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DAKOTA Software

DAKOTA
Optimization

;A

Uncertainty Quant.
Parameter Est.
Sensitivity Analysis

ﬁlack box:

Sandia simulation codes

Commercial simulation codes
Library mode (semi-intrusive):

ALEGRA (shock physics),

Xyce (circuits), Sage (CFD),

Albany/TriKota (Trilinos-based),

MATLAB, Python, ModelCenter,
\_SIERRA (multiphysics)

~

Model
Parameters

Team: ~10 core personnel in NM/CA + TPL developers

Releases: Major/Interim, Stable/VOTD; 5.0 released 12/09

DAKOTA Training: 8 sessions (~140 students) since 5.0;
26 sessions (~500 students) total since 2001.

2009 Outreach: Minitutorials at IMAC, SIAM CS&E;
SA/UQ short courses at NASA Langley, AFRL WPAFB.

Modern SQE: Nightly portability/regression/verification tests;
subversion, Bugzilla, TRAC, Cmake; Top 2008 SQE score
Platforms: Linux/Unix, Mac, Windows (Cygwin/MinGW - native)

GNU LGPL: free downloads worldwide
(~6500 total ext. registrations, ~3500 distributions last yr.)

Community development: open checkouts coming (= PSAAP)
Community support: dakota-users, dakota-developers

Design
Metrics

) The DAKOTA Project - Home - Mozilla Firefox

o [ [ see &

Iterative systems analysis
Multilevel parallel computing

Simulation management

http://dakota.sandia.gov
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ovidakotal v | | |[Cl+|print screen windows
Index (] Techweb Ful &) TechwebLice () Reportuile

The DAKOTA Project

Large-Scale Engineering Optimization and Uncertainty Analysis

@ Sandia National Laboratories

The current release update is: 4.1

Home Page

Released: September 21, 2007

Download DAKOTA 4.1 now.




C++ Framework

Iterator Model:
w—» Interface —> Responses
DoF, eastSq
b = Design Application Functions
IDDACE|||CCD/BB| |NLSSOL| |GN| Zontinuous . system objectives
iscreterange/set ok nonlin constraints
QMC/CVT L250L Uncertain direct least sq. terms
prosey ParamStudy “°Ffma'/'/‘|’9“°rf;‘- grid generic
ptimizer unrormiioguntt: - Approximation  gradi
: triana/exp/B/T radients
ILHS/MC]| IDSTE| |Yect0r| /\ ILLS‘[' Er{,ar}g|ﬁﬁ P global numerical
ST : hist : bin/pt polynomial 1/2/3, NN, analvytic
IRehablhtyl IPCE/SC enterl |Mult1D| dliz(g'g:::n:)lbllnrl‘ﬂr;lhg krig-ing,-MARS, RBF Hessiyans
interval multipoint— TANA3 ical
State local — Taylor series ::g:yetrllga
ti multifidelity .
DOT||CONMIN|NPSOL|NLPQL|OPT++[COLINY|JEGA] Giscroto rangelset  ROM quasi
Strategy: control of multiple iterators and models
Coordination: Strategy|
Iterator Nested
Layered / \
Model Cascaded T .
Concurrent |Opt1mlzat10n |Uncertalnty ILeastSq
Iterator | Adaptive/lnteractive
r \ Parallelism: |@ybr1d| |Othn derUnc|
» Model Asynchronous local \ : ModelCalUnderUnc|
Message passing [UncOfOptima
Iterator (= Hybrid |Eareto/MStarE|
\ . Mixed A-E UQ|
4 nested levels with [Branch&Bound/PICO]
Model Master-slave/dynamic
Peer/static
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Uncertainty Quantification Algorithms @ SNL.:
New methods bridge robustness/efficiency gap

Latin Hypercube, Importance, Bootstrap, FSU
Monte Carlo Incremental Jackknife
Local: Mean Value, Global: Efficient gradient- Local:
First-order & global reliability enhanced Notre Dame,
second-order analysis (EGRA) EGRA Global:
(FORM, SORM)
Tailored polynomial | Anisotropic h-adaptive, Stanford,
Adv. Deployment chaos &. stocl)astic sparse grid, hp-adaptive,| Purdue,
_< collocation with cubature, gradient- CU Boulder,
Fills G extended basis p-adaptive, enhanced, | USC, VPISU
s >aps selections multiphysics | discrete
Random fields/ Dimension Cornell,
stochastic proc. reduction Maryland
Interval-valued/ Opt-based interval | Bayesian Imprecise LANL,
Second-order pro estimation, probability | Applied
(nested sampling) Dempster-Shafer Biometrics
Importance factors, | Main effects, Stepwise UNM
Partial correlations | Variance-based regression
decomposition




Algorithm R&D in Adaptive UQ

Drivers

« High random dimensionality - adaptive methods,|adjoint enhancement

P
R=Ya;V;(&)

J=0

« Complex random environments = epistemic/mixed UQ,
model form/multifidelity, RF/SP, multiphysics/multiscale

Stochastic expansions:
» Polynomial chaos expansions (PCE): known basis, compute coeffs
» Stochastic collocation (SC): known coeffs, form interpolants

« Adaptive approaches: emphasize key dimensions
— Uniform/adaptive p-refinement (FY10)
— h-/hp-adaptive collocation (FY11-12)

« Sparse adaptive global methods: scale as m'°9" with r << n

EGRA:
« Adaptive GP refinement for tail probability estimation

» Accuracy similar to exhaustive sampling at cost similar to
local reliability assessment

« Global method that scales as ~n?
Sampling:

» Importance sampling (adaptive refinement)
* Incremental MC/LHS (uniform refinement)

CDF Residual

N Xﬁm
Wesse | super-

. b algebraic for
F M integration, |7

N,
R=7Y L)
j=1

\% 1/sqrt(N) for LHS
RN

regression

10 10’ 10° 10° 10 10
Simulations




Tailoring of Stochastic Expansions:
Fine-grained Control - Smart Adaptive Methods

Tailori f PCE f : Tailori f basi I ial
alioring o orm T,(¢) = H 0o (&) alioring or basis polynomiais Askey family
i=1 ' Distribution  Density function Polynomial Weight function  Support range
, e ‘ Normal %E = Hermite He,, (z) e [—00, 0]
v ¢ Uniform 1 Legendre P, (x) 1 (—1,1]
‘ Beta gl ) Jacobi P (z) (1—2)*(1+2)° (~1.1]
,«),«; 3 e Exponential e~ Laguerre L, () e [0, ]
/\ E " % 0 Gamma ﬁ Generalized Laguerre L )(.l') r%e " [0,00]
£ & :
Other PDFs: a0 VB o7 "
10° 1 - - - 0 X -
‘ nonlinear variable Vit a1 Vi 106800, AKEY
nonlinear SSG . transformations VE ay | g1
numerically-generated g 107 ‘
orthogonal polynomials 0 g 107 \
Eliminate (approximate) heuristics and trial & error < 10 “Gauss-
. . . -5 o

Y Y Maximize performance of PCE and close / Tailored & synchronized expansion " | Wigert

" linear SSg ” eliminate performance gap with SC form with optimal bases O T T e
Simulations

Advanced numerical integration
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Anisotropic Smolyak:
(linear index set constraint)

d

wa — o] < Y (in — Do < wa

n=1

Anisotropic index sets |

e
N

Anisotropic Gauss-Hermite

L on a et em s meiee boon

e e 3e el 0 .

Restricted exponential growth (slow/moderate)
 Synchronize with Gaussian linear growth

* Exploit point nesting without sacrificing integrand uniformity

10 - 10° —&—SCw=171GP
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—&— PCE w=1:10:1 CCM
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Initial Adaptive Methods UETS
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Uniform and adaptive p_reﬁnement: SU};_mﬁ = Z SUiy . s SU;, . = Z fiE [‘Ifi} /Dpc
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« Uniform: isotropic TPQ/SSG

T
—<— 5C TPQ uniform |3

=>— SC TPQ adaptive (]
—&—SC SSG uniform | |
—%— SC S5G adaptive (3

* convergence: 2-norm of change in resp. covariance

- Dimension adaptive: anisotropic TPQ/SSG
« Start from low-order isotropic or set of 1-D experiments
« PCE/SC: analytic VBD - Sobol’ indices

« PCE: spectral coefficient decay B
« PCE/SC: a posteriori error/conv. rate est. (in QOI!) !
* Main effects - aniso TPQ, aniso SSG w/ linear index constr. |
d
wo — O:'| < Z(In — l)o;ﬂ < wa 107L
n=1 ]
« Interactions = aniso SSG w/ nonlinear index constraint o i G o o
I N=21,31,41,81,121 & L=1/16
h-adaptive: tdin . .

* Discretize based on error est. (detect discontinuity/singularity) of ¢ R
« Najm, Karniadakis, Zabaris, Aluru, et al. ]
» ldentify/resolve important regions (not just dimensions)

hp-adaptive:

. Ultimate goal is to do both: il

i
0 05

2
log,o(L" error

15 2 25 3
log,o(# points)

« p-adaptive for performance (convergence rate) AN ANISOTROPIC SPARSE GRID STOCHASTIC
] ] e i COLLOCATION METHOD FOR PARTIAL DIFFERENTIAL
* h-adaptive for robustness (discontinuity/singularity) EQUATIONS WITH RANDOM INPUT DATA, Nobile,

Tempone, and Webster, SIAM J. NUMER. ANAL., 2008



Efficient Global Reliability Analysis (EGRA)

+ Address known failure modes of local reliability methods:
— Nonsmooth: fail to converge to an MPP
— Multimodal: only locate one of several MPPs
— Highly nonlinear: low order limit state approxs. fail to accurately estimate probability at MPP
+ Based on EGO (surrogate-based global opt.), which exploits special features of GPs
— Mean and variance predictions: formulate expected improvement (EGO) or expected feasibility (EGRA)
— Balance explore and exploit in computing an optimum (EGO) or locating the limit state (EGRA)

121

104 GP surrogate -

8 o7t ’

6

4:
] True fn
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121 0.06
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104 40.05
] Improvement
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Sandia
g From Jones, Schonlau, Welch, 1998 @ National
Laboratories




Efficient Global Reliability Analysis
ya N A

5

‘bmg_gp.out’

*bmg_trug

Ve exploit

= explore

-4 -4
s (psni & ®

4 5 -5 -4 -3 -2 =L 0 1 2 3 -1

Reliability Function First-Order py Second-Order py Sampling py

Method Evaluations (% Error) (% Error) (% Error, Avg. Error)

No Approximation 70 0.11797 (277.0%)  0.02516 (-19.6%) —

x-space AMV24 26 0.11797 (277.0%)  0.02516 (-19.6%)

u-space AMV?4 26 011777 (277.0%) 0.02516 (-19.6%)

u-space TANA 131 0.11797 (277.0%)  0.02516 (-19.6%) —

LHS solution 10k 0.03117 (0.385%, 2.847%)

LHS =solution 100k 0.03126 (0.085%, 1.397%)

LHS solution 1M — — 0.03120 ( truth , 0.339%)

x-space EGRA 35.1 — — 0.03134 (0.155%, 0.433%)

u-space EGRA 35.2 0.03133 (0.136%, 0.296%)

Accuracy similar to exhaustive sampling at cost similar to local reliability assessment
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Extend Scalability through
Adjoint Derivative-Enhancement

PCE: : : : ( \
« Linear regression with derivatives gogf(@ 15(%) gij(&g’) i(ms7) iy
. . grog Ei LCL.L < grrg & ~(m+1,7) 2
+ Gradients/Hessians - addtnl. eqns. 051_(‘-*) a,L_(%) am.( ) it |
sc: L) FE - FE) \ e i
» Gradient-enhanced interpolants - | \ )
« Cubic Lagrange splines (discretization - h-adaptive) a; =1 fori =1
* Hermitian polynomials 1 "f"“fi ifxe[x).x, |, j=2...m -2
I=j-1 .:\‘j - x]
EGRA_' ; J iix]; if,\‘e[x;,.\"rl], j=1
—— a; =qizjn X; =%
ity x

« Gradient-enhanced kriging/cokriging
* Interpolates function values and gradients
« Scaling: n2 > n

|n’(.'((fbase Xy} & initial (A\‘.())| -—
Step A: L
d 27
R,=R(x'x") :l_lexp[—é'j‘xfi —x;‘ ]
A - Ru Rln
ﬁ:(lfRill)ilerily R=| I :
5 1 Ty o | o
o; :;(Y—lﬁ)rR fy-15) R, — R,
Step B: L
) , 0 1707, (1 T update
min J‘IMS'E—O'__@ oldx—tr {m{‘. 1 R | “l_ b ot |n'x:|:| (Ax.0)

10

" .
I=j-1 X 7'}}'
1#j !

0

i
X, .. L .
— ifx &[AT,.\’H], j=m, -1

J

otherwise




Algorithm R&D in UQ Complexity

Drivers
« High random dimensionality > adaptive methods, adjoint enhancement
« Complex random env. - mixed UQ, model form/multifidelity, RF/SP, multiphysics/multiscale

Stochastic sensitivity analysis L
« Aleatory or combined expansions including nonprobabilistic dimensions s j

—> sensitivities of moments w.r.t. design and/or epistemic parameters

Design and Model Calibration Under Uncertainty i=0

Mixed Aleatory-Epistemic UQ

« SOP, IVP, and DSTE approaches that are more accurate and efficient
than traditional nested sampling

Random Fields / Stochastic Processes (Encore, PECOS)
Multiphysics (multiscale) UQ:

* Invert UQ & multiphysics loops - transfer UQ stats among codes

Bayesian Inference:

« Collaborations w/ LANL (GPM), UT (Queso), Purdue/MIT (gPC)

Model form:
« Multifidelity UQ (hierarchy), Bayesian model averaging (ensemble)




Mixed Aleatory-Epistemic UQ: IVP, DSTE, and SOP

Epistemic uncertainty (aka: subjective, reducible, lack of knowledge epistemic
uncertainty): insufficient info to specify objective probability distributions sampling
Traditional approach: nested sampling ;77

. aleatory
samplin

» Expensive sims - under-resolved
sampling (especially @ outer loop) 075

» Under-prediction of credible outcomes

Interval-
valued and

second-order
statistics

0.50

Cum Prob

Algorithmic approaches response metric

* Interval-valued probability (IVP), aka probability bounds analysis (PBA) Increasing epistemic

« Dempster-Shafer theory of evidence (DSTE) structure (stronger

- Second-order probability (SOP), aka probability of frequency assumptions)

Address accuracy and efficiency _ |

* Inner loop: stochastic exp. that are epistemic-aware (aleatory, combined) iﬁ??ﬁfi st ;[f;) su

» Quter loop: e MG
 IVP, DSTE: opt-based interval estimation, global (EGO) or local (NLP) =) |subject to sz =5 =< sv

« SOP: nested stochastic exp. (nested expectation is only post-processing in special cases)



Mixed Aleatory-Epistemic UQ:
IVP, SOP, and DSTE based on Stochastic Expansions

Interv Est uQ Expansion Evaluations 1 N : : —
Approach Approach Variables (Fn, Grad) Area B ‘t T gﬂgggﬁgﬂfl
09 ‘m — — —LHS 100/LHS 100 Belief ]
IVP SC SSG Aleatory B interval converged to 5-6 digits by 300-400 evals e | B
g [ i — LHS 1000/LHS 1000 Plaus []
EGO S SSCG w =1 Aleatory (84791, 0/0) [75.0002, 374.999]  [-2.26264, 11.8623] 2 o
ECGO =2 Aleatory (372/403, 0/0) [75.0002, 374.999]  [-2.18735, 11.5900] Zor r i ]
EGO SC SSGw =3 Aleatory (1260/1365, 0/0) [75.0002, 374.999]  [-2.18732, 11.5900 g "= Multlple cells
ECO SC SSG w = 4 Aleatory (3564/3861, 0/0) [75.0002, 374.999]  [-2.18732, 11.5900] g o T within DSTE
NPSOL SC 55G w = Aleatory (21/77, 21/77) [75.0000, 375.000] [-2.26264, 11.8623] 8 sk i
NPSOL SCSSGw =2 Aleatory :U:;,.-fza-ll. 93/341) [75.0000, 375.000] [-2.18735, 11.5901] £ I
NPSOL SC SSGw =23 Aleatory /1155, 315/115 [75.0000, 375.000] [-2.18732, 11.5900] 2 o4l ﬂl
NPSOL SCSSGw =4 Aleatory [Wl; 3267, 891/ S’f. J [75.0000, 375. 000] [-2.18732, 11.5900] L:l 1
£ 03 1L
IVP nested LHS sampllng converged to 2-3 digits by 108 evals B
LHS 100 LHS 100 N (10%/10%, 0/0) [80.5075, 338.607]  [-2.14505, 8.64891] 5o
LHS 1000 LHS 1000 \ A uo"/mf 0/ 0; (76.5939, 368.225] [ 2.19883, 11.2353) -
LHS 10* LHS 104 N;’A (108 /10%, 0/0 76.4755, 373.935]  [-2.16323, 11.5593

Error

Fully converged area interval = [75., 375, 8 interval = [~2.18732, 11.5900] I e

Reliability Index B

Convergence rates for combined expansions

i R | N - Impact: render mixed UQ studies
I - practical for large-scale applications
S ‘ L~ metrics: Current:
& N ggﬁ;'ﬁgé g - Global or local opt. for epistemic intervals
0% [ e sowrs ] -> accuracy or scaling w/ epistemic dimension
T W ieane romuz s + Global or local UQ for aleatory statistics
° B, Mixed VP PCE w=2-5 - accuracy or scaling w/ aleatory dimension
RS T Mixed SOP SC w=2-8
O T s s et was L2 metrics: Future: _ N
o}, Mixed SOP PCE w=2-8 Aleatory, » adaptive and adjoint-enhanced global methods
I B e s SOP mixed - accuracy and scaling

Simulations



ASCR: Multi-Physics and Network-Coupled UQ

« Component-level UQ via stochastic expansions

» Stochastic dimension reduction at component interfaces

(generate new bases orthogonal to (implied) output PDFs)

» Strongly coupled solver technology for coupled
stochastic problems

Component 1
vz = Gi{v, p1) = guiwiivr),pr) st fi{w,vp) =0

Ma-to-CO3 HX
—

U]_ '11‘2
Component 2
v = Gofvz, pz} = galuz{vz), pe) st. falug, vz, p2) =0
Nonlinear elimination
Equations Newton Step
v — ATl p) L — ey faibeny 1 LN y — F (gL )
iy — Fyirepzl U ) 1 —el{Fulelva| (A v — (Ful g, gl
A0 Bag a7 81,
dny T, it ! e
L ((828) Gai€)T, (&) =0
— (D! i =
w2y e ., vm Gu=0 -0 P
S (618 Cul€) T, (©) — 0 vy Gy =of 7T
.:{[:_'f} Lis wl FRL

High-fidelity Multi-physics
Component Model (Core)

Proposed Multi-scale UQ research: LDRD, ASCR

()

Graphics courtesy: Rod Schmidt,
BRISC project

Sandia
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Deployment

Address core usability barriers
« JAGUAR
« Library embedding

Impact Sandia missions

« Technology insertion
— ASC milestones
— Early adopters

Partnerships
 Government: LLNL, LANL, ORNL, INL, NASA, DOD
* Industry: Lockheed Martin, Goodyear, Exxon Mobil

* University: MIT, Cornell, CU Boulder, Vanderbilt, USC,
FSU, Notre Dame, VPISU, UNM

— CSRI students/postdocs, faculty sabbaticals

— ASC PSAAP: UT Austin (Bayesian), Purdue (cubature),
UIUC (adaptive collocation), Caltech (global opt.), Michigan
(gradient-enhanced interpolation), Stanford (adaptive collocation)

15




Advanced Deployment: JAGUAR User Interface

Eclipse-based rendering of
full DAKOTA input spec.

Automatic syntax updates
Tool tips, Web links, help
Symbolics, sim. interfacing

* Flat text editor for

experienced users

« Keyword completion
« Automatically synchronized

with GUI widgets

 Simplified views for high-use
applications (“Wizards”)

Resource - projl/mydak.i - Jaguar
Ele Edit Mavigate Project Window Help
L mily

ﬁ | r&, Resource |

! Jaguar Editor 53
Problem definition and execution

Sections =

To define a problem for DAKOTA ta solve, you
must first define a madel, a variable set, an
interface set and a response set. Then you must
select 5 method that performs a task such as
optimization,

|typa filker ket

% sTRATESY
= MODEL
=] Model A (2i4)
saw nested (1/2)
=] Model B (2/4)
cam nested (1/2)
= 6% METHOD
=]

=422 nond_global_r
wab U_gaussian_process (0/0)
@ distribution {11}
o probability_levels {0f1)
2 gen_reliability_lewels (0j1)
= ) YARIABLES
Varssetl (1719)
=6 INTERFACE
interface (2/3)
= &% RESPOMSES
=] RespSetl (4/5)
san num_least_squares_terms (0f6)
i analytic_gradients (0/0)
saw anaketic_hessians (0/0)

method

A method specifies the name and controls of an iterative procedure]
hitbp: ffwe.cs.sandia.gov Dk OTAflicensing/votdihtml-refiMethod

o [ output verbosity

Methaod set identifier (String)

ModelCalibration

[ model painter

[[] Mazimum iterations (Integer)

[] Mazdimum Function evaluations (Integer)

[ Speculative gradients and Hessians

[] Convergence tolerance (Real)
[[] Constraint talerance (Real)

[] Sealing flag

B Resource - JAGUAR/jaguar/misc_files/constropt.i - Jaguar
File Edit MNavigate Project Window Help

Ci-E&: =
ﬁm\szsuur:e ‘

8 wconatrapi 7

# DAKOTL INPUT FILE - dakota_texthook.in
strategy
graphics
single_method
method
wax_iterations 50
convergence_tolerance 0.0001
dot_renfd
rariables
continuous_design 2
initial_point 0.9 1.1
lower_bounds 0.5 -2.9
upper_bounds 5.8 2.5
descriptors '=x1' '=2!
interface
analysis_drivers 'text book!
direct

Pick one:

unspecified

num_objective functions 1

num nonlinear ineguality constraints 2
numerical gradiencs

wethad source

dakota

interval type

central

fd_step size 0.0001
no_hessians

E)EIR) m pakoia LHS Wizard

Specify Yariables
Specify the table contents

Urifarrm Lncerkainky:

samples

|

L uniform_uncertain | 7

|

|05 upper_bounds*

[A] descriptors

[o5]  lower_bounds*

100

‘density’

o) st o
Delete selected rowis)

Duplicated selected rove |First row

(%) Gererate samples
() Save input deck,

<

mydak.i | Problem Del

Impact: streamline problem set-up for user base, spanning novices to experts

PoEs

-~

= &

< Back ||

Mexk =

I €) |

Cancel




Advanced Deployment: Embedding

nnnnnnnnnnnn

AN
DAKOTA

Make DAKOTA natively available within application codes
« Streamline problem set-up, reduce complexity, and lower barriers
— A few additional commands within existing simulation input spec.
— Eliminate analysis driver creation & streamline analysis (e.g., file 1/O)
— Simplify parallel execution

- Integrated options for simulation intrusion ——> | ModelEvaluator Levels

Non-intrusive

SNL Embedding ModelEvaluator: systems analysis
 All residuals eliminated, coupling satisfied
« DAKOTA optimization & UQ

« Existing: Xyce, Sage, Albany (TriKkOTA)
* New: ALEGRA, SIERRA (TriKOTA)

Intrusive to coupling

ModelEvaluator: multiphysics
External Embedding * Individual physics residuals eliminated;
« Existing: ModelCenter, university applications coupling enforced by opt/UQ
. New: QUESO (UT Austin), R7 (INL) - DAKOTA 0ptiUQ & MOOCHO opt.
« Expanding our external focus: Intrusive to physics
— GPL - LGPL; svn restricted = open network ModelEvaluator: single physics

Impact: eliminate custom set-up and support fully integrated opt. and UQ studies

| WU UUT TU UYL, IUNTUO UL, TNUZN, I_V\.aA




DAKOTA Usage by Method

 92% of DAKOTA invocations on SNL clusters over 2 month
period (Jan-Feb. 2010) were UQ or parameter studies

A

A
-

O dot_mmfd,
W npsol_sqgp
O list_parameter_study,
O optpp_fd_newton
@ W conmin_frcg,
O nond_global_reliability
® nond_stoch_collocation
O nond_local_reliability
M ni2sol
@ nond_polynomial_chaos

O multidim_parameter_study,
O vector_parameter_study

B nond_sampling

New PCE/SC/EGRA are starting to eat into traditional LHS dominance Sandia

18 National
Laboratories




Deployment of Advanced Methods

0 H HH termpetature
Reliability: g >2 i
60t [
Ik"\fl OX rObUStness ! uhcettainty - - predicted SL tespotise
y ! - . a
i distribution g - — ——— — — — — — — P = . w! ptojected uncettainty
- of 5L failute .  Fr—————— — — — — = - = |
,' tefmipe tatute

force (uN)

displacement (um)
+ Solution-verified reliability analysis with adjoint-
based error estimation - AMR, error correction
* Robust and reliable designs for bi-stable MEMS

= "IN predicted WL tespotse
wi projected uncettainty

uticettainty
distibution __ A
of WL failute L
tetmpetatute

peeultant time
uncertainty = uncertainty
distribution on distribution on
WL failure time SL failure time

« Abnormal thermal (fire) with PCE
« Exponential convergence demonstrated

« Abnormal mechanical (drop) with EGRA

» Accuracy comparable to exhaustive sampling
demonstrated at reduced cost

19

1

o
©
T

Interval on 90th peroenﬁle/

0.7  Blue CDFs are nested sampling resul

Red interval lines obtained by
optimization approach

Interval on 50th percentile (median)

Cumulative Distribution Function (CDF)

0.2~

0.1F <—Interval on 10th percentile -
o Z

Response (e.g. Voltage)

* Mixed aleatory-epistemic UQ for QASPR
» Device (Charon) and circuit (Xyce) models
» More fully resolved interval estimates



Concluding Remarks

R&D in Adaptive UQ Methods > curse of dimensionality

» Stochastic expansions: PCE, SC
— Tailoring to maximize performance - foundation for uniform/adaptive p-/h-/hp-refinement
— Adjoint enhancement

« EGRA + Adjoint enhancement
» Adaptive/incremental sampling

R&D in UQ Complexity > mixed uncertainties, multiphysics/multiscale
« Stochastic sensitivity analysis - enables OUU/MCUU and mixed UQ

« Mixed UQ with IVP/SOP/DSTE -> greater accuracy/efficiency than nested sampling
— Inner loop: stochastic expansions (aleatory or combined)
— Outer loop: opt-based interval est.; global with data reuse (robust) or local with SSA (scalable)

* Multi-* = Multi-physics UQ, Multi-scale UQ, Multifidelity/Model Form UQ
« Random fields/Stochastic processes, Bayesian inference

Advanced deployment > mission impact using advanced UQ methods

Current emphases
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Additional
Resources

References

o Full list of research publications: http://www.cs.sandia.qgov/dakota/publications.html
o Selected research highlights: http://www.cs.sandia.qov/dakota/research.html
o Selected application examples: http://www.cs.sandia.qgov/dakota/applications.html

e DAKOTA UQ method documentation:
http://lwww.cs.sandia.qov/dakota/documentation.html (see Ch. 6 of Users Manual)

Software Downloads

o DAKOTA: http://www.cs.sandia.qgov/dakota/download.html
¢ Related packages: http://www.cs.sandia.qov/dakota/packages.html
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