

Exceptional service in the national interest

Photos placed in horizontal position
with even amount of white space
between photos and header

SNL Electrosynthesizer Status 12/11/2013

Melt Configuration

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Brief Overview

- Small modification from previous setup (Josh's work)
- Two samples produced using different methods
 - Same machine settings
 - Different CNT concentrations and addition methods
 - Very different observations
- Non-conductive final result
- Next proposed steps

Modification since last spinning

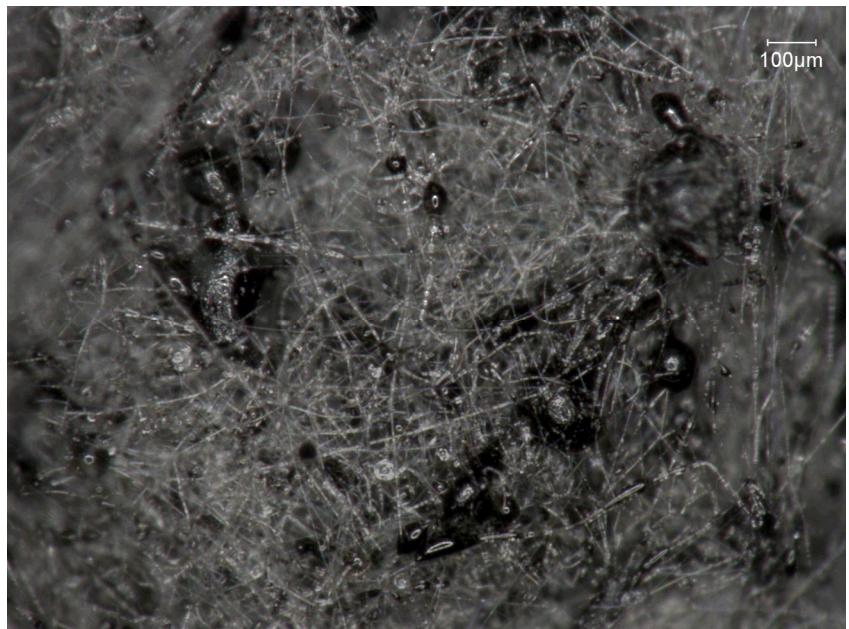
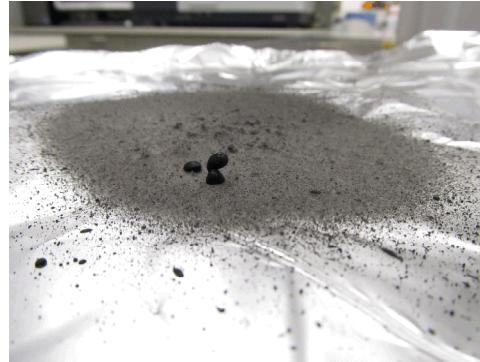
- Heating coil shifted downward

Electrospinner Settings

- Barrel heated to $\sim 270^{\circ}\text{C}$
- Needle standoff distance: $3 \frac{1}{2}$ in
- Base plate charge: -30kV
- Needle charge: 0kV
- Uncontrolled flowrate

Sample 1

- 5% wt. CNT
 - Unsure if isotactic 12k Mw or atactic 14k Mw PP
- Adhered to the walls
- Flushed with 12kMw PP
 - Results shown in images
- Non-conductive

Sample 1 Observations

- Spun similarly to neat 12k Mw Polypropylene
 - No breaks in the thread
- Large agglomerations of 5% wt. CNTs
- High charge needed to pull the solution from the needle and begin Taylor cone formation

Sample 2

- 2% wt. CNT
 - Isotactic 12k Mw PP
- Melted and flowed freely
- Non-conductive

Sample 2 Observations

- Unsteady flow
 - Flow resulted in droplets for the majority of the spinning
- Large agglomerations
 - Needs to be checked to see if they contain CNTs
- High charge needed to pull the solution from the needle and begin Taylor cone formation
- Seems to have partially separated
 - Possibly from unseen residue when cleaned

Next steps...

- SEM imaging to check for CNTs in samples
- Focus on flow control issues utilizing linear stage motors
- Adapt stainless steel syringe instead of current barrel
 - Will need to have the O-rings changed for higher temperatures