

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

LLNL-JRNL-799528

Replacement of a Photomultiplier Tube with Silicon Photomultipliers for use in Safeguards Applications

T. Stiegler, K. Kazkaz, E. Swanberg, V. Mozin

December 13, 2019

Nuclear Instruments and Methods in Physics Research
Section A

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

1 Replacement of a Photomultiplier Tube with Silicon
2 Photomultipliers for use in Safeguards Applications

3 Tyana Stiegler^{a,*}, Kareem Kazkaz^a, Erik Swanberg^a, Vladimir Mozin^a

4 ^a*Lawrence Livermore National Laboratory, Livermore, CA, USA*

5 **Abstract**

We compared the performance of a SiPM array and a PMT in a laboratory setting using a single 5.08×5.08 -cm cylindrical sodium iodide scintillating crystal. Photomultiplier tubes (PMTs) are the most commonly used device to monitor scintillating materials for radiation detection purposes. The systems are sometimes limited by disadvantages in the PMTs that may degrade their performance, including temperature dependence and variation with magnetic field. Instrumentation engineering must also contend with a potentially large volume relative to the active scintillator volume, fragility, and high voltage requirements. One possible alternative is an array of silicon photomultipliers (SiPMs). Measurements were made with a 5.04×5.04 -cm sensL J-series SiPM array and a 7.62 cm Hamamatsu PMT. We demonstrated how the SiPM bias can be sufficiently altered to remove the effects of temperature variation encountered in environments where nuclear safeguards work is often performed. Finally, we evaluated a method of determining enrichment levels of ^{235}U at various levels and shielding configurations, using both the PMT-mounted and SiPM-mounted scintillator.

6 *Keywords:*

7 Silicon Photomultipliers, NaI(Tl), Gamma-ray Spectrometry, Uranium,

8 Energy Resolution, Nuclear Monitoring

9 **1. Introduction**

10 Inorganic scintillation detectors are widely used in gamma ray spectroscopy,
11 as they are available at low cost and large size, have relatively high gamma stop-
12 ping power, and have sufficient energy resolution for a variety of use scenarios.
13 A very common spectroscopy system is a thallium-doped sodium iodide (NaI)
14 crystal instrumented with a photomultiplier tube (PMT). Hand-held versions of

*Corresponding author *stiegler1@llnl.gov*
Preprint submitted to Elsevier

December 19, 2019

15 these systems are important tools for nuclear safeguards, first responders, and
16 in the prevention of illicit trafficking of nuclear materials [1–3]. Over decades of
17 use, engineers and scientists have identified a number of disadvantages of PMTs.
18 The level of concern of each depends on the application and environment.

19 Typical disadvantages cited include bulkiness, fragility, susceptibility to mag-
20 netic fields, and high voltage requirements (typically $\gtrsim 1000$ V) [4–8]. Emerging
21 technologies could mitigate these disadvantages while maintaining parity with
22 the performance and cost of a PMT. One of these alternatives is the silicon pho-
23 tomultiplier (SiPM), which has several aspects that could make them preferable
24 to a PMT. They are compact, do not require a vacuum volume, are insensitive to
25 magnetic fields, run at low bias voltages (30–100 V), are physically robust, and
26 are comparable in price to a PMT. SiPM response curves are more dependent
27 on temperature, though, an aspect that we address later in this work.

28 The goal of this experiment was to assess the viability of replacing a 7.62 cm
29 Hamamatsu PMT with a 5.04×5.04 -cm sensL J-series SiPM array in a typical
30 hand held spectrometer. These photodetectors' active areas were larger than the
31 dimension of the scintillator, ensuring maximal light collection. Comparisons
32 were carried out by measuring the FWHM energy resolution at several energies,
33 and exploring temperature dependence and possible stabilization methods. We
34 then compared the performance of each photodetector using several ^{235}U
35 enrichment standards by measuring the energy resolution of the ^{235}U -186 keV and
36 ^{238}U -1001 keV gamma peaks, as well as the enrichment predictive capability.

37 This study did not include investigation of magnetic field effects but this has
38 been reported on in other experiments [9–11].

39 The following sections detail the experimental setup and results of our com-
40 parison. Section 2 describes the physical details, the calibration, and resulting
41 energy resolution measurements. The effects of varying temperature and how
42 to compensate is detailed in Section 3. Section 4 presents results of the ^{235}U
43 enrichment standards campaign.

44 2. Experimental Details and Energy Calibration

45 Details of the hardware used in these evaluations are given in Table 1. Each
46 photodetector was mounted in turn to the same NaI scintillator to avoid sys-
47 tematic effects from using different crystals. Each photodetector was chosen to
48 ensure full coverage of the NaI, for good light collection. Optical grease was
49 used to mount the photodetectors, again to maximize detection efficiency. We

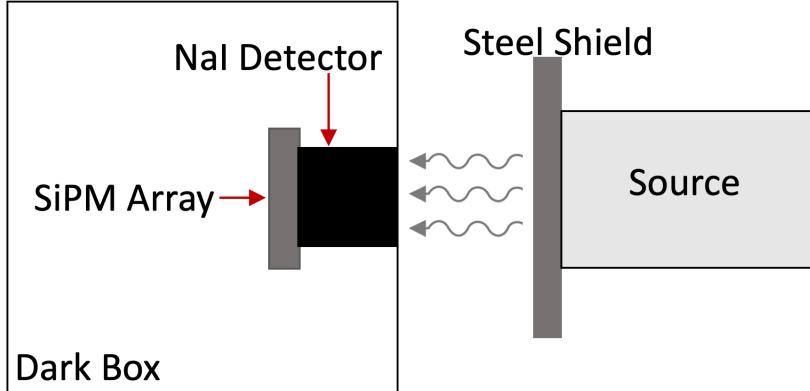


Figure 1: Schematic of one configuration of the experiment: the SiPM-mounted NaI detector inside the dark box. The PMT-mounted data was acquired by replacing the SiPM array, but keeping the crystal in the same position inside the box. The steel shield was used as part of the uranium data campaign, and was removed for all background and calibration datasets.

50 selected the sensL ArrayX-BOB6-64S SiPM readout board because it sums over
 51 all pixels, allowing for single-channel readout of the device. This allowed the
 52 back-end electronics and analysis nearly identical to that of the PMT, with a
 53 signal polarity flip and a slight gain adjustment on the amplifier being the only
 54 alterations.

55 A schematic of the experimental setup is shown in Fig. 1. When the SiPM
 56 and PMT were exchanged, we took care to position the crystal, dark box,
 57 and sources in consistent locations to minimize effects of solid angle coverage,
 58 backscatter, or intervening material. The steel shield was used in the uranium
 59 campaign and was not present for the energy calibrations.

60 For each photodetector, we acquired background spectra as well as data
 61 from three calibration sources: ^{241}Am (59.5 keV), ^{137}Cs (662 keV), and ^{60}Co
 62 (1173 and 1332 keV). The background and calibration sets were taken mul-
 63 tiple times during the uranium measurements to ensure stability of the detec-
 64 tor response. A typical calibration spectrum before background subtraction is
 65 shown in Fig. 2. The background spectrum was subtracted from all datasets
 66 before analysis. The calibration sources were chosen to provide gamma rays
 67 that bracket the energy range of gammas of interest from ^{235}U and ^{238}U . The
 68 fit function to characterize the resolution of the detectors is a Gaussian curve
 69 over an inverted Heaviside function.

70 The resolution of the NaI mounted to each photodetector is shown in Ta-
 71 ble 3. Resolution is in part a function of the number of detected photons. The

Component	Manufacturer	Model	Description
NaI detector	Saint Gobain	SA-12428	5.08×5.08-cm cylindrical NaI crystal packaged in air-tight aluminum housing with a glass window and reflective internal wrapping
SiPM array	sensL	J-Series 60035	5.04×5.04-cm, 8×8 pixel array, with summed breakout electronics board. Each pixel is 6 mm on a side. The single-channel readout board was an ArrayX-BOB6-64S.
PMT	Hamamatsu	R6233-100 SEL	7.62 cm bialkali photocathode and borosilicate glass window

Table 1: Primary components used in the laboratory comparison. The output from both the PMT and SiPM were connected to a multichannel analyzer to record the spectra. The breakout board for the SiPM allowed the 64 pixels to be read out as a single summed channel.

72 resolution at low energies of the SiPM array is degraded relative to that of the
 73 PMT because SiPMs have high dark count rates while PMTs are very low noise
 74 devices. Modern SiPMs have higher light collection efficiency which can produce
 75 better resolution than PMTs at high energies. Other effects could be electronic
 76 noise or the non-linearity in the SiPM response. Further investigation into the
 77 resolution in this specific configuration is reserved for a future study.

Detector	Size [cm]	Active Area [cm ²]	Quantum Eff. or Photon Det. Eff.
PMT	7.62 round	20.3	30%
SiPM	5.04 square	14.4	50%

Table 2: Specifications of the PMT and the SiPM array. Efficiency for the PMT and SiPM is in quantum efficiency and single photon detection efficiency respectively. Note that it is not the full area of the PMT and SiPMs that are used, but the overlap of the photodetectors with the 5.08 cm NaI crystal.

Peak Energy [keV]	PMT Resolution [%]	SiPM Resolution [%]
59	10.5 ± 0.11	14.13 ± 0.14
662	6.72 ± 0.03	7.08 ± 0.03
1332	5.00 ± 0.03	5.26 ± 0.04

Table 3: The full-width at half-maximum (FWHM) energy resolution of the NaI crystal with the PMT and SiPM array for the three calibration sources ^{241}Am , ^{137}Cs , and ^{60}Co .

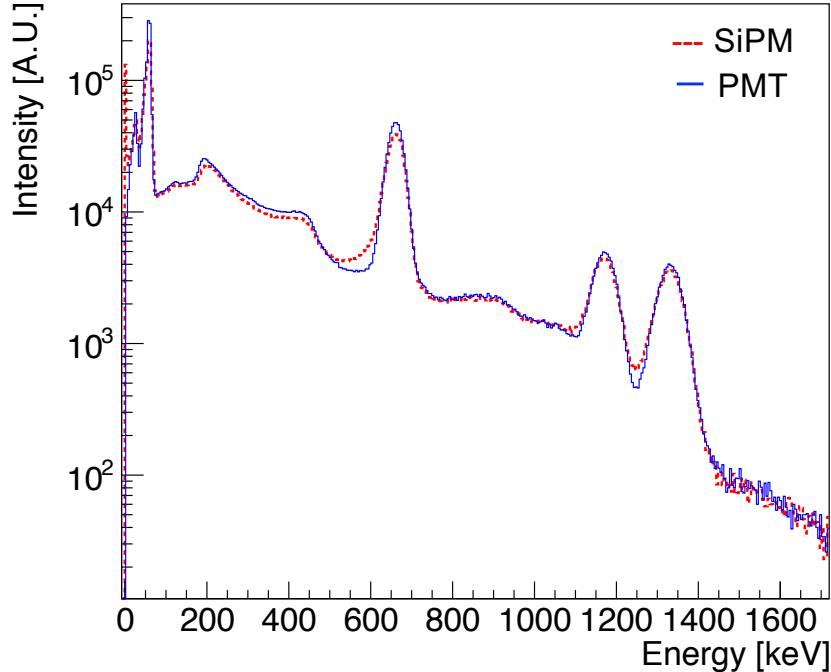


Figure 2: Full spectrum from calibration sources ^{241}Am , ^{137}Cs , and ^{60}Co . Solid Blue: PMT, Dashed Red: SiPM

78 3. Varying Bias to Compensate for Temperature Change

79 The light output of sodium iodide crystals is known to exhibit a temperature
 80 dependence [12, 13], which the manufacturer characterizes as $-0.3\%/\text{ }^{\circ}\text{C}$ [14].
 81 Given a temperature change from $24\text{ }^{\circ}\text{C}$ to $0\text{ }^{\circ}\text{C}$, a preset detector calibration
 82 would have a deviation of 7%, which is comparable to the FWHM resolution
 83 of the detector. This offset is sufficiently strong to give spurious results if the
 84 analysis does not take the temperature variation into account.

85 SiPMs themselves also display a temperature dependence independent of
 86 the scintillator. Given the mass and heat capacity differences between the NaI
 87 crystal and SiPM array, the components are not guaranteed to be in thermal
 88 equilibrium in the event of short-time-scale temperature cycling of the sort that
 89 regularly occurs in the field (e.g., warm storage location to cold car trunk to hot
 90 power plant chamber). This time-dependent temperature variation can lead to
 91 a complicated hysteresis that hampers attempts to predict the response of the
 92 system as a whole. The bias applied to a SiPM, however, can be used to change
 93 the amplitude of its response. It is therefore possible in principle to compensate

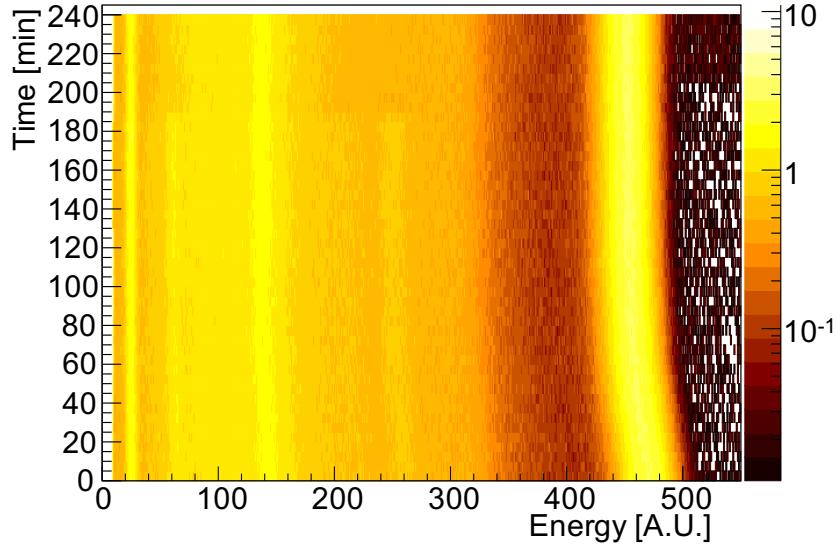


Figure 3: Uncalibrated ^{137}Cs data with temperature variation acquired with the SiPM-mounted NaI. The system started at 21°C , and stabilized at 27°C . The system stabilized from this 6°C temperature change after two hours. The Z axis shows intensity with arbitrary units. The signals at 60 and 260 on the energy axis that disappear at ~ 190 minutes are from a ^{133}Ba source that was close enough for the detector to observe before personnel put the source back in the source locker.

94 for temperature deviations once the system has come to thermal equilibrium.

95 As part of our laboratory comparison, we explored the temperature and
 96 bias dependence of the SiPM array. If the SiPM demonstrates a dynamic range
 97 in the bias response sufficiently large to compensate for extreme, but realistic,
 98 temperature variations that are encountered in the field, it strengthens its vi-
 99 ability as a replacement for PMTs in safeguards applications. The exploration
 100 begins with a characterization of the thermal equilibration time of the system.
 101 We put the SiPM-mounted NaI detector in an insulated environmental chamber
 102 at 21°C , and began a series of calibration datasets with the ^{137}Cs source. We
 103 turned on a hot plate inside the chamber, which gradually increased the tem-
 104 perature to 27°C . Each ^{137}Cs dataset was five minutes. The equilibration was
 105 measured over the course of four hours to determine the time to reach thermal
 106 equilibrium. Fig. 3 shows the results, where the system stabilized after about
 107 two hours.

108 We then obtained a series of datasets with the system between 14°C and
 109 36°C . Fig. 4 shows the spectrum acquired from a few of these datasets. A plot
 110 of the ^{137}Cs peak vs temperature is shown in Fig. 5. For each new temperature



Figure 4: Uncalibrated spectra with temperature variation. As the temperature increases, the system response falls.

111 we allowed four hours for thermal equilibration, rather than just two, to ensure
 112 the system had fully stabilized. The system shows a clear change in the light
 113 response as the temperature increases. The decrease in the system response over
 114 the full temperature range is 24%, of which the NaI light production decrease
 115 is 6.6%. We attribute the remaining 17% fall in system response to the SiPM
 116 temperature dependency, in agreement with literature values (see, e.g., Fig.2a
 117 of Ref. [15]).

118 We varied the bias of the SiPM array between 26 V and 30 V at room
 119 temperature to characterize its dynamic range, with the results shown in Fig. 6.
 120 The system response varied by 900% over this bias range. Given the system
 121 variation we measured of 24% over 22°C, this dynamic range is 8 times larger
 122 than would be required to stabilize response over a temperature change of 100°C.
 123 We do note, however, several considerations to remain aware of in attempts to
 124 stabilize the temperature response over such a large dynamic range:

- 125 • The bias applied to the SiPM must have sufficient accuracy to reliably
 126 stabilize the peak centroids
- 127 • At lower bias, the resolution of the SiPM will worsen

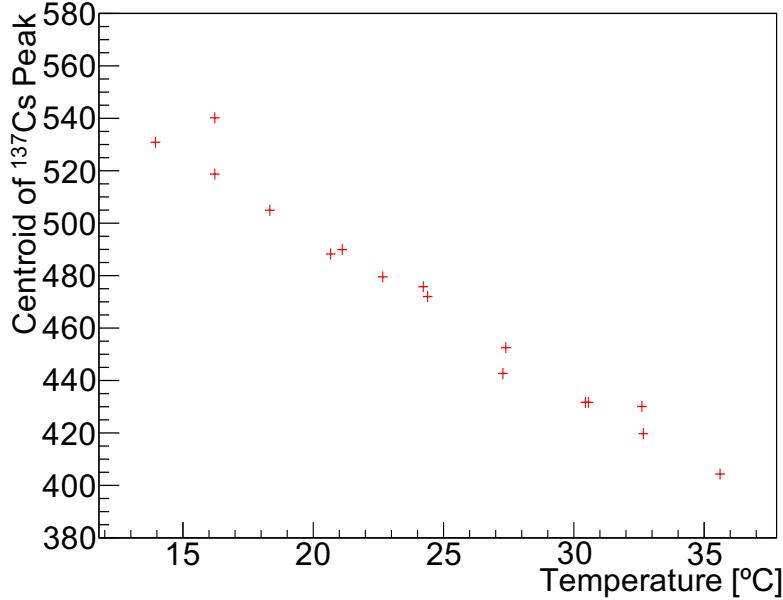


Figure 5: Uncalibrated ^{137}Cs peaks vs. temperature. The data comes from fitting centroids to the spectra peaks, a subset of which are shown in Fig. 4.

- 128 • At lower bias, low-energy gamma ray signals, such as the 60 keV gamma
 129 rays from ^{241}Am , may fall below the data acquisition threshold

130 **4. Uranium Enrichment Measurements**

131 Basic characterization of uranium samples using gamma-spectroscopy is a
 132 common in-field measurement in nuclear safeguards. In addition to the periodic
 133 background and calibration datasets, we acquired spectra from seven uranium
 134 sources with varying enrichments, four shielding configurations, and the two
 135 photodetectors. Details of the sources are given in Table 4. The shielding
 136 configurations were:

- 137 • No shielding
 138 • 0.635 cm steel
 139 • 1.27 cm steel
 140 • 1.59 cm steel

141 The peak resolution at 186 keV and 1001 keV (Fig. 7) were obtained from
 142 the unshielded 93% enriched sample, and the resolutions are shown in Table 5.

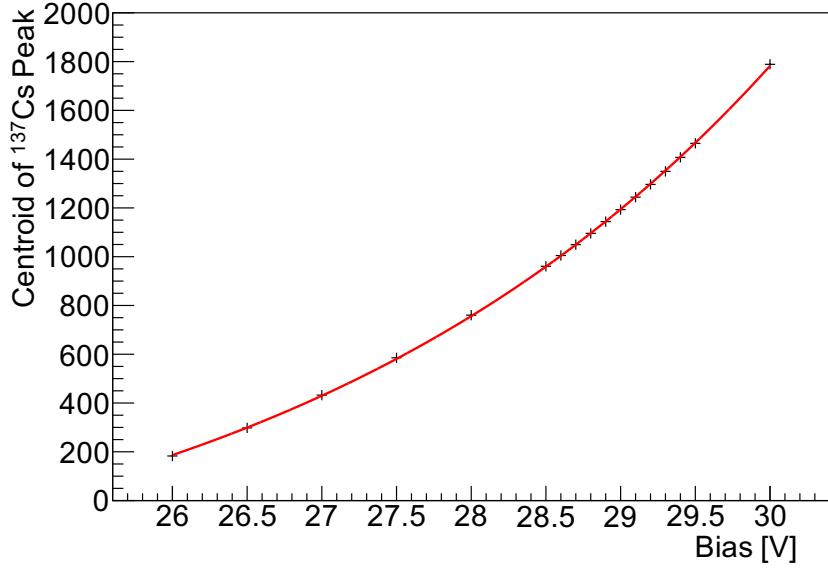


Figure 6: Uncalibrated detector response with bias variation and temperature held constant. The dynamic range of the 662 keV peak from the ^{137}Cs source varies by 900%. This bias-related range is 8 times larger than is required to accommodate a temperate variation of 100°C. The empirical fit is constant value plus an exponential curve.

¹⁴³ Note that the resolution at 1001 keV was better for the SiPM than the PMT,
¹⁴⁴ demonstrating the expected increase in resolution for the SiPM at high energies
¹⁴⁵ where the dark rate is less relevant.

Source Number	Enrichment [%]	Total Mass [g]
1	93.2	230
2	52.5	230
3	20.1	230
4	4.46	200
5	2.95	200
6	0.71 (natural)	200
7	0.31 (depleted)	200

Table 4: Enrichment levels and masses of the uranium sources. The masses are accurate to 0.2 g, and the enrichment levels accurate to approximately the part-per-thousand level.

¹⁴⁶ The technique used to determine the ^{235}U enrichment is a linear combination
¹⁴⁷ of counts in the 186 keV peak and the continuum region on the high-energy side
¹⁴⁸ of that peak [16]:

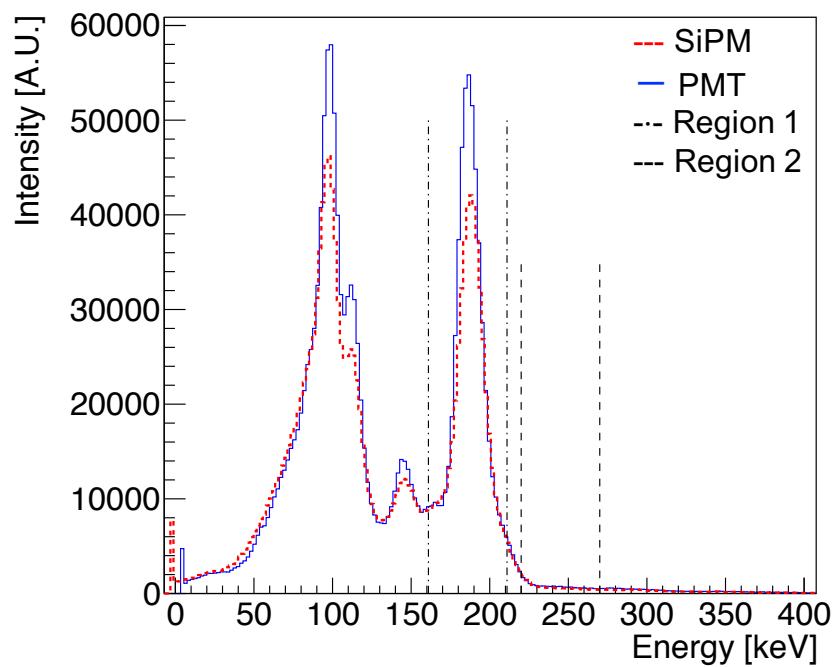


Figure 7: Comparison of the spectra of 93% enriched uranium near the 186 keV gamma line with the PMT (solid blue) and SiPM (dashed red) mounted to the detector. Region widths used for the enrichment comparisons are shown inside the vertical black dotted and dot-dashed lines.

Peak Energy [keV]	PMT Resolution [%]	SiPM Resolution [%]
186	8.11 ± 0.04	8.52 ± 0.03
1001	6.53 ± 0.84	5.84 ± 0.49

Table 5: The full-width at half-maximum energy resolution of the NaI crystal with the PMT and SiPM arrays. The resolution at 1001 keV is smaller with the SiPM-mounted detector than the PMT-mounted detector, which is the only time the SiPM performance exceeded that of the PMT.

$$E = a \cdot S_1 + b \cdot S_2 \quad (1)$$

149 where S_1 and S_2 are the integrated counts in Regions 1 and 2, shown in Fig. 7.
 150 Two calibration spectra are required to solve for the coefficients a and b . The
 151 geometry of the setup for the uranium calibration sources and the unknown
 152 sources must be consistent to obtain accurate results. The samples selected
 153 for the calibration constants were sources 1 and 7. If calibration sources were
 154 chosen close to the middle of the full enrichment range (e.g., sources 2 and
 155 3), the results were less accurate, owing to extrapolations being less reliable
 156 than interpolations. The results are shown in Table 6. Each detector measures
 157 the fraction within error of each other, demonstrating comparable performance.
 158 The average accuracy of the PMT-mounted detector is $8.5 \pm 6.5\%$ and the SiPM-
 159 mounted detector is $7.3 \pm 4.8\%$.

160 **5. Summary**

161 We have discussed several disadvantages of photomultiplier tubes that possi-
 162 ble replacement technologies could address, preferably with comparable perfor-
 163 mance. Some key traits of concern are large volume, temperature dependence,
 164 fragility, high voltage, and magnetic field dependence. Any replacement tech-
 165 nology should address at least some of these concerns, while maintaining cost
 166 parity and performance with PMTs. This current work focuses on PMT replace-
 167 ment for medium-scale gamma ray spectrometers, with a typical dimension of
 168 5 cm and within the context of nuclear safeguards. For the performance eval-
 169 uation, our metrics are detector energy resolution, temperature compensation,
 170 and sensitivity to uranium enrichment levels.

171 We performed a laboratory comparison of a PMT-instrumented and SiPM-
 172 instrumented sodium iodide detector. We calibrated the detector and measured

Shielding	Enrichment	PMT Measured	SiPM Measured
	[%]	[%]	[%]
None	52.5	55.8 ± 0.10	55.6 ± 0.10
	20.1	20.7 ± 0.07	20.3 ± 0.07
	4.46	4.72 ± 0.04	5.21 ± 0.04
	2.95	3.09 ± 0.04	3.45 ± 0.04
	0.72	0.80 ± 0.03	0.76 ± 0.03
0.635 cm steel	52.5	56.1 ± 0.10	55.1 ± 0.98
	20.1	22.0 ± 0.07	19.6 ± 0.06
	4.46	5.15 ± 0.04	5.09 ± 0.04
	2.95	3.40 ± 0.04	3.35 ± 0.04
	0.72	0.74 ± 0.03	0.78 ± 0.03
1.27 cm steel	52.5	55.38 ± 0.10	56.18 ± 0.11
	20.1	20.9 ± 0.07	20.8 ± 0.07
	4.46	5.39 ± 0.05	4.97 ± 0.05
	2.95	3.10 ± 0.04	3.11 ± 0.05
	0.72	0.78 ± 0.04	0.75 ± 0.04
1.59 cm steel	52.5	55.33 ± 0.12	55.73 ± 0.12
	20.1	21.0 ± 0.09	20.9 ± 0.09
	4.46	5.69 ± 0.07	4.85 ± 0.06
	2.95	3.05 ± 0.05	3.02 ± 0.05
	0.72	0.76 ± 0.05	0.70 ± 0.05

Table 6: Measured ^{235}U enrichment fraction based on the activity of the 186 keV gamma peak in multiple samples of enriched uranium. Detectors were calibrated using 93% and depleted (0.31%) U samples. Uncertainties are purely statistical, and any additional deviation from the known enrichment levels are attributed to systematic uncertainties. The consistency between the SiPM-mounted and PMT-mounted detectors are generally in better agreement with each other than the known enrichment values, motivating SiPMs as viable alternatives to PMTs.

173 its resolution in both cases with ^{241}Am , ^{137}Cs , and ^{60}Co . We found small dif-
 174 ferences in resolution between the PMT system and the SiPM system. The
 175 SiPM-mounted system exhibited sufficient dynamic range by altering the bias
 176 to compensate for the temperature-related deviations likely to be encountered
 177 in a nuclear safeguards use scenario. We further compared the resolution of the
 178 ^{235}U 186 keV and ^{238}U 1001 keV energy peaks and the results from an enrich-
 179 ment calculation based on the intensity of the 186 keV peak and the underlying
 180 continuum. The results were consistent with the calibration measurements at
 181 the 5-20% level, with poorer agreement at lower enrichment levels.

182 SiPMs compare well to PMTs with respect to additional concerns. SiPMs
 183 are more rugged than PMTs, as they are not made of an evacuated glass bulb.
 184 The bias voltage of a SiPM is on the order of 30-100 V depending on the
 185 manufacturer and model, as compared to the 800-1500 V of a typical PMT.

186 The SiPM is also protected against aging and accidental exposure to ambient
187 light while fully biased, as well as being insensitive to applied magnetic fields.

188 **6. Acknowledgements**

189 Lawrence Livermore National Laboratory is operated by Lawrence Livermore
190 National Security, LLC, for the U.S. Department of Energy, National Nuclear
191 Security Administration under Contract DE-AC52-07NA27344. LLNL-JRNL-
192 799528.

193 **References**

- 194 [1] AMETEK®, Inc., GAMMA-RAD5 gamma ray detection system,
195 2019. URL: <https://www.amptek.com/-/media/ametekamptek/documents/resources/gamma-rad5-gamma-spectroscopy-system-specifications.pdf>, (accessed on Nov 21, 2019).
- 198 [2] Mirion Technologies, Inc., InSpectorTM1000, 2019. URL: https://mirion.s3.amazonaws.com/cms4_mirion/files/pdf/spec-sheets/c38987_inspector_1000_spec_sheet_2.pdf?1562600639,
199 201 (accessed on Nov 21, 2019).
- 202 [3] FLIR®Systems, Inc., identiFINDER R400, 2019. URL: <https://www.flir.com/products/identifinder-r400/>, (accessed on Nov 21, 2019).
- 204 [4] ©RF Wireless World, Advantages of Photomultiplier tube|Disadvantages
205 207 of Photomultiplier tube, 2012 (accessed on July 26, 2019). URL:
206 <http://www.rfwireless-world.com/Terminology/Advantages-and-Disadvantages-of-Photomultiplier-tube.html>, (accessed on July 26,
208 2019).
- 209 [5] C. H. Faham, Photomultiplier Tube Physics and Operation, 2009. URL:
210 http://physics.bu.edu/NEPPSR/TALKS-2009/Faham_PMToperation.pdf, (accessed July 26, 2019).
- 212 [6] R. Mirzoyan, et al., PHOTOMULTIPLIERS: Solid-state photon de-
213 215 tector has low crosstalk, 2009. URL: <https://www.laserfocusworld.com/detectors-imaging/article/16566095/photomultipliers-solidstate-photon-detector-has-low-crosstalk>, (accessed on July
216 216 26, 2019).

- 217 [7] G. Barbarino, et al., Vacuum silicon photomultiplier tube (VSiPMT): To-
218 wards a new generation of photon detectors, in: 2014 Fotonica AEIT Italian
219 Conference on Photonics Technologies, 2014.
- 220 [8] A. Lebrun, Personal communications, 2017. DOE / IAEA Conference call.
- 221 [9] R. Hawkes, A. Lucas, J. Stevick, G. Llosa, S. Marcatili, C. Piemonte, A. Del
222 Guerra, T. A. Carpenter, Silicon photomultiplier performance tests in
223 magnetic resonance pulsed fields, in: IEEE Nuclear Science Symposium
224 Conference Record, volume 5, 2007, pp. 3400–3403. doi:[10.1109/NSSMIC.2007.4436860](https://doi.org/10.1109/NSSMIC.2007.4436860).
- 226 [10] S. Espa a, et al., Performance evaluation of SiPM photosen-
227 sors in the presence of magnetic fields, AIP Conference Pro-
228 ceedings 1231 (2010) 171–172. URL: <https://aip.scitation.org/doi/abs/10.1063/1.3428910>.
229 doi:[10.1063/1.3428910](https://doi.org/10.1063/1.3428910).
230 arXiv:<https://aip.scitation.org/doi/pdf/10.1063/1.3428910>.
- 231 [11] C. Graf, Performance of a highly granular scintillator-sipm based hadron
232 calorimeter prototype in strong magnetic fields, in: 2017 IEEE Nuclear
233 Science Symposium and Medical Imaging Conference (NSS/MIC), 2017,
234 pp. 1–4. doi:[10.1109/NSSMIC.2017.8532738](https://doi.org/10.1109/NSSMIC.2017.8532738).
- 235 [12] W. C. Elmore, R. Hofstadter, Temperature Dependence of Scintillations in
236 Sodium Iodide Crystals, Physical Review 75 (1949) 203–204. doi:[10.1103/PhysRev.75.203](https://doi.org/10.1103/PhysRev.75.203).
- 238 [13] P. L. Reeder, D. C. Stromswold, Performance of Large NaI(Tl) Gamma-Ray
239 Detectors Over Temperature -50°C to +60°C, Technical Report, Pacific
240 Northwest National Laboratory, 2004.
- 241 [14] Saint-Gobain Ceramics and Plastics. Inc., NaI(Tl) and Polyscin® NaI(Tl)
242 sodium iodide scintillation material, specification data sheet, 2016. URL:
243 https://www.crystals.saint-gobain.com/sites/imdf.crystals.com/files/documents/sodium-iodide-material-data-sheet_0.pdf,
244 (accessed on Nov 21, 2019).
- 246 [15] P. Dorosz, M. Baszczyk, S. Glab, W. Kucewicz, L. Mik, M. Sapor, Silicon
247 photomultiplier's gain stabilization by bias correction for compensation of
248 the temperature fluctuations, Nuclear Instruments and Methods in Physics
249 Research A 718 (2013) 202–204. URL: <http://www.sciencedirect.com>.

250 com/science/article/pii/S0168900212014635. doi:<https://doi.org/10.1016/j.nima.2012.11.116>.
251

[16] J. K. Sprinkle, Jr., et al., Low-resolution gamma-ray measurements of uranium enrichment, Los Alamos National Laboratory Report LA-UR-96-3484, 1996. URL: https://inis.iaea.org/collection/NCLCollectionStore/_Public/28/018/28018233.pdf?r=1&r=1.