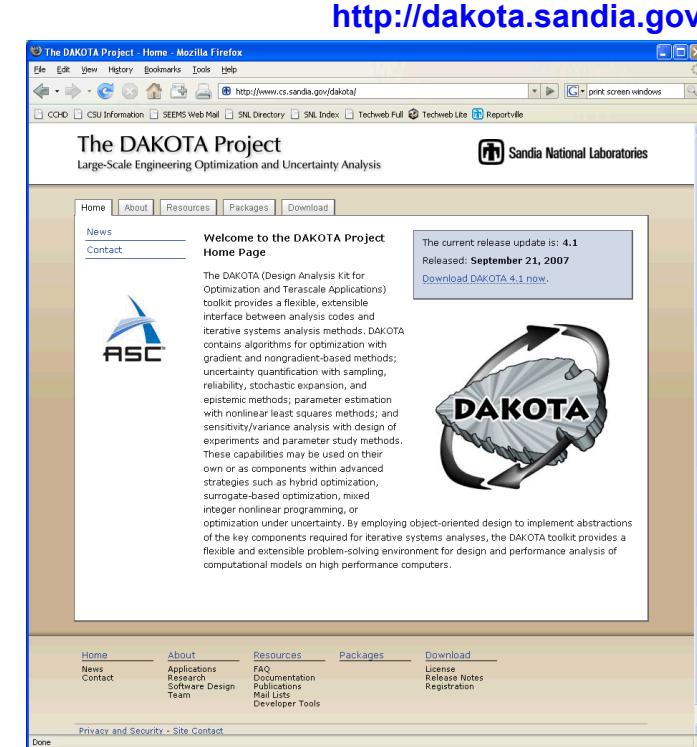
Modern SQE: Nightly portability/regression/verification tests;
subversion, Bugzilla, TRAC, Cmake; Top 2008 SQE score

Platforms: Linux/Unix, Mac, Windows (Cygwin/MinGW → native)

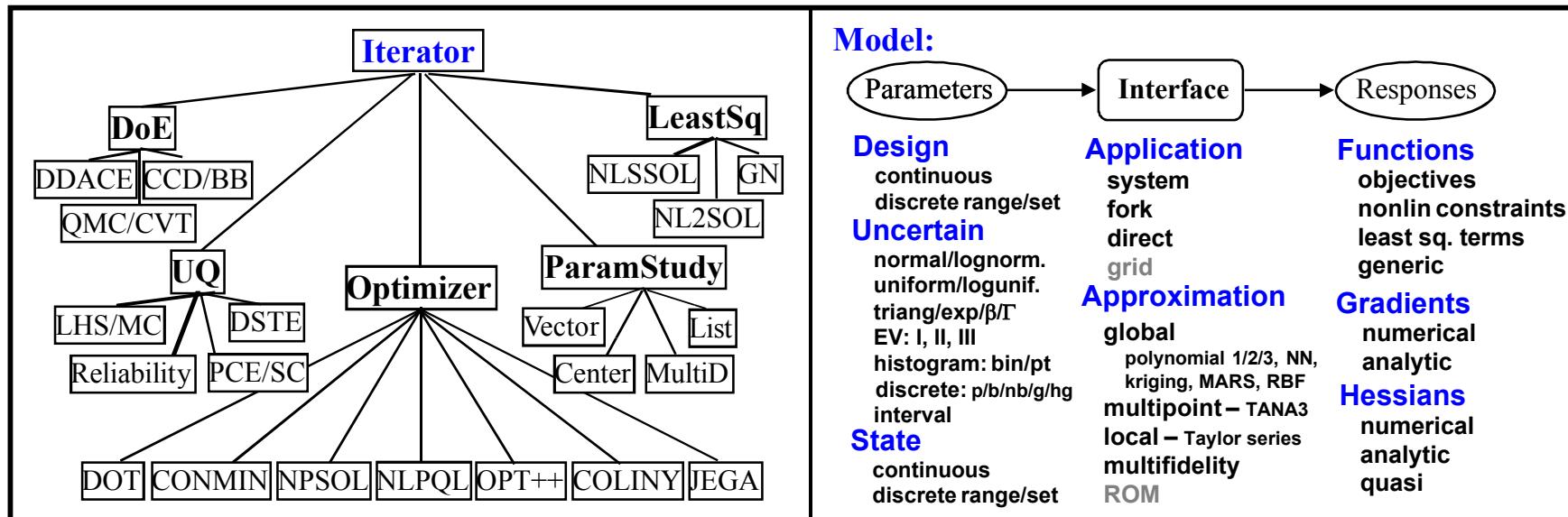
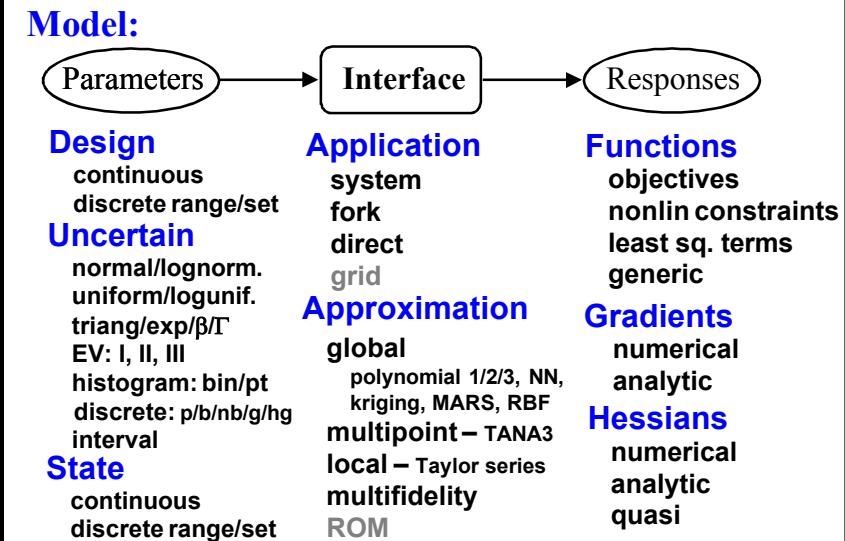
GNU LGPL: free downloads worldwide
(~6500 total ext. registrations, ~3500 distributions last yr.)

Community development: open checkouts coming (→ PSAAP)

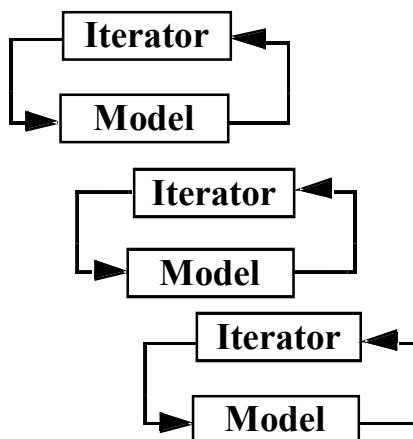
Community support: dakota-users, dakota-developers



C++ Framework

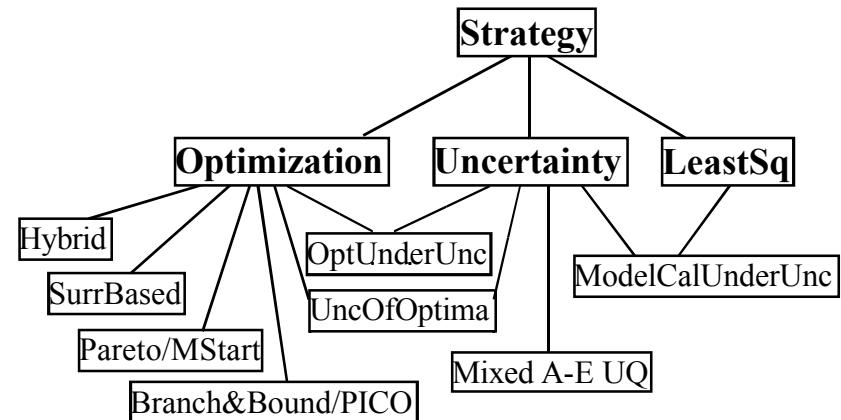


Strategy: control of multiple iterators and models



Coordination:
Nested
Layered
Cascaded
Concurrent
Adaptive/Interactive

Parallelism:
Asynchronous local
Message passing
Hybrid
4 nested levels with
Master-slave/dynamic
Peer/static



Uncertainty Quantification Algorithms @ SNL: New methods bridge robustness/efficiency gap

	Production	New	Under dev.	Planned	Collabs.
Sampling	Latin Hypercube, Monte Carlo	Importance, Incremental		Bootstrap, Jackknife	FSU
Reliability	<i>Local:</i> Mean Value, First-order & second-order reliability methods (FORM, SORM)	<i>Global:</i> Efficient global reliability analysis (EGRA) Research: Tailoring & Adaptivity		gradient- enhanced EGRA	<i>Local:</i> Notre Dame, <i>Global:</i> Vanderbilt
Stochastic expansion	Adv. Deployment Fills Gaps	Tailored polynomial chaos & stochastic collocation with extended basis selections	Anisotropic sparse grid, cubature, p-adaptive, multiphysics	h-adaptive, hp-adaptive, gradient- enhanced, discrete	Stanford, Purdue, CU Boulder, USC, VPISU
Other probabilistic		Random fields/ stochastic proc.		Dimension reduction	Cornell, Maryland
Epistemic	Interval-valued/ Second-order prob. (nested sampling)	Opt-based interval estimation, Dempster-Shafer	Bayesian	Imprecise probability	LANL, Applied Biometrics
Metrics & Global SA	Importance factors, Partial correlations	Main effects, Variance-based decomposition	Stepwise regression		UNM

Algorithm R&D in Adaptive UQ

Drivers

- High random dimensionality → adaptive methods, **adjoint enhancement**
- Complex random environments → epistemic/mixed UQ, model form/multifidelity, RF/SP, multiphysics/multiscale

Stochastic expansions:

- Polynomial chaos expansions (PCE): known basis, compute coeffs
- Stochastic collocation (SC): known coeffs, form interpolants
- Adaptive approaches: emphasize key dimensions
 - Uniform/adaptive p-refinement (FY10)
 - h-/hp-adaptive collocation (FY11-12)
- Sparse adaptive global methods: scale as $m^{\log r}$ with $r \ll n$

EGRA:

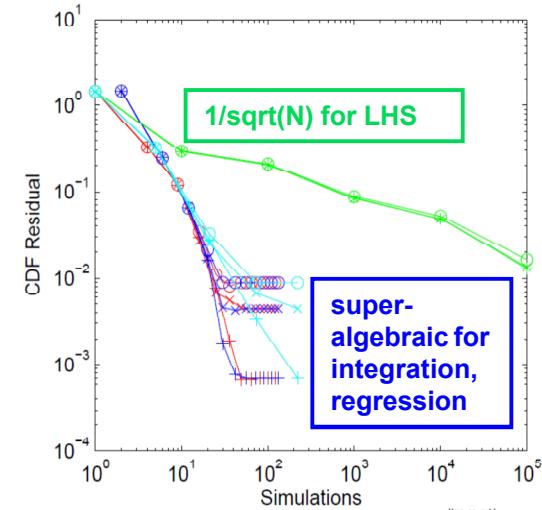
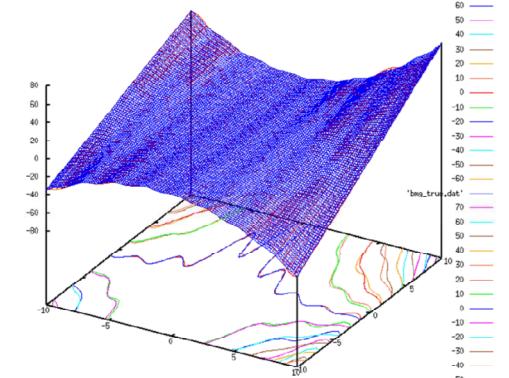
- **Adaptive GP refinement** for tail probability estimation
- Accuracy similar to exhaustive sampling at cost similar to local reliability assessment
- Global method that scales as $\sim n^2$

Sampling:

- Importance sampling (**adaptive refinement**)
- Incremental MC/LHS (**uniform refinement**)

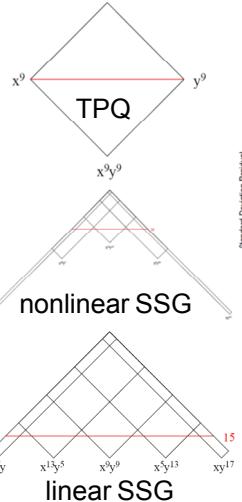
$$R = \sum_{j=0}^P \alpha_j \Psi_j(\xi)$$

$$R = \sum_{j=1}^{N_p} r_j \mathbf{L}_j(\xi)$$



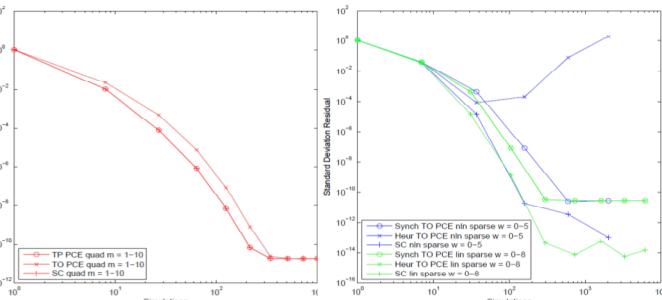
Tailoring of Stochastic Expansions: Fine-grained Control → Smart Adaptive Methods

Tailoring of PCE form



Eliminate (approximate) heuristics and trial & error
Maximize performance of PCE and close /
eliminate performance gap with SC

$$\Psi_j(\xi) = \prod_{i=1}^n \psi_{m_i^j}(\xi_i)$$



Tailoring of basis polynomials

Askey family

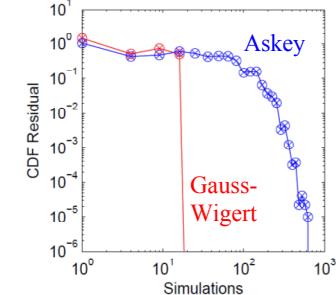
Distribution	Density function	Polynomial	Weight function	Support range
Normal	$\frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$	Hermite $H_e(x)$	$e^{-\frac{x^2}{2}}$	$[-\infty, \infty]$
Uniform	$\frac{1}{2}$	Legendre $P_n(x)$	1	$[-1, 1]$
Beta	$\frac{(1-x)^\alpha (1+x)^\beta}{2^{\alpha+\beta+1} B(\alpha+1, \beta+1)}$	Jacobi $P_n^{(\alpha, \beta)}(x)$	$(1-x)^\alpha (1+x)^\beta$	$[-1, 1]$
Exponential	e^{-x}	Laguerre $L_n(x)$	e^{-x}	$[0, \infty]$
Gamma	$\frac{x^\alpha e^{-x}}{\Gamma(\alpha+1)}$	Generalized Laguerre $L_n^{(\alpha)}(x)$	$x^\alpha e^{-x}$	$[0, \infty]$

Other PDFs:

nonlinear variable
transformations

numerically-generated
orthogonal polynomials

$$\begin{bmatrix} \alpha_0 & \sqrt{\beta_1} & 0 \\ \sqrt{\beta_1} & \alpha_1 & \sqrt{\beta_2} \\ 0 & \sqrt{\beta_2} & \alpha_2 \\ & \ddots & \ddots \\ & \ddots & \ddots \end{bmatrix}$$

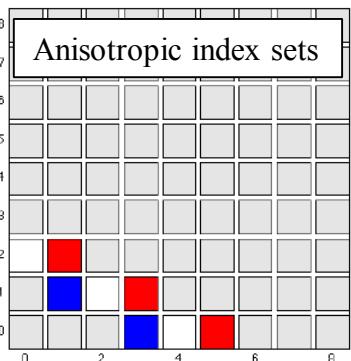


Tailored & synchronized expansion
form with optimal bases

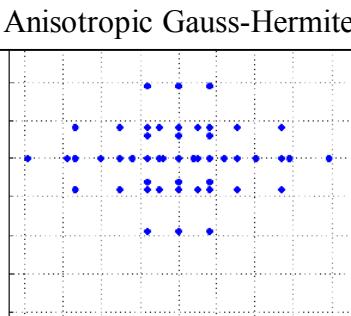
Advanced numerical integration

Anisotropic Smolyak:
(linear index set constraint)

$$w\underline{\alpha} - |\alpha| < \sum_{n=1}^d (i_n - 1)\alpha_n \leq w\underline{\alpha}$$

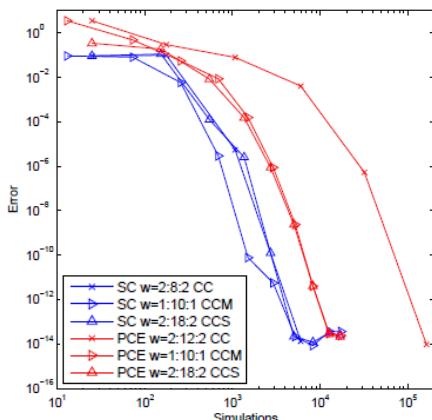
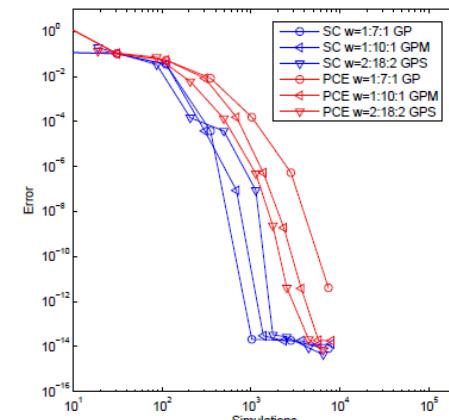


Anisotropic Gauss-Hermite



Restricted exponential growth (slow/moderate)

- Synchronize with Gaussian linear growth
- Exploit point nesting without sacrificing integrand uniformity



Initial Adaptive Methods

$$\begin{aligned}
 f_{PC}(\mathbf{x}) = & f_0 + \sum_{i=1}^n \sum_{\alpha \in \mathcal{I}_i} f_{\alpha} \Psi_{\alpha}(x_i) \\
 & + \sum_{1 \leq i_1 < i_2 \leq n} \sum_{\alpha \in \mathcal{I}_{i_1, i_2}} f_{\alpha} \Psi_{\alpha}(x_{i_1}, x_{i_2}) + \dots \\
 & + \sum_{1 \leq i_1 < \dots < i_s \leq n} \sum_{\alpha \in \mathcal{I}_{i_1, \dots, i_s}} f_{\alpha} \Psi_{\alpha}(x_{i_1}, \dots, x_{i_s}) \\
 & + \dots + \sum_{\alpha \in \mathcal{I}_{1, 2, \dots, n}} f_{\alpha} \Psi_{\alpha}(x_1, \dots, x_n)
 \end{aligned}$$

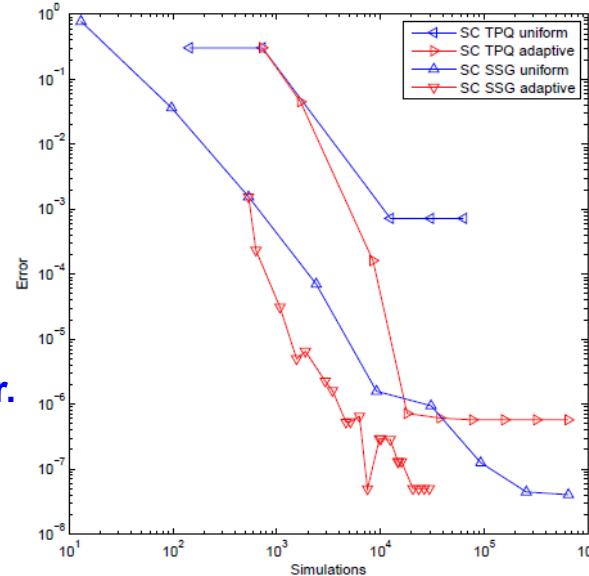
Uniform and adaptive p -refinement:

- Uniform: isotropic TPQ/SSG
 - convergence: 2-norm of change in resp. covariance
- Dimension adaptive: anisotropic TPQ/SSG
 - Start from **low-order isotropic** or set of 1-D experiments
 - PCE/SC: **analytic VBD** → Sobol' indices
 - PCE: spectral coefficient decay
 - PCE/SC: *a posteriori* error/conv. rate est. (in QOI!)
 - Main effects → **aniso TPQ, aniso SSG w/ linear index constr.**

$$w\underline{\alpha} - |\alpha| < \sum_{n=1}^d (i_n - 1)\alpha_n \leq w\underline{\alpha}$$

- Interactions → **aniso SSG w/ nonlinear index constraint**

$$\begin{aligned}
 SU_{j_1, \dots, j_t}^T = & \sum_{(i_1, \dots, i_s) \in \mathcal{J}_{j_1, \dots, j_t}} SU_{i_1, \dots, i_s} \\
 SU_{i_1 \dots i_s} = & \sum_{\alpha \in \mathcal{I}_{i_1, \dots, i_s}} f_{\alpha}^2 E[\Psi_{\alpha}^2] / D_{PC}
 \end{aligned}$$



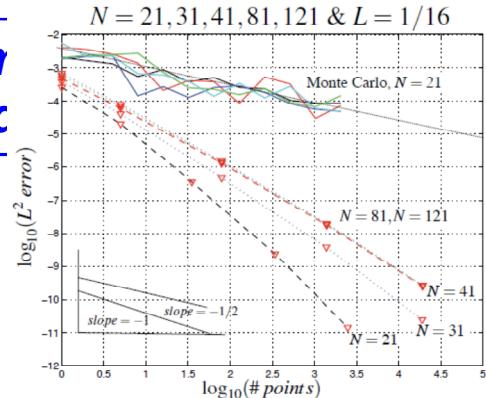
h -adaptive:

- Discretize based on error est. (detect discontinuity/singularity)
 - Najm, Karniadakis, Zabaris, Aluru, et al.
 - Identify/resolve important *regions* (not just dimensions)

hp -adaptive:

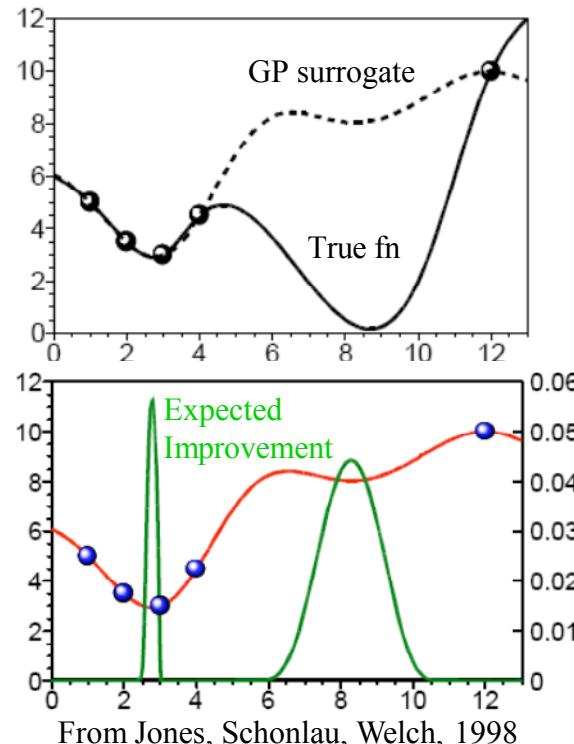
- Ultimate goal is to do both:
 - p -adaptive for performance (convergence rate)
 - h -adaptive for robustness (discontinuity/singularity)

*t din
of c*

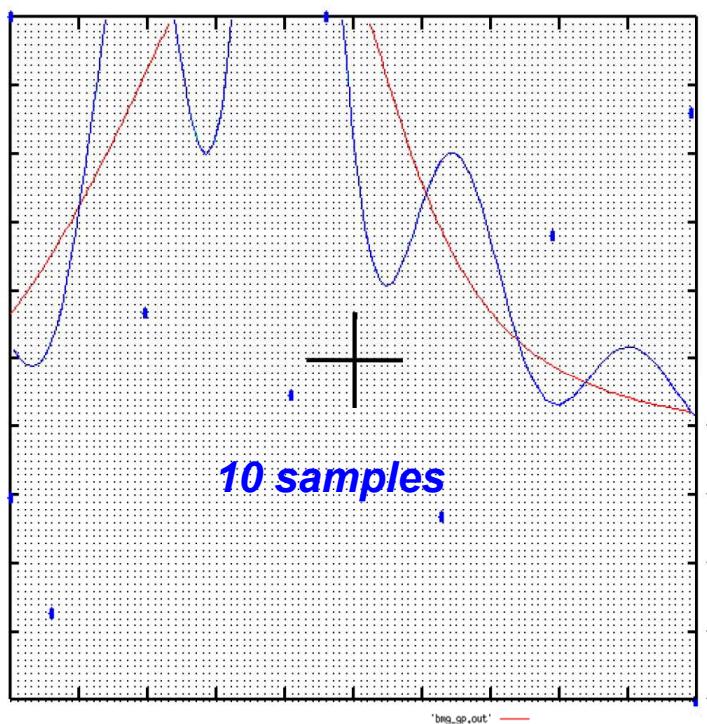
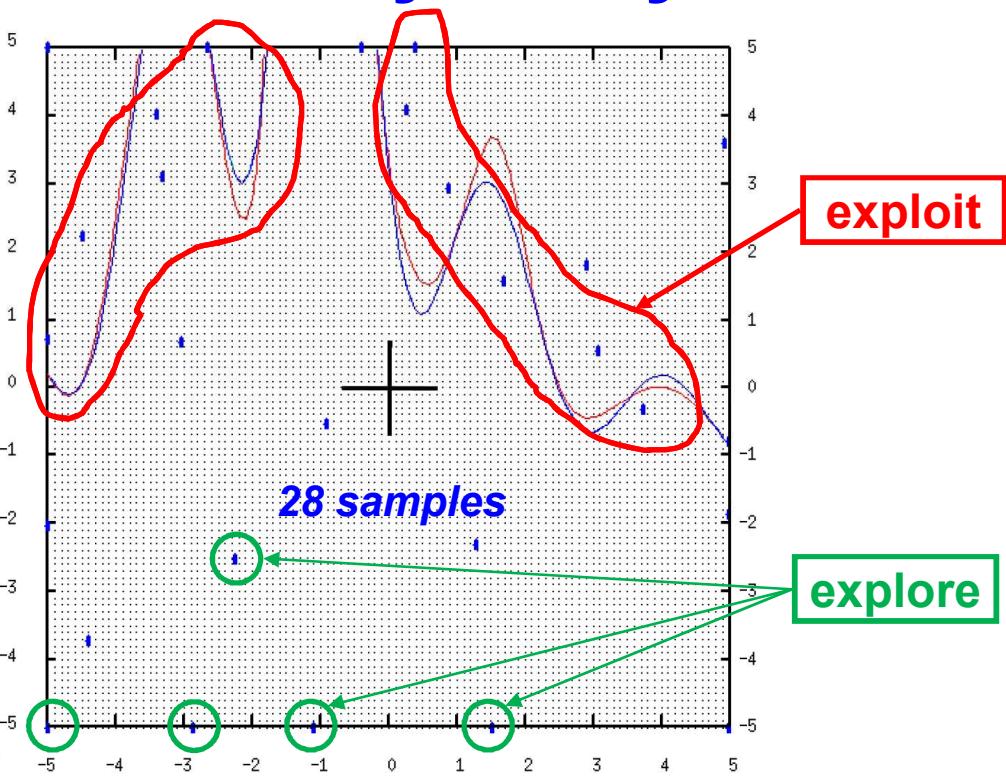
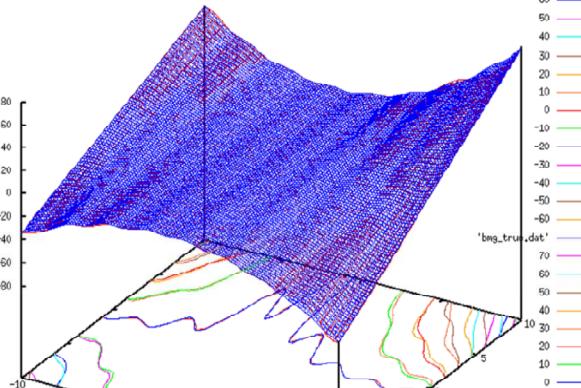


Efficient Global Reliability Analysis (EGRa)

- **Address known failure modes of local reliability methods:**
 - Nonsmooth: fail to converge to an MPP
 - Multimodal: only locate one of several MPPs
 - Highly nonlinear: low order limit state approxs. fail to accurately estimate probability at MPP
- **Based on EGO (surrogate-based global opt.), which exploits special features of GPs**
 - Mean and variance predictions: formulate expected improvement (EGO) or expected feasibility (EGRa)
 - Balance explore and exploit in computing an optimum (EGO) or locating the limit state (EGRa)



Efficient Global Reliability Analysis



Reliability Method	Function Evaluations	First-Order p_f (% Error)	Second-Order p_f (% Error)	Sampling p_f (% Error, Avg. Error)
No Approximation	70	0.11797 (277.0%)	0.02516 (-19.6%)	—
x-space AMV ²⁺	26	0.11797 (277.0%)	0.02516 (-19.6%)	—
u-space AMV ²⁺	26	0.11777 (277.0%)	0.02516 (-19.6%)	—
u-space TANA	131	0.11797 (277.0%)	0.02516 (-19.6%)	—
LHS solution	10k	—	—	0.03117 (0.385%, 2.847%)
LHS solution	100k	—	—	0.03126 (0.085%, 1.397%)
LHS solution	1M	—	—	0.03129 (truth , 0.339%)
x-space EGRA	35.1	—	—	0.03134 (0.155%, 0.433%)
u-space EGRA	35.2	—	—	0.03133 (0.136%, 0.296%)

Accuracy similar to exhaustive sampling at cost similar to local reliability assessment

Extend Scalability through Adjoint Derivative-Enhancement

PCE:

- Linear regression with derivatives
 - Gradients/Hessians \rightarrow addtnl. eqns.

SC:

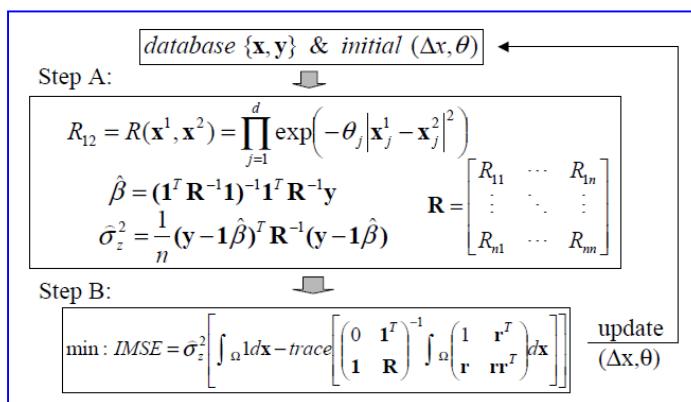
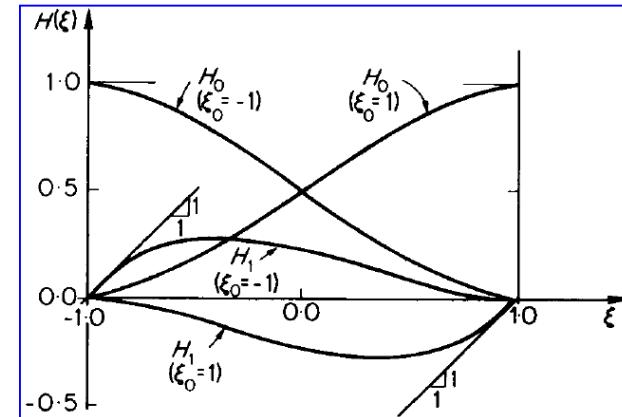
- Gradient-enhanced interpolants
 - Cubic Lagrange splines (discretization \rightarrow h-adaptive)
 - Hermitian polynomials

EGRA:

- Gradient-enhanced kriging/cokriging
 - Interpolates function values and gradients
 - Scaling: $n^2 \rightarrow n$

$$\begin{bmatrix} \vdots & \vdots & \vdots & \vdots \\ \pi_{0,j}(\vec{\xi}_i) & \pi_{1,j}(\vec{\xi}_i) & \cdots & \pi_{P,j}(\vec{\xi}_i) \\ \frac{\partial \pi_{0,j}}{\partial \xi_1}(\vec{\xi}_i) & \frac{\partial \pi_{1,j}}{\partial \xi_1}(\vec{\xi}_i) & \cdots & \frac{\partial \pi_{P,j}}{\partial \xi_1}(\vec{\xi}_i) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \pi_{0,j}}{\partial \xi_{n_\xi}}(\vec{\xi}_i) & \frac{\partial \pi_{1,j}}{\partial \xi_{n_\xi}}(\vec{\xi}_i) & \cdots & \frac{\partial \pi_{P,j}}{\partial \xi_{n_\xi}}(\vec{\xi}_i) \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix} \begin{pmatrix} \vec{u}^{(m,j)} \\ \vec{u}^{(m+1,j)} \\ \vdots \\ \vec{u}^{(m+n_\xi,j)} \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ \vec{u}_i \\ \frac{\partial \vec{u}_i}{\partial \xi_1} \\ \vdots \\ \frac{\partial \vec{u}_i}{\partial \xi_{n_\xi}} \\ \vdots \end{pmatrix}$$

$$a_j^i = \begin{cases} 1 & \text{for } i = 1 \\ \prod_{\substack{l=1 \\ l \neq j}}^{j+2} \frac{x - x_l^i}{x_j^i - x_l^i} & \text{if } x \in [x_j^i, x_{j+1}^i], \quad j = 2, \dots, m_i - 2 \\ \prod_{\substack{l=j+1 \\ l \neq j}}^{j+2} \frac{x - x_l^i}{x_j^i - x_l^i} & \text{if } x \in [x_j^i, x_{j+1}^i], \quad j = 1 \\ \prod_{\substack{l=j-1 \\ l \neq j}}^{j+1} \frac{x - x_l^i}{x_j^i - x_l^i} & \text{if } x \in [x_j^i, x_{j+1}^i], \quad j = m_i - 1 \\ 0 & \text{otherwise} \end{cases}$$



Algorithm R&D in UQ Complexity

Drivers

- High random dimensionality → adaptive methods, adjoint enhancement
- Complex random env. → mixed UQ, model form/multifidelity, RF/SP, multiphysics/multiscale

Stochastic sensitivity analysis

- Aleatory or combined expansions including nonprobabilistic dimensions s → sensitivities of moments w.r.t. design and/or epistemic parameters

Design and Model Calibration Under Uncertainty

Mixed Aleatory-Epistemic UQ

- SOP, IVP, and DSTE approaches that are more accurate and efficient than traditional nested sampling

Random Fields / Stochastic Processes (Encore, PECOS)

Multiphysics (multiscale) UQ:

- Invert UQ & multiphysics loops → transfer UQ stats among codes

Bayesian Inference:

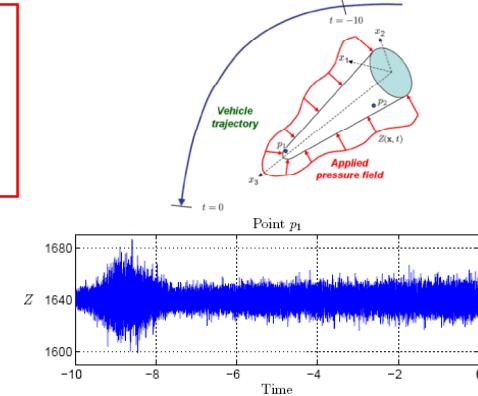
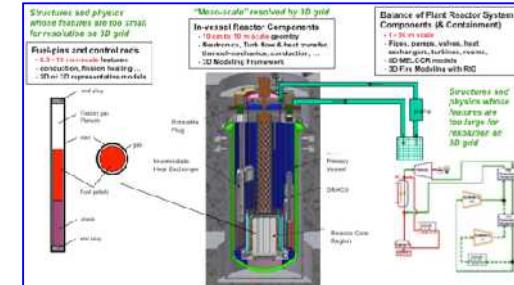
- Collaborations w/ LANL (GPM), UT (Queso), Purdue/MIT (gPC)

Model form:

- Multifidelity UQ (hierarchy), Bayesian model averaging (ensemble)

$$R(\xi, s) = \sum_{j=0}^P \alpha_j(s) \Psi_j(\xi)$$

$$R(\xi, s) = \sum_{j=0}^P \alpha_j \Psi_j(\xi, s)$$

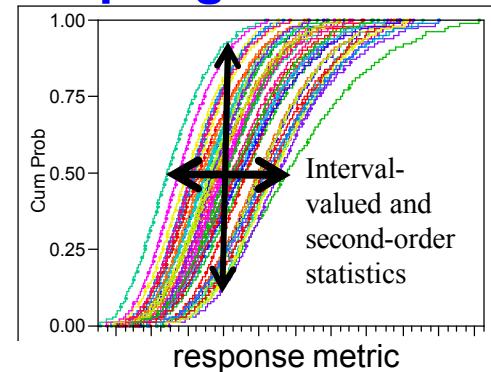
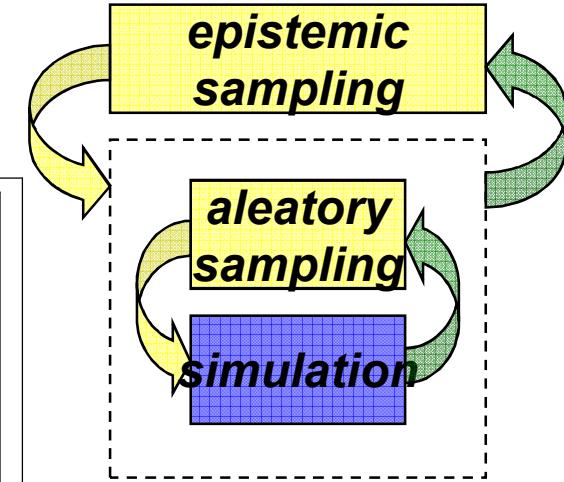


Mixed Aleatory-Epistemic UQ: IVP, DSTE, and SOP

Epistemic uncertainty (aka: subjective, reducible, lack of knowledge uncertainty): insufficient info to specify objective probability distributions

Traditional approach: nested sampling

- Expensive sims \rightarrow under-resolved sampling (especially @ outer loop)
- Under-prediction of credible outcomes



Algorithmic approaches

- Interval-valued probability (IVP), aka probability bounds analysis (PBA)
- Dempster-Shafer theory of evidence (DSTE)
- Second-order probability (SOP), aka probability of frequency

Increasing epistemic structure (stronger assumptions)

Address accuracy and efficiency

- Inner loop: stochastic exp. that are epistemic-aware (aleatory, combined)
- Outer loop:
 - IVP, DSTE: opt-based interval estimation, global (EGO) or local (NLP) \rightarrow
 - SOP: nested stochastic exp. (nested expectation is only post-processing in special cases)

$$\begin{array}{ll} \text{minimize} & M(s) \\ \text{subject to} & s_L \leq s \leq s_U \\ \\ \text{maximize} & M(s) \\ \text{subject to} & s_L \leq s \leq s_U \end{array}$$

Mixed Aleatory-Epistemic UQ: IVP, SOP, and DSTE based on Stochastic Expansions

Interv Est Approach	UQ Approach	Expansion Variables	Evaluations (Fn, Grad)	Area	β
---------------------	-------------	---------------------	------------------------	------	---------

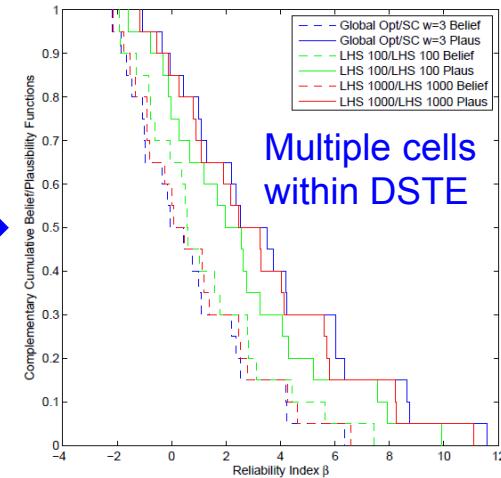
IVP SC SSG Aleatory: β interval converged to 5-6 digits by 300-400 evals

EGO	SC SSG w = 1	Aleatory	(84/91, 0/0)	[75.0002, 374.999]	[-2.26264, 11.8623]
EGO	SC SSG w = 2	Aleatory	(372/403, 0/0)	[75.0002, 374.999]	[-2.18735, 11.5900]
EGO	SC SSG w = 3	Aleatory	(1260/1365, 0/0)	[75.0002, 374.999]	[-2.18732, 11.5900]
EGO	SC SSG w = 4	Aleatory	(3564/3861, 0/0)	[75.0002, 374.999]	[-2.18732, 11.5900]
NPSOL	SC SSG w = 1	Aleatory	(21/77, 21/77)	[75.0000, 375.000]	[-2.26264, 11.8623]
NPSOL	SC SSG w = 2	Aleatory	(93/341, 93/341)	[75.0000, 375.000]	[-2.18735, 11.5901]
NPSOL	SC SSG w = 3	Aleatory	(315/1155, 315/1155)	[75.0000, 375.000]	[-2.18732, 11.5900]
NPSOL	SC SSG w = 4	Aleatory	(891/3267, 891/3267)	[75.0000, 375.000]	[-2.18732, 11.5900]

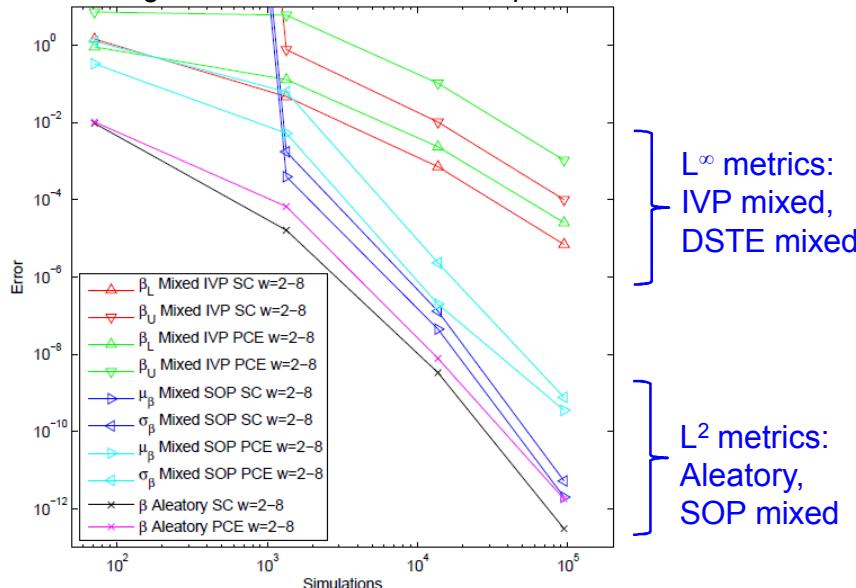
IVP nested LHS sampling: converged to 2-3 digits by 10^8 evals

LHS 100	LHS 100	N/A	$(10^4/10^4, 0/0)$	[80.5075, 338.607]	[-2.14505, 8.64891]
LHS 1000	LHS 1000	N/A	$(10^6/10^6, 0/0)$	[76.5939, 368.225]	[-2.19883, 11.2353]
$LHS 10^4$	$LHS 10^4$	N/A	$(10^8/10^8, 0/0)$	[76.4755, 373.935]	[-2.16323, 11.5593]

Fully converged area interval = [75., 375.], β interval = [-2.18732, 11.5900]



Convergence rates for combined expansions



Impact: render mixed UQ studies practical for large-scale applications

Current:

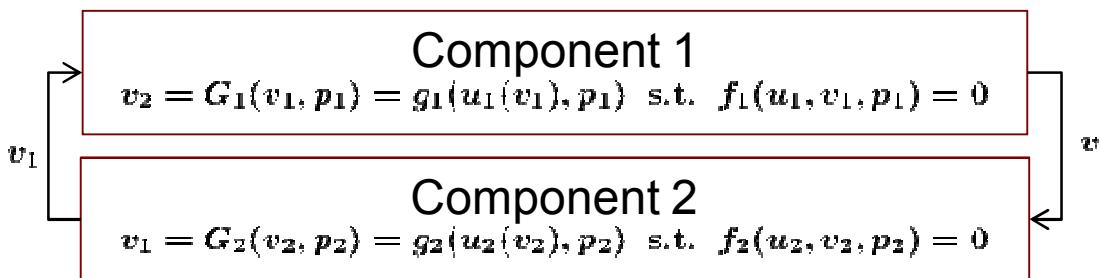
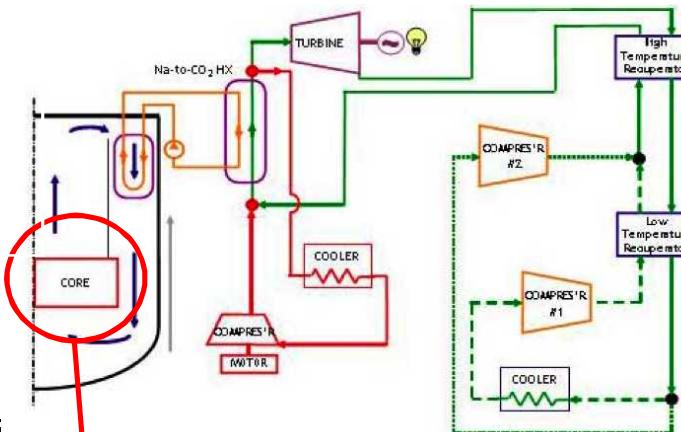
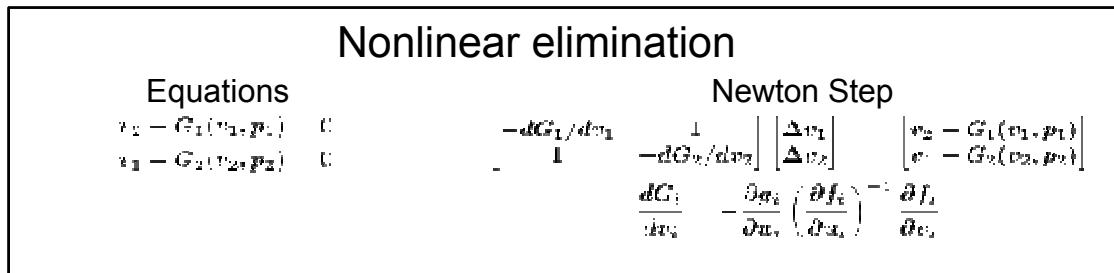
- Global or local opt. for epistemic intervals \rightarrow accuracy or scaling w/ epistemic dimension
- Global or local UQ for aleatory statistics \rightarrow accuracy or scaling w/ aleatory dimension

Future:

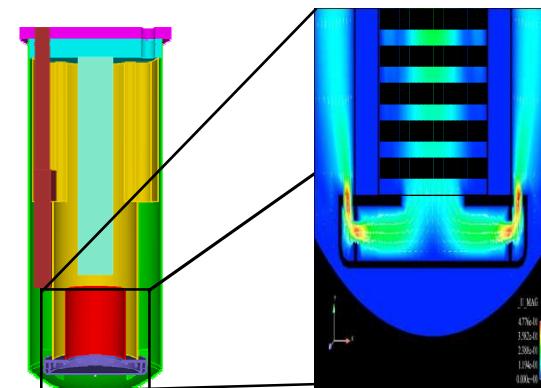
- adaptive and adjoint-enhanced global methods \rightarrow accuracy and scaling

ASCR: Multi-Physics and Network-Coupled UQ

- Component-level UQ via stochastic expansions
- Stochastic dimension reduction at component interfaces (generate new bases orthogonal to (implied) output PDFs)
- Strongly coupled solver technology for coupled stochastic problems



$$\left. \begin{aligned} \frac{1}{\langle \Psi_j^2 \rangle} ((\hat{v}_2(\xi) - \hat{G}_1(\xi)) \Psi_j(\xi)) &= 0 \\ \frac{1}{\langle \Psi_j^2 \rangle} ((\hat{v}_1(\xi) - \hat{G}_2(\xi)) \Psi_j(\xi)) &= 0 \end{aligned} \right\} \Rightarrow \begin{cases} v_{2j} - G_{1j} = 0 \\ v_{1j} - G_{2j} = 0 \end{cases}, \quad j = 0, \dots, P$$



High-fidelity Multi-physics Component Model (Core)

Proposed Multi-scale UQ research: LDRD, ASCR

Deployment

Address core usability barriers

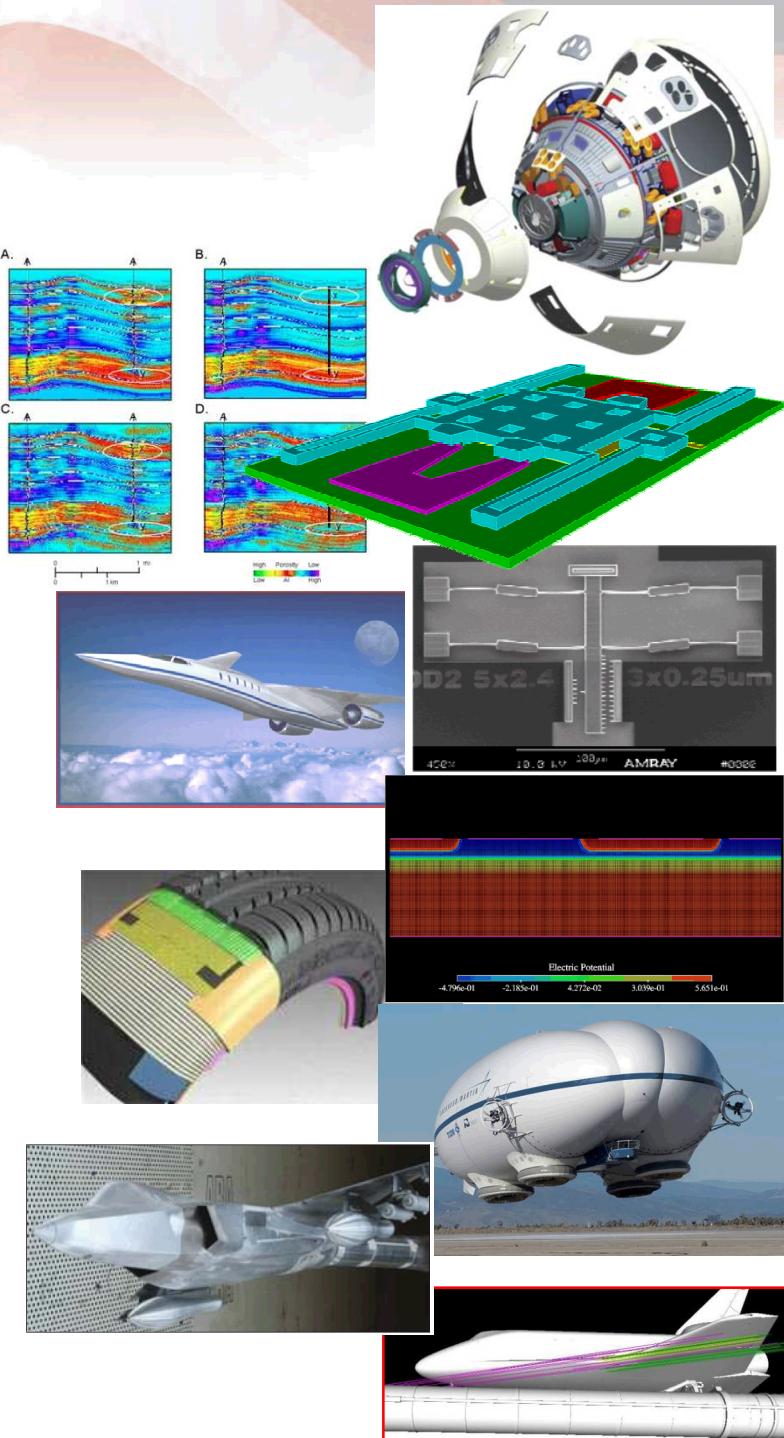
- JAGUAR
- Library embedding

Impact Sandia missions

- Technology insertion
 - ASC milestones
 - Early adopters

Partnerships

- Government: LLNL, LANL, ORNL, INL, NASA, DOD
- Industry: Lockheed Martin, Goodyear, Exxon Mobil
- University: MIT, Cornell, CU Boulder, Vanderbilt, USC, FSU, Notre Dame, VPISU, UNM
 - CSRI students/postdocs, faculty sabbaticals
 - ASC PSAAP: UT Austin (Bayesian), Purdue (cubature), UIUC (adaptive collocation), Caltech (global opt.), Michigan (gradient-enhanced interpolation), Stanford (adaptive collocation)



Advanced Deployment: JAGUAR User Interface

- Eclipse-based rendering of full DAKOTA input spec.
- Automatic syntax updates
- Tool tips, Web links, help
- Symbolics, sim. interfacing

- Flat text editor for experienced users
- Keyword completion
- Automatically synchronized with GUI widgets

- Simplified views for high-use applications (“Wizards”)

The figure displays three windows of the JAGUAR user interface:

- Resource - proj1/mydak.i - Jaguar**: Shows the 'Resource' view with a tree structure of project components: Sections, STRATEGY, MODEL, METHOD, VARIABLES, INTERFACE, and RESPONSES. A 'type filter text' input field is present.
- Resource - JAGUAR/jaguar/misc_files/constropt.i - Jaguar**: Shows the 'Resource' view with a text editor containing a DAKOTA input file named 'constropt.i'. The file includes sections for strategy, method, variables, interface, and responses, with various parameters and their values.
- Dakota LHS Wizard**: Shows a 'Specify Variables' dialog. It includes a 'Uniform Uncertainty' section with 'samples' (100) and 'uniform_uncertain' (2). Below is a table for defining variable bounds, with a row for 'alpha' with 'lower_bounds' (0.5) and 'upper_bounds' (1.0). Buttons for 'Add row(s)', 'Delete selected row(s)', 'Duplicated selected row', 'Generate samples', and 'Save input deck' are at the bottom.

Impact: streamline problem set-up for user base, spanning novices to experts

Advanced Deployment: Embedding

Make DAKOTA natively available within application codes

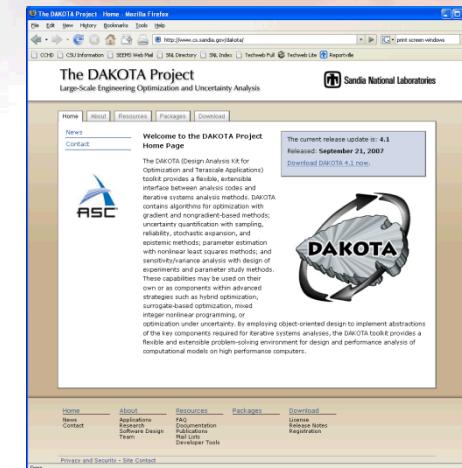
- Streamline problem set-up, reduce complexity, and lower barriers
 - A few additional commands within existing simulation input spec.
 - Eliminate analysis driver creation & streamline analysis (e.g., file I/O)
 - Simplify parallel execution
- Integrated options for simulation intrusion

SNL Embedding

- Existing: Xyce, Sage, Albany (TriKOTA)
- New: ALEGRA, SIERRA (TriKOTA)

External Embedding

- Existing: ModelCenter, university applications
- New: QUESO (UT Austin), R7 (INL)
- Expanding our external focus:
 - GPL → LGPL; svn restricted → open network



ModelEvaluator Levels

Non-intrusive

ModelEvaluator: systems analysis

- All residuals eliminated, coupling satisfied
- DAKOTA optimization & UQ

Intrusive to coupling

ModelEvaluator: multiphysics

- Individual physics residuals eliminated; coupling enforced by opt/UQ
- DAKOTA opt/UQ & MOOCHO opt.

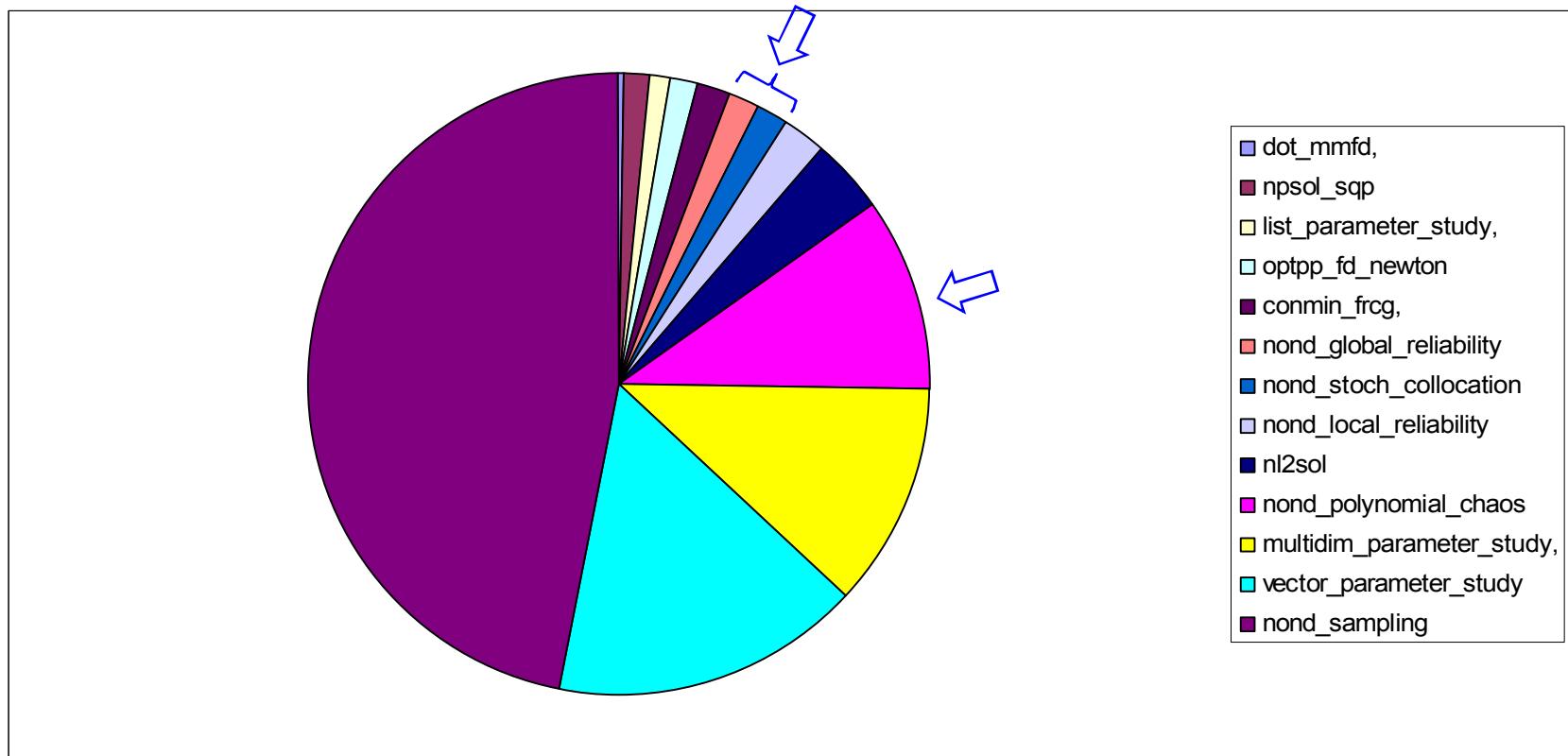
Intrusive to physics

ModelEvaluator: single physics

Impact: eliminate custom set-up and support fully integrated opt. and UQ studies

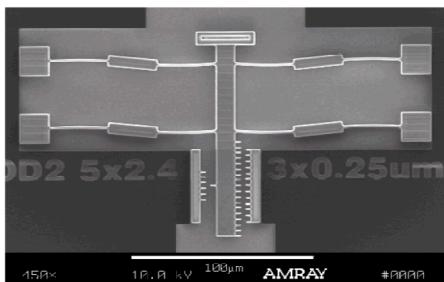
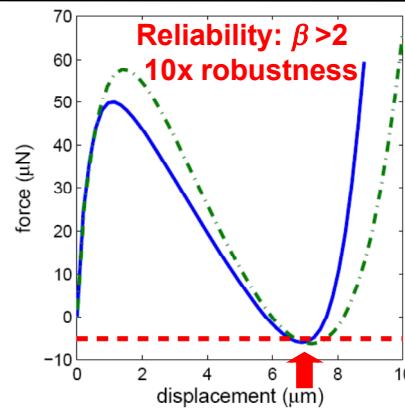
DAKOTA Usage by Method

- **92% of DAKOTA invocations on SNL clusters over 2 month period (Jan-Feb. 2010) were UQ or parameter studies**

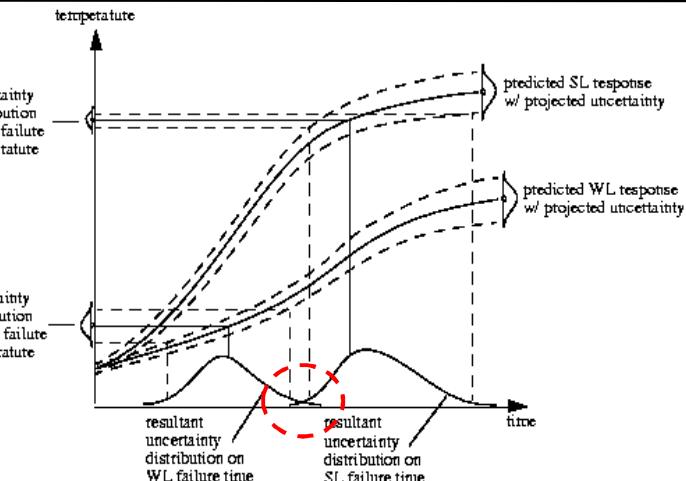


New PCE/SC/EGRA are starting to eat into traditional LHS dominance

Deployment of Advanced Methods

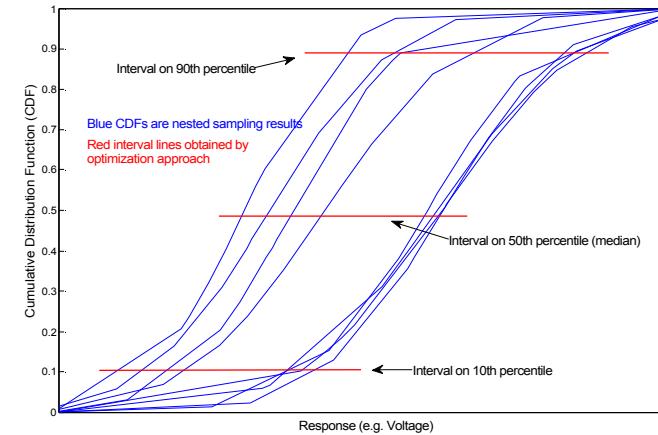


- Solution-verified reliability analysis with adjoint-based error estimation → AMR, error correction
- Robust and reliable designs for bi-stable MEMS



- Abnormal thermal (fire) with PCE
- Exponential convergence demonstrated

- Abnormal mechanical (drop) with EGRA
- Accuracy comparable to exhaustive sampling demonstrated at reduced cost



- Mixed aleatory-epistemic UQ for QASPR
- Device (Charon) and circuit (Xyce) models
- More fully resolved interval estimates

Concluding Remarks

R&D in Adaptive UQ Methods → curse of dimensionality

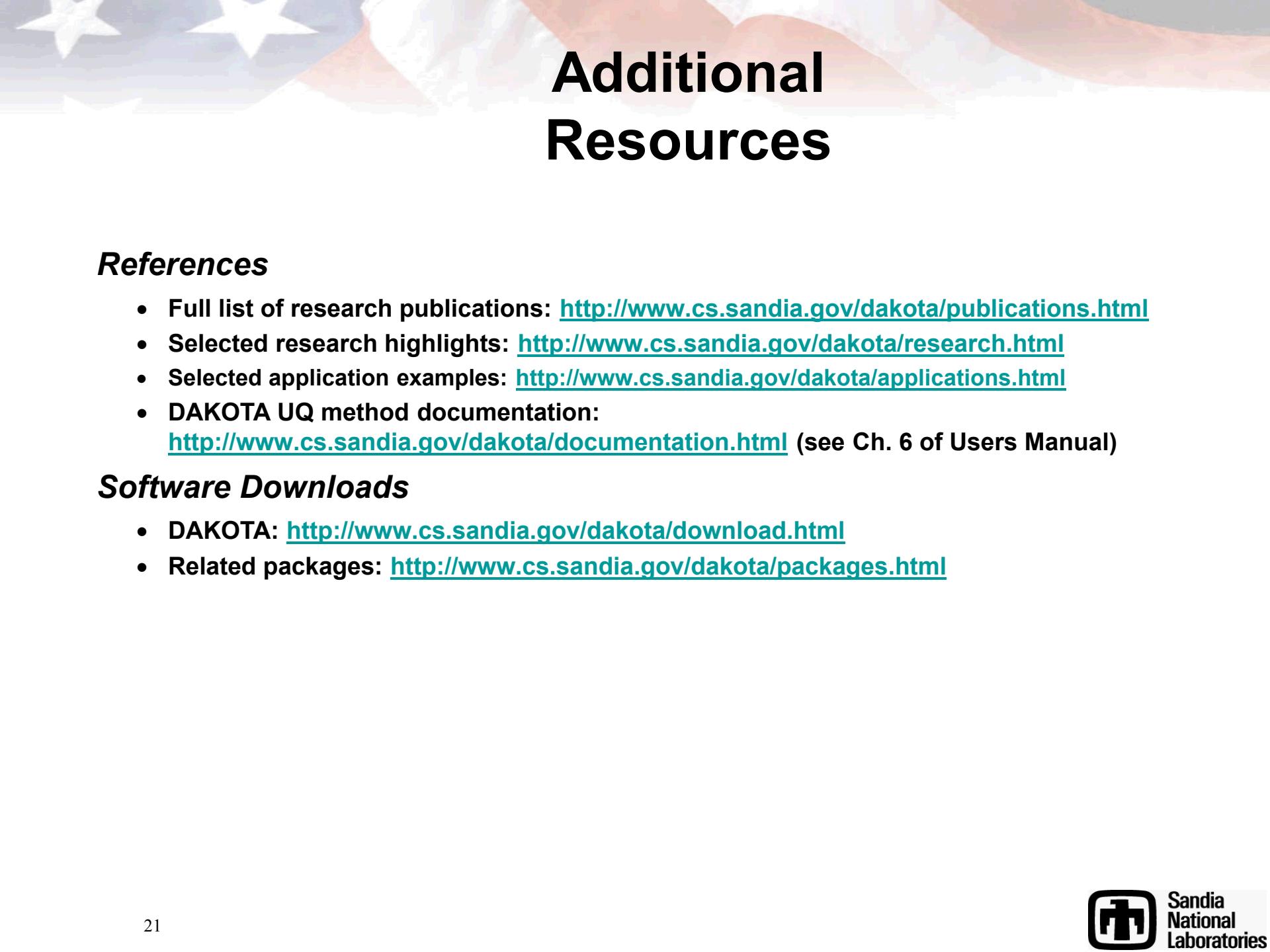
- Stochastic expansions: PCE, SC
 - Tailoring to maximize performance → foundation for uniform/adaptive p-/h-/hp-refinement
 - Adjoint enhancement
- EGRA + Adjoint enhancement
- Adaptive/incremental sampling

R&D in UQ Complexity → mixed uncertainties, multiphysics/multiscale

- Stochastic sensitivity analysis → enables OUU/MCUU and mixed UQ
- Mixed UQ with IVP/SOP/DSTE → greater accuracy/efficiency than nested sampling
 - Inner loop: stochastic expansions (aleatory or combined)
 - Outer loop: opt-based interval est.; global with data reuse (robust) or local with SSA (scalable)
- Multi-* → Multi-physics UQ, Multi-scale UQ, Multifidelity/Model Form UQ
- Random fields/Stochastic processes, Bayesian inference

Advanced deployment → mission impact using advanced UQ methods

Current emphases



Additional Resources

References

- Full list of research publications: <http://www.cs.sandia.gov/dakota/publications.html>
- Selected research highlights: <http://www.cs.sandia.gov/dakota/research.html>
- Selected application examples: <http://www.cs.sandia.gov/dakota/applications.html>
- DAKOTA UQ method documentation:
<http://www.cs.sandia.gov/dakota/documentation.html> (see Ch. 6 of Users Manual)

Software Downloads

- DAKOTA: <http://www.cs.sandia.gov/dakota/download.html>
- Related packages: <http://www.cs.sandia.gov/dakota/packages.html>